diff options
Diffstat (limited to 'arch/arm64/kernel/head.S')
-rw-r--r-- | arch/arm64/kernel/head.S | 1005 |
1 files changed, 1005 insertions, 0 deletions
diff --git a/arch/arm64/kernel/head.S b/arch/arm64/kernel/head.S new file mode 100644 index 000000000..351ee64c7 --- /dev/null +++ b/arch/arm64/kernel/head.S @@ -0,0 +1,1005 @@ +/* SPDX-License-Identifier: GPL-2.0-only */ +/* + * Low-level CPU initialisation + * Based on arch/arm/kernel/head.S + * + * Copyright (C) 1994-2002 Russell King + * Copyright (C) 2003-2012 ARM Ltd. + * Authors: Catalin Marinas <catalin.marinas@arm.com> + * Will Deacon <will.deacon@arm.com> + */ + +#include <linux/linkage.h> +#include <linux/init.h> +#include <linux/irqchip/arm-gic-v3.h> +#include <linux/pgtable.h> + +#include <asm/asm_pointer_auth.h> +#include <asm/assembler.h> +#include <asm/boot.h> +#include <asm/ptrace.h> +#include <asm/asm-offsets.h> +#include <asm/cache.h> +#include <asm/cputype.h> +#include <asm/elf.h> +#include <asm/image.h> +#include <asm/kernel-pgtable.h> +#include <asm/kvm_arm.h> +#include <asm/memory.h> +#include <asm/pgtable-hwdef.h> +#include <asm/page.h> +#include <asm/scs.h> +#include <asm/smp.h> +#include <asm/sysreg.h> +#include <asm/thread_info.h> +#include <asm/virt.h> + +#include "efi-header.S" + +#define __PHYS_OFFSET KERNEL_START + +#if (PAGE_OFFSET & 0x1fffff) != 0 +#error PAGE_OFFSET must be at least 2MB aligned +#endif + +/* + * Kernel startup entry point. + * --------------------------- + * + * The requirements are: + * MMU = off, D-cache = off, I-cache = on or off, + * x0 = physical address to the FDT blob. + * + * This code is mostly position independent so you call this at + * __pa(PAGE_OFFSET). + * + * Note that the callee-saved registers are used for storing variables + * that are useful before the MMU is enabled. The allocations are described + * in the entry routines. + */ + __HEAD +_head: + /* + * DO NOT MODIFY. Image header expected by Linux boot-loaders. + */ +#ifdef CONFIG_EFI + /* + * This add instruction has no meaningful effect except that + * its opcode forms the magic "MZ" signature required by UEFI. + */ + add x13, x18, #0x16 + b primary_entry +#else + b primary_entry // branch to kernel start, magic + .long 0 // reserved +#endif + .quad 0 // Image load offset from start of RAM, little-endian + le64sym _kernel_size_le // Effective size of kernel image, little-endian + le64sym _kernel_flags_le // Informative flags, little-endian + .quad 0 // reserved + .quad 0 // reserved + .quad 0 // reserved + .ascii ARM64_IMAGE_MAGIC // Magic number +#ifdef CONFIG_EFI + .long pe_header - _head // Offset to the PE header. + +pe_header: + __EFI_PE_HEADER +#else + .long 0 // reserved +#endif + + __INIT + + /* + * The following callee saved general purpose registers are used on the + * primary lowlevel boot path: + * + * Register Scope Purpose + * x21 primary_entry() .. start_kernel() FDT pointer passed at boot in x0 + * x23 primary_entry() .. start_kernel() physical misalignment/KASLR offset + * x28 __create_page_tables() callee preserved temp register + * x19/x20 __primary_switch() callee preserved temp registers + * x24 __primary_switch() .. relocate_kernel() current RELR displacement + */ +SYM_CODE_START(primary_entry) + bl preserve_boot_args + bl el2_setup // Drop to EL1, w0=cpu_boot_mode + adrp x23, __PHYS_OFFSET + and x23, x23, MIN_KIMG_ALIGN - 1 // KASLR offset, defaults to 0 + bl set_cpu_boot_mode_flag + bl __create_page_tables + /* + * The following calls CPU setup code, see arch/arm64/mm/proc.S for + * details. + * On return, the CPU will be ready for the MMU to be turned on and + * the TCR will have been set. + */ + bl __cpu_setup // initialise processor + b __primary_switch +SYM_CODE_END(primary_entry) + +/* + * Preserve the arguments passed by the bootloader in x0 .. x3 + */ +SYM_CODE_START_LOCAL(preserve_boot_args) + mov x21, x0 // x21=FDT + + adr_l x0, boot_args // record the contents of + stp x21, x1, [x0] // x0 .. x3 at kernel entry + stp x2, x3, [x0, #16] + + dmb sy // needed before dc ivac with + // MMU off + + mov x1, #0x20 // 4 x 8 bytes + b __inval_dcache_area // tail call +SYM_CODE_END(preserve_boot_args) + +/* + * Macro to create a table entry to the next page. + * + * tbl: page table address + * virt: virtual address + * shift: #imm page table shift + * ptrs: #imm pointers per table page + * + * Preserves: virt + * Corrupts: ptrs, tmp1, tmp2 + * Returns: tbl -> next level table page address + */ + .macro create_table_entry, tbl, virt, shift, ptrs, tmp1, tmp2 + add \tmp1, \tbl, #PAGE_SIZE + phys_to_pte \tmp2, \tmp1 + orr \tmp2, \tmp2, #PMD_TYPE_TABLE // address of next table and entry type + lsr \tmp1, \virt, #\shift + sub \ptrs, \ptrs, #1 + and \tmp1, \tmp1, \ptrs // table index + str \tmp2, [\tbl, \tmp1, lsl #3] + add \tbl, \tbl, #PAGE_SIZE // next level table page + .endm + +/* + * Macro to populate page table entries, these entries can be pointers to the next level + * or last level entries pointing to physical memory. + * + * tbl: page table address + * rtbl: pointer to page table or physical memory + * index: start index to write + * eindex: end index to write - [index, eindex] written to + * flags: flags for pagetable entry to or in + * inc: increment to rtbl between each entry + * tmp1: temporary variable + * + * Preserves: tbl, eindex, flags, inc + * Corrupts: index, tmp1 + * Returns: rtbl + */ + .macro populate_entries, tbl, rtbl, index, eindex, flags, inc, tmp1 +.Lpe\@: phys_to_pte \tmp1, \rtbl + orr \tmp1, \tmp1, \flags // tmp1 = table entry + str \tmp1, [\tbl, \index, lsl #3] + add \rtbl, \rtbl, \inc // rtbl = pa next level + add \index, \index, #1 + cmp \index, \eindex + b.ls .Lpe\@ + .endm + +/* + * Compute indices of table entries from virtual address range. If multiple entries + * were needed in the previous page table level then the next page table level is assumed + * to be composed of multiple pages. (This effectively scales the end index). + * + * vstart: virtual address of start of range + * vend: virtual address of end of range - we map [vstart, vend] + * shift: shift used to transform virtual address into index + * ptrs: number of entries in page table + * istart: index in table corresponding to vstart + * iend: index in table corresponding to vend + * count: On entry: how many extra entries were required in previous level, scales + * our end index. + * On exit: returns how many extra entries required for next page table level + * + * Preserves: vstart, vend, shift, ptrs + * Returns: istart, iend, count + */ + .macro compute_indices, vstart, vend, shift, ptrs, istart, iend, count + lsr \iend, \vend, \shift + mov \istart, \ptrs + sub \istart, \istart, #1 + and \iend, \iend, \istart // iend = (vend >> shift) & (ptrs - 1) + mov \istart, \ptrs + mul \istart, \istart, \count + add \iend, \iend, \istart // iend += (count - 1) * ptrs + // our entries span multiple tables + + lsr \istart, \vstart, \shift + mov \count, \ptrs + sub \count, \count, #1 + and \istart, \istart, \count + + sub \count, \iend, \istart + .endm + +/* + * Map memory for specified virtual address range. Each level of page table needed supports + * multiple entries. If a level requires n entries the next page table level is assumed to be + * formed from n pages. + * + * tbl: location of page table + * rtbl: address to be used for first level page table entry (typically tbl + PAGE_SIZE) + * vstart: virtual address of start of range + * vend: virtual address of end of range - we map [vstart, vend - 1] + * flags: flags to use to map last level entries + * phys: physical address corresponding to vstart - physical memory is contiguous + * pgds: the number of pgd entries + * + * Temporaries: istart, iend, tmp, count, sv - these need to be different registers + * Preserves: vstart, flags + * Corrupts: tbl, rtbl, vend, istart, iend, tmp, count, sv + */ + .macro map_memory, tbl, rtbl, vstart, vend, flags, phys, pgds, istart, iend, tmp, count, sv + sub \vend, \vend, #1 + add \rtbl, \tbl, #PAGE_SIZE + mov \sv, \rtbl + mov \count, #0 + compute_indices \vstart, \vend, #PGDIR_SHIFT, \pgds, \istart, \iend, \count + populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp + mov \tbl, \sv + mov \sv, \rtbl + +#if SWAPPER_PGTABLE_LEVELS > 3 + compute_indices \vstart, \vend, #PUD_SHIFT, #PTRS_PER_PUD, \istart, \iend, \count + populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp + mov \tbl, \sv + mov \sv, \rtbl +#endif + +#if SWAPPER_PGTABLE_LEVELS > 2 + compute_indices \vstart, \vend, #SWAPPER_TABLE_SHIFT, #PTRS_PER_PMD, \istart, \iend, \count + populate_entries \tbl, \rtbl, \istart, \iend, #PMD_TYPE_TABLE, #PAGE_SIZE, \tmp + mov \tbl, \sv +#endif + + compute_indices \vstart, \vend, #SWAPPER_BLOCK_SHIFT, #PTRS_PER_PTE, \istart, \iend, \count + bic \count, \phys, #SWAPPER_BLOCK_SIZE - 1 + populate_entries \tbl, \count, \istart, \iend, \flags, #SWAPPER_BLOCK_SIZE, \tmp + .endm + +/* + * Setup the initial page tables. We only setup the barest amount which is + * required to get the kernel running. The following sections are required: + * - identity mapping to enable the MMU (low address, TTBR0) + * - first few MB of the kernel linear mapping to jump to once the MMU has + * been enabled + */ +SYM_FUNC_START_LOCAL(__create_page_tables) + mov x28, lr + + /* + * Invalidate the init page tables to avoid potential dirty cache lines + * being evicted. Other page tables are allocated in rodata as part of + * the kernel image, and thus are clean to the PoC per the boot + * protocol. + */ + adrp x0, init_pg_dir + adrp x1, init_pg_end + sub x1, x1, x0 + bl __inval_dcache_area + + /* + * Clear the init page tables. + */ + adrp x0, init_pg_dir + adrp x1, init_pg_end + sub x1, x1, x0 +1: stp xzr, xzr, [x0], #16 + stp xzr, xzr, [x0], #16 + stp xzr, xzr, [x0], #16 + stp xzr, xzr, [x0], #16 + subs x1, x1, #64 + b.ne 1b + + mov x7, SWAPPER_MM_MMUFLAGS + + /* + * Create the identity mapping. + */ + adrp x0, idmap_pg_dir + adrp x3, __idmap_text_start // __pa(__idmap_text_start) + +#ifdef CONFIG_ARM64_VA_BITS_52 + mrs_s x6, SYS_ID_AA64MMFR2_EL1 + and x6, x6, #(0xf << ID_AA64MMFR2_LVA_SHIFT) + mov x5, #52 + cbnz x6, 1f +#endif + mov x5, #VA_BITS_MIN +1: + adr_l x6, vabits_actual + str x5, [x6] + dmb sy + dc ivac, x6 // Invalidate potentially stale cache line + + /* + * VA_BITS may be too small to allow for an ID mapping to be created + * that covers system RAM if that is located sufficiently high in the + * physical address space. So for the ID map, use an extended virtual + * range in that case, and configure an additional translation level + * if needed. + * + * Calculate the maximum allowed value for TCR_EL1.T0SZ so that the + * entire ID map region can be mapped. As T0SZ == (64 - #bits used), + * this number conveniently equals the number of leading zeroes in + * the physical address of __idmap_text_end. + */ + adrp x5, __idmap_text_end + clz x5, x5 + cmp x5, TCR_T0SZ(VA_BITS_MIN) // default T0SZ small enough? + b.ge 1f // .. then skip VA range extension + + adr_l x6, idmap_t0sz + str x5, [x6] + dmb sy + dc ivac, x6 // Invalidate potentially stale cache line + +#if (VA_BITS < 48) +#define EXTRA_SHIFT (PGDIR_SHIFT + PAGE_SHIFT - 3) +#define EXTRA_PTRS (1 << (PHYS_MASK_SHIFT - EXTRA_SHIFT)) + + /* + * If VA_BITS < 48, we have to configure an additional table level. + * First, we have to verify our assumption that the current value of + * VA_BITS was chosen such that all translation levels are fully + * utilised, and that lowering T0SZ will always result in an additional + * translation level to be configured. + */ +#if VA_BITS != EXTRA_SHIFT +#error "Mismatch between VA_BITS and page size/number of translation levels" +#endif + + mov x4, EXTRA_PTRS + create_table_entry x0, x3, EXTRA_SHIFT, x4, x5, x6 +#else + /* + * If VA_BITS == 48, we don't have to configure an additional + * translation level, but the top-level table has more entries. + */ + mov x4, #1 << (PHYS_MASK_SHIFT - PGDIR_SHIFT) + str_l x4, idmap_ptrs_per_pgd, x5 +#endif +1: + ldr_l x4, idmap_ptrs_per_pgd + mov x5, x3 // __pa(__idmap_text_start) + adr_l x6, __idmap_text_end // __pa(__idmap_text_end) + + map_memory x0, x1, x3, x6, x7, x3, x4, x10, x11, x12, x13, x14 + + /* + * Map the kernel image (starting with PHYS_OFFSET). + */ + adrp x0, init_pg_dir + mov_q x5, KIMAGE_VADDR // compile time __va(_text) + add x5, x5, x23 // add KASLR displacement + mov x4, PTRS_PER_PGD + adrp x6, _end // runtime __pa(_end) + adrp x3, _text // runtime __pa(_text) + sub x6, x6, x3 // _end - _text + add x6, x6, x5 // runtime __va(_end) + + map_memory x0, x1, x5, x6, x7, x3, x4, x10, x11, x12, x13, x14 + + /* + * Since the page tables have been populated with non-cacheable + * accesses (MMU disabled), invalidate those tables again to + * remove any speculatively loaded cache lines. + */ + dmb sy + + adrp x0, idmap_pg_dir + adrp x1, idmap_pg_end + sub x1, x1, x0 + bl __inval_dcache_area + + adrp x0, init_pg_dir + adrp x1, init_pg_end + sub x1, x1, x0 + bl __inval_dcache_area + + ret x28 +SYM_FUNC_END(__create_page_tables) + +/* + * The following fragment of code is executed with the MMU enabled. + * + * x0 = __PHYS_OFFSET + */ +SYM_FUNC_START_LOCAL(__primary_switched) + adrp x4, init_thread_union + add sp, x4, #THREAD_SIZE + adr_l x5, init_task + msr sp_el0, x5 // Save thread_info + +#ifdef CONFIG_ARM64_PTR_AUTH + __ptrauth_keys_init_cpu x5, x6, x7, x8 +#endif + + adr_l x8, vectors // load VBAR_EL1 with virtual + msr vbar_el1, x8 // vector table address + isb + + stp xzr, x30, [sp, #-16]! + mov x29, sp + +#ifdef CONFIG_SHADOW_CALL_STACK + adr_l scs_sp, init_shadow_call_stack // Set shadow call stack +#endif + + str_l x21, __fdt_pointer, x5 // Save FDT pointer + + ldr_l x4, kimage_vaddr // Save the offset between + sub x4, x4, x0 // the kernel virtual and + str_l x4, kimage_voffset, x5 // physical mappings + + // Clear BSS + adr_l x0, __bss_start + mov x1, xzr + adr_l x2, __bss_stop + sub x2, x2, x0 + bl __pi_memset + dsb ishst // Make zero page visible to PTW + +#ifdef CONFIG_KASAN + bl kasan_early_init +#endif +#ifdef CONFIG_RANDOMIZE_BASE + tst x23, ~(MIN_KIMG_ALIGN - 1) // already running randomized? + b.ne 0f + mov x0, x21 // pass FDT address in x0 + bl kaslr_early_init // parse FDT for KASLR options + cbz x0, 0f // KASLR disabled? just proceed + orr x23, x23, x0 // record KASLR offset + ldp x29, x30, [sp], #16 // we must enable KASLR, return + ret // to __primary_switch() +0: +#endif + add sp, sp, #16 + mov x29, #0 + mov x30, #0 + b start_kernel +SYM_FUNC_END(__primary_switched) + + .pushsection ".rodata", "a" +SYM_DATA_START(kimage_vaddr) + .quad _text +SYM_DATA_END(kimage_vaddr) +EXPORT_SYMBOL(kimage_vaddr) + .popsection + +/* + * end early head section, begin head code that is also used for + * hotplug and needs to have the same protections as the text region + */ + .section ".idmap.text","awx" + +/* + * If we're fortunate enough to boot at EL2, ensure that the world is + * sane before dropping to EL1. + * + * Returns either BOOT_CPU_MODE_EL1 or BOOT_CPU_MODE_EL2 in w0 if + * booted in EL1 or EL2 respectively. + */ +SYM_FUNC_START(el2_setup) + msr SPsel, #1 // We want to use SP_EL{1,2} + mrs x0, CurrentEL + cmp x0, #CurrentEL_EL2 + b.eq 1f + mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) + msr sctlr_el1, x0 + mov w0, #BOOT_CPU_MODE_EL1 // This cpu booted in EL1 + isb + ret + +1: mov_q x0, (SCTLR_EL2_RES1 | ENDIAN_SET_EL2) + msr sctlr_el2, x0 + +#ifdef CONFIG_ARM64_VHE + /* + * Check for VHE being present. For the rest of the EL2 setup, + * x2 being non-zero indicates that we do have VHE, and that the + * kernel is intended to run at EL2. + */ + mrs x2, id_aa64mmfr1_el1 + ubfx x2, x2, #ID_AA64MMFR1_VHE_SHIFT, #4 +#else + mov x2, xzr +#endif + + /* Hyp configuration. */ + mov_q x0, HCR_HOST_NVHE_FLAGS + cbz x2, set_hcr + mov_q x0, HCR_HOST_VHE_FLAGS +set_hcr: + msr hcr_el2, x0 + isb + + /* + * Allow Non-secure EL1 and EL0 to access physical timer and counter. + * This is not necessary for VHE, since the host kernel runs in EL2, + * and EL0 accesses are configured in the later stage of boot process. + * Note that when HCR_EL2.E2H == 1, CNTHCTL_EL2 has the same bit layout + * as CNTKCTL_EL1, and CNTKCTL_EL1 accessing instructions are redefined + * to access CNTHCTL_EL2. This allows the kernel designed to run at EL1 + * to transparently mess with the EL0 bits via CNTKCTL_EL1 access in + * EL2. + */ + cbnz x2, 1f + mrs x0, cnthctl_el2 + orr x0, x0, #3 // Enable EL1 physical timers + msr cnthctl_el2, x0 +1: + msr cntvoff_el2, xzr // Clear virtual offset + +#ifdef CONFIG_ARM_GIC_V3 + /* GICv3 system register access */ + mrs x0, id_aa64pfr0_el1 + ubfx x0, x0, #ID_AA64PFR0_GIC_SHIFT, #4 + cbz x0, 3f + + mrs_s x0, SYS_ICC_SRE_EL2 + orr x0, x0, #ICC_SRE_EL2_SRE // Set ICC_SRE_EL2.SRE==1 + orr x0, x0, #ICC_SRE_EL2_ENABLE // Set ICC_SRE_EL2.Enable==1 + msr_s SYS_ICC_SRE_EL2, x0 + isb // Make sure SRE is now set + mrs_s x0, SYS_ICC_SRE_EL2 // Read SRE back, + tbz x0, #0, 3f // and check that it sticks + msr_s SYS_ICH_HCR_EL2, xzr // Reset ICC_HCR_EL2 to defaults + +3: +#endif + + /* Populate ID registers. */ + mrs x0, midr_el1 + mrs x1, mpidr_el1 + msr vpidr_el2, x0 + msr vmpidr_el2, x1 + +#ifdef CONFIG_COMPAT + msr hstr_el2, xzr // Disable CP15 traps to EL2 +#endif + + /* EL2 debug */ + mrs x1, id_aa64dfr0_el1 + sbfx x0, x1, #ID_AA64DFR0_PMUVER_SHIFT, #4 + cmp x0, #1 + b.lt 4f // Skip if no PMU present + mrs x0, pmcr_el0 // Disable debug access traps + ubfx x0, x0, #11, #5 // to EL2 and allow access to +4: + csel x3, xzr, x0, lt // all PMU counters from EL1 + + /* Statistical profiling */ + ubfx x0, x1, #ID_AA64DFR0_PMSVER_SHIFT, #4 + cbz x0, 7f // Skip if SPE not present + cbnz x2, 6f // VHE? + mrs_s x4, SYS_PMBIDR_EL1 // If SPE available at EL2, + and x4, x4, #(1 << SYS_PMBIDR_EL1_P_SHIFT) + cbnz x4, 5f // then permit sampling of physical + mov x4, #(1 << SYS_PMSCR_EL2_PCT_SHIFT | \ + 1 << SYS_PMSCR_EL2_PA_SHIFT) + msr_s SYS_PMSCR_EL2, x4 // addresses and physical counter +5: + mov x1, #(MDCR_EL2_E2PB_MASK << MDCR_EL2_E2PB_SHIFT) + orr x3, x3, x1 // If we don't have VHE, then + b 7f // use EL1&0 translation. +6: // For VHE, use EL2 translation + orr x3, x3, #MDCR_EL2_TPMS // and disable access from EL1 +7: + msr mdcr_el2, x3 // Configure debug traps + + /* LORegions */ + mrs x1, id_aa64mmfr1_el1 + ubfx x0, x1, #ID_AA64MMFR1_LOR_SHIFT, 4 + cbz x0, 1f + msr_s SYS_LORC_EL1, xzr +1: + + /* Stage-2 translation */ + msr vttbr_el2, xzr + + cbz x2, install_el2_stub + + mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 + isb + ret + +SYM_INNER_LABEL(install_el2_stub, SYM_L_LOCAL) + /* + * When VHE is not in use, early init of EL2 and EL1 needs to be + * done here. + * When VHE _is_ in use, EL1 will not be used in the host and + * requires no configuration, and all non-hyp-specific EL2 setup + * will be done via the _EL1 system register aliases in __cpu_setup. + */ + mov_q x0, (SCTLR_EL1_RES1 | ENDIAN_SET_EL1) + msr sctlr_el1, x0 + + /* Coprocessor traps. */ + mov x0, #0x33ff + msr cptr_el2, x0 // Disable copro. traps to EL2 + + /* SVE register access */ + mrs x1, id_aa64pfr0_el1 + ubfx x1, x1, #ID_AA64PFR0_SVE_SHIFT, #4 + cbz x1, 7f + + bic x0, x0, #CPTR_EL2_TZ // Also disable SVE traps + msr cptr_el2, x0 // Disable copro. traps to EL2 + isb + mov x1, #ZCR_ELx_LEN_MASK // SVE: Enable full vector + msr_s SYS_ZCR_EL2, x1 // length for EL1. + + /* Hypervisor stub */ +7: adr_l x0, __hyp_stub_vectors + msr vbar_el2, x0 + + /* spsr */ + mov x0, #(PSR_F_BIT | PSR_I_BIT | PSR_A_BIT | PSR_D_BIT |\ + PSR_MODE_EL1h) + msr spsr_el2, x0 + msr elr_el2, lr + mov w0, #BOOT_CPU_MODE_EL2 // This CPU booted in EL2 + eret +SYM_FUNC_END(el2_setup) + +/* + * Sets the __boot_cpu_mode flag depending on the CPU boot mode passed + * in w0. See arch/arm64/include/asm/virt.h for more info. + */ +SYM_FUNC_START_LOCAL(set_cpu_boot_mode_flag) + adr_l x1, __boot_cpu_mode + cmp w0, #BOOT_CPU_MODE_EL2 + b.ne 1f + add x1, x1, #4 +1: str w0, [x1] // This CPU has booted in EL1 + dmb sy + dc ivac, x1 // Invalidate potentially stale cache line + ret +SYM_FUNC_END(set_cpu_boot_mode_flag) + +/* + * These values are written with the MMU off, but read with the MMU on. + * Writers will invalidate the corresponding address, discarding up to a + * 'Cache Writeback Granule' (CWG) worth of data. The linker script ensures + * sufficient alignment that the CWG doesn't overlap another section. + */ + .pushsection ".mmuoff.data.write", "aw" +/* + * We need to find out the CPU boot mode long after boot, so we need to + * store it in a writable variable. + * + * This is not in .bss, because we set it sufficiently early that the boot-time + * zeroing of .bss would clobber it. + */ +SYM_DATA_START(__boot_cpu_mode) + .long BOOT_CPU_MODE_EL2 + .long BOOT_CPU_MODE_EL1 +SYM_DATA_END(__boot_cpu_mode) +/* + * The booting CPU updates the failed status @__early_cpu_boot_status, + * with MMU turned off. + */ +SYM_DATA_START(__early_cpu_boot_status) + .quad 0 +SYM_DATA_END(__early_cpu_boot_status) + + .popsection + + /* + * This provides a "holding pen" for platforms to hold all secondary + * cores are held until we're ready for them to initialise. + */ +SYM_FUNC_START(secondary_holding_pen) + bl el2_setup // Drop to EL1, w0=cpu_boot_mode + bl set_cpu_boot_mode_flag + mrs x0, mpidr_el1 + mov_q x1, MPIDR_HWID_BITMASK + and x0, x0, x1 + adr_l x3, secondary_holding_pen_release +pen: ldr x4, [x3] + cmp x4, x0 + b.eq secondary_startup + wfe + b pen +SYM_FUNC_END(secondary_holding_pen) + + /* + * Secondary entry point that jumps straight into the kernel. Only to + * be used where CPUs are brought online dynamically by the kernel. + */ +SYM_FUNC_START(secondary_entry) + bl el2_setup // Drop to EL1 + bl set_cpu_boot_mode_flag + b secondary_startup +SYM_FUNC_END(secondary_entry) + +SYM_FUNC_START_LOCAL(secondary_startup) + /* + * Common entry point for secondary CPUs. + */ + bl __cpu_secondary_check52bitva + bl __cpu_setup // initialise processor + adrp x1, swapper_pg_dir + bl __enable_mmu + ldr x8, =__secondary_switched + br x8 +SYM_FUNC_END(secondary_startup) + +SYM_FUNC_START_LOCAL(__secondary_switched) + adr_l x5, vectors + msr vbar_el1, x5 + isb + + adr_l x0, secondary_data + ldr x1, [x0, #CPU_BOOT_STACK] // get secondary_data.stack + cbz x1, __secondary_too_slow + mov sp, x1 + ldr x2, [x0, #CPU_BOOT_TASK] + cbz x2, __secondary_too_slow + msr sp_el0, x2 + scs_load_current + mov x29, #0 + mov x30, #0 + +#ifdef CONFIG_ARM64_PTR_AUTH + ptrauth_keys_init_cpu x2, x3, x4, x5 +#endif + + b secondary_start_kernel +SYM_FUNC_END(__secondary_switched) + +SYM_FUNC_START_LOCAL(__secondary_too_slow) + wfe + wfi + b __secondary_too_slow +SYM_FUNC_END(__secondary_too_slow) + +/* + * The booting CPU updates the failed status @__early_cpu_boot_status, + * with MMU turned off. + * + * update_early_cpu_boot_status tmp, status + * - Corrupts tmp1, tmp2 + * - Writes 'status' to __early_cpu_boot_status and makes sure + * it is committed to memory. + */ + + .macro update_early_cpu_boot_status status, tmp1, tmp2 + mov \tmp2, #\status + adr_l \tmp1, __early_cpu_boot_status + str \tmp2, [\tmp1] + dmb sy + dc ivac, \tmp1 // Invalidate potentially stale cache line + .endm + +/* + * Enable the MMU. + * + * x0 = SCTLR_EL1 value for turning on the MMU. + * x1 = TTBR1_EL1 value + * + * Returns to the caller via x30/lr. This requires the caller to be covered + * by the .idmap.text section. + * + * Checks if the selected granule size is supported by the CPU. + * If it isn't, park the CPU + */ +SYM_FUNC_START(__enable_mmu) + mrs x2, ID_AA64MMFR0_EL1 + ubfx x2, x2, #ID_AA64MMFR0_TGRAN_SHIFT, 4 + cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MIN + b.lt __no_granule_support + cmp x2, #ID_AA64MMFR0_TGRAN_SUPPORTED_MAX + b.gt __no_granule_support + update_early_cpu_boot_status 0, x2, x3 + adrp x2, idmap_pg_dir + phys_to_ttbr x1, x1 + phys_to_ttbr x2, x2 + msr ttbr0_el1, x2 // load TTBR0 + offset_ttbr1 x1, x3 + msr ttbr1_el1, x1 // load TTBR1 + isb + msr sctlr_el1, x0 + isb + /* + * Invalidate the local I-cache so that any instructions fetched + * speculatively from the PoC are discarded, since they may have + * been dynamically patched at the PoU. + */ + ic iallu + dsb nsh + isb + ret +SYM_FUNC_END(__enable_mmu) + +SYM_FUNC_START(__cpu_secondary_check52bitva) +#ifdef CONFIG_ARM64_VA_BITS_52 + ldr_l x0, vabits_actual + cmp x0, #52 + b.ne 2f + + mrs_s x0, SYS_ID_AA64MMFR2_EL1 + and x0, x0, #(0xf << ID_AA64MMFR2_LVA_SHIFT) + cbnz x0, 2f + + update_early_cpu_boot_status \ + CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_52_BIT_VA, x0, x1 +1: wfe + wfi + b 1b + +#endif +2: ret +SYM_FUNC_END(__cpu_secondary_check52bitva) + +SYM_FUNC_START_LOCAL(__no_granule_support) + /* Indicate that this CPU can't boot and is stuck in the kernel */ + update_early_cpu_boot_status \ + CPU_STUCK_IN_KERNEL | CPU_STUCK_REASON_NO_GRAN, x1, x2 +1: + wfe + wfi + b 1b +SYM_FUNC_END(__no_granule_support) + +#ifdef CONFIG_RELOCATABLE +SYM_FUNC_START_LOCAL(__relocate_kernel) + /* + * Iterate over each entry in the relocation table, and apply the + * relocations in place. + */ + ldr w9, =__rela_offset // offset to reloc table + ldr w10, =__rela_size // size of reloc table + + mov_q x11, KIMAGE_VADDR // default virtual offset + add x11, x11, x23 // actual virtual offset + add x9, x9, x11 // __va(.rela) + add x10, x9, x10 // __va(.rela) + sizeof(.rela) + +0: cmp x9, x10 + b.hs 1f + ldp x12, x13, [x9], #24 + ldr x14, [x9, #-8] + cmp w13, #R_AARCH64_RELATIVE + b.ne 0b + add x14, x14, x23 // relocate + str x14, [x12, x23] + b 0b + +1: +#ifdef CONFIG_RELR + /* + * Apply RELR relocations. + * + * RELR is a compressed format for storing relative relocations. The + * encoded sequence of entries looks like: + * [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ] + * + * i.e. start with an address, followed by any number of bitmaps. The + * address entry encodes 1 relocation. The subsequent bitmap entries + * encode up to 63 relocations each, at subsequent offsets following + * the last address entry. + * + * The bitmap entries must have 1 in the least significant bit. The + * assumption here is that an address cannot have 1 in lsb. Odd + * addresses are not supported. Any odd addresses are stored in the RELA + * section, which is handled above. + * + * Excluding the least significant bit in the bitmap, each non-zero + * bit in the bitmap represents a relocation to be applied to + * a corresponding machine word that follows the base address + * word. The second least significant bit represents the machine + * word immediately following the initial address, and each bit + * that follows represents the next word, in linear order. As such, + * a single bitmap can encode up to 63 relocations in a 64-bit object. + * + * In this implementation we store the address of the next RELR table + * entry in x9, the address being relocated by the current address or + * bitmap entry in x13 and the address being relocated by the current + * bit in x14. + * + * Because addends are stored in place in the binary, RELR relocations + * cannot be applied idempotently. We use x24 to keep track of the + * currently applied displacement so that we can correctly relocate if + * __relocate_kernel is called twice with non-zero displacements (i.e. + * if there is both a physical misalignment and a KASLR displacement). + */ + ldr w9, =__relr_offset // offset to reloc table + ldr w10, =__relr_size // size of reloc table + add x9, x9, x11 // __va(.relr) + add x10, x9, x10 // __va(.relr) + sizeof(.relr) + + sub x15, x23, x24 // delta from previous offset + cbz x15, 7f // nothing to do if unchanged + mov x24, x23 // save new offset + +2: cmp x9, x10 + b.hs 7f + ldr x11, [x9], #8 + tbnz x11, #0, 3f // branch to handle bitmaps + add x13, x11, x23 + ldr x12, [x13] // relocate address entry + add x12, x12, x15 + str x12, [x13], #8 // adjust to start of bitmap + b 2b + +3: mov x14, x13 +4: lsr x11, x11, #1 + cbz x11, 6f + tbz x11, #0, 5f // skip bit if not set + ldr x12, [x14] // relocate bit + add x12, x12, x15 + str x12, [x14] + +5: add x14, x14, #8 // move to next bit's address + b 4b + +6: /* + * Move to the next bitmap's address. 8 is the word size, and 63 is the + * number of significant bits in a bitmap entry. + */ + add x13, x13, #(8 * 63) + b 2b + +7: +#endif + ret + +SYM_FUNC_END(__relocate_kernel) +#endif + +SYM_FUNC_START_LOCAL(__primary_switch) +#ifdef CONFIG_RANDOMIZE_BASE + mov x19, x0 // preserve new SCTLR_EL1 value + mrs x20, sctlr_el1 // preserve old SCTLR_EL1 value +#endif + + adrp x1, init_pg_dir + bl __enable_mmu +#ifdef CONFIG_RELOCATABLE +#ifdef CONFIG_RELR + mov x24, #0 // no RELR displacement yet +#endif + bl __relocate_kernel +#ifdef CONFIG_RANDOMIZE_BASE + ldr x8, =__primary_switched + adrp x0, __PHYS_OFFSET + blr x8 + + /* + * If we return here, we have a KASLR displacement in x23 which we need + * to take into account by discarding the current kernel mapping and + * creating a new one. + */ + pre_disable_mmu_workaround + msr sctlr_el1, x20 // disable the MMU + isb + bl __create_page_tables // recreate kernel mapping + + tlbi vmalle1 // Remove any stale TLB entries + dsb nsh + isb + + msr sctlr_el1, x19 // re-enable the MMU + isb + ic iallu // flush instructions fetched + dsb nsh // via old mapping + isb + + bl __relocate_kernel +#endif +#endif + ldr x8, =__primary_switched + adrp x0, __PHYS_OFFSET + br x8 +SYM_FUNC_END(__primary_switch) |