diff options
Diffstat (limited to 'drivers/edac/edac_mc.c')
-rw-r--r-- | drivers/edac/edac_mc.c | 1161 |
1 files changed, 1161 insertions, 0 deletions
diff --git a/drivers/edac/edac_mc.c b/drivers/edac/edac_mc.c new file mode 100644 index 000000000..f4eb07132 --- /dev/null +++ b/drivers/edac/edac_mc.c @@ -0,0 +1,1161 @@ +/* + * edac_mc kernel module + * (C) 2005, 2006 Linux Networx (http://lnxi.com) + * This file may be distributed under the terms of the + * GNU General Public License. + * + * Written by Thayne Harbaugh + * Based on work by Dan Hollis <goemon at anime dot net> and others. + * http://www.anime.net/~goemon/linux-ecc/ + * + * Modified by Dave Peterson and Doug Thompson + * + */ + +#include <linux/module.h> +#include <linux/proc_fs.h> +#include <linux/kernel.h> +#include <linux/types.h> +#include <linux/smp.h> +#include <linux/init.h> +#include <linux/sysctl.h> +#include <linux/highmem.h> +#include <linux/timer.h> +#include <linux/slab.h> +#include <linux/jiffies.h> +#include <linux/spinlock.h> +#include <linux/list.h> +#include <linux/ctype.h> +#include <linux/edac.h> +#include <linux/bitops.h> +#include <linux/uaccess.h> +#include <asm/page.h> +#include "edac_mc.h" +#include "edac_module.h" +#include <ras/ras_event.h> + +#ifdef CONFIG_EDAC_ATOMIC_SCRUB +#include <asm/edac.h> +#else +#define edac_atomic_scrub(va, size) do { } while (0) +#endif + +int edac_op_state = EDAC_OPSTATE_INVAL; +EXPORT_SYMBOL_GPL(edac_op_state); + +/* lock to memory controller's control array */ +static DEFINE_MUTEX(mem_ctls_mutex); +static LIST_HEAD(mc_devices); + +/* + * Used to lock EDAC MC to just one module, avoiding two drivers e. g. + * apei/ghes and i7core_edac to be used at the same time. + */ +static const char *edac_mc_owner; + +static struct mem_ctl_info *error_desc_to_mci(struct edac_raw_error_desc *e) +{ + return container_of(e, struct mem_ctl_info, error_desc); +} + +unsigned int edac_dimm_info_location(struct dimm_info *dimm, char *buf, + unsigned int len) +{ + struct mem_ctl_info *mci = dimm->mci; + int i, n, count = 0; + char *p = buf; + + for (i = 0; i < mci->n_layers; i++) { + n = snprintf(p, len, "%s %d ", + edac_layer_name[mci->layers[i].type], + dimm->location[i]); + p += n; + len -= n; + count += n; + if (!len) + break; + } + + return count; +} + +#ifdef CONFIG_EDAC_DEBUG + +static void edac_mc_dump_channel(struct rank_info *chan) +{ + edac_dbg(4, " channel->chan_idx = %d\n", chan->chan_idx); + edac_dbg(4, " channel = %p\n", chan); + edac_dbg(4, " channel->csrow = %p\n", chan->csrow); + edac_dbg(4, " channel->dimm = %p\n", chan->dimm); +} + +static void edac_mc_dump_dimm(struct dimm_info *dimm) +{ + char location[80]; + + if (!dimm->nr_pages) + return; + + edac_dimm_info_location(dimm, location, sizeof(location)); + + edac_dbg(4, "%s%i: %smapped as virtual row %d, chan %d\n", + dimm->mci->csbased ? "rank" : "dimm", + dimm->idx, location, dimm->csrow, dimm->cschannel); + edac_dbg(4, " dimm = %p\n", dimm); + edac_dbg(4, " dimm->label = '%s'\n", dimm->label); + edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); + edac_dbg(4, " dimm->grain = %d\n", dimm->grain); + edac_dbg(4, " dimm->nr_pages = 0x%x\n", dimm->nr_pages); +} + +static void edac_mc_dump_csrow(struct csrow_info *csrow) +{ + edac_dbg(4, "csrow->csrow_idx = %d\n", csrow->csrow_idx); + edac_dbg(4, " csrow = %p\n", csrow); + edac_dbg(4, " csrow->first_page = 0x%lx\n", csrow->first_page); + edac_dbg(4, " csrow->last_page = 0x%lx\n", csrow->last_page); + edac_dbg(4, " csrow->page_mask = 0x%lx\n", csrow->page_mask); + edac_dbg(4, " csrow->nr_channels = %d\n", csrow->nr_channels); + edac_dbg(4, " csrow->channels = %p\n", csrow->channels); + edac_dbg(4, " csrow->mci = %p\n", csrow->mci); +} + +static void edac_mc_dump_mci(struct mem_ctl_info *mci) +{ + edac_dbg(3, "\tmci = %p\n", mci); + edac_dbg(3, "\tmci->mtype_cap = %lx\n", mci->mtype_cap); + edac_dbg(3, "\tmci->edac_ctl_cap = %lx\n", mci->edac_ctl_cap); + edac_dbg(3, "\tmci->edac_cap = %lx\n", mci->edac_cap); + edac_dbg(4, "\tmci->edac_check = %p\n", mci->edac_check); + edac_dbg(3, "\tmci->nr_csrows = %d, csrows = %p\n", + mci->nr_csrows, mci->csrows); + edac_dbg(3, "\tmci->nr_dimms = %d, dimms = %p\n", + mci->tot_dimms, mci->dimms); + edac_dbg(3, "\tdev = %p\n", mci->pdev); + edac_dbg(3, "\tmod_name:ctl_name = %s:%s\n", + mci->mod_name, mci->ctl_name); + edac_dbg(3, "\tpvt_info = %p\n\n", mci->pvt_info); +} + +#endif /* CONFIG_EDAC_DEBUG */ + +const char * const edac_mem_types[] = { + [MEM_EMPTY] = "Empty", + [MEM_RESERVED] = "Reserved", + [MEM_UNKNOWN] = "Unknown", + [MEM_FPM] = "FPM", + [MEM_EDO] = "EDO", + [MEM_BEDO] = "BEDO", + [MEM_SDR] = "Unbuffered-SDR", + [MEM_RDR] = "Registered-SDR", + [MEM_DDR] = "Unbuffered-DDR", + [MEM_RDDR] = "Registered-DDR", + [MEM_RMBS] = "RMBS", + [MEM_DDR2] = "Unbuffered-DDR2", + [MEM_FB_DDR2] = "FullyBuffered-DDR2", + [MEM_RDDR2] = "Registered-DDR2", + [MEM_XDR] = "XDR", + [MEM_DDR3] = "Unbuffered-DDR3", + [MEM_RDDR3] = "Registered-DDR3", + [MEM_LRDDR3] = "Load-Reduced-DDR3-RAM", + [MEM_DDR4] = "Unbuffered-DDR4", + [MEM_RDDR4] = "Registered-DDR4", + [MEM_LRDDR4] = "Load-Reduced-DDR4-RAM", + [MEM_NVDIMM] = "Non-volatile-RAM", +}; +EXPORT_SYMBOL_GPL(edac_mem_types); + +/** + * edac_align_ptr - Prepares the pointer offsets for a single-shot allocation + * @p: pointer to a pointer with the memory offset to be used. At + * return, this will be incremented to point to the next offset + * @size: Size of the data structure to be reserved + * @n_elems: Number of elements that should be reserved + * + * If 'size' is a constant, the compiler will optimize this whole function + * down to either a no-op or the addition of a constant to the value of '*p'. + * + * The 'p' pointer is absolutely needed to keep the proper advancing + * further in memory to the proper offsets when allocating the struct along + * with its embedded structs, as edac_device_alloc_ctl_info() does it + * above, for example. + * + * At return, the pointer 'p' will be incremented to be used on a next call + * to this function. + */ +void *edac_align_ptr(void **p, unsigned int size, int n_elems) +{ + unsigned int align, r; + void *ptr = *p; + + *p += size * n_elems; + + /* + * 'p' can possibly be an unaligned item X such that sizeof(X) is + * 'size'. Adjust 'p' so that its alignment is at least as + * stringent as what the compiler would provide for X and return + * the aligned result. + * Here we assume that the alignment of a "long long" is the most + * stringent alignment that the compiler will ever provide by default. + * As far as I know, this is a reasonable assumption. + */ + if (size > sizeof(long)) + align = sizeof(long long); + else if (size > sizeof(int)) + align = sizeof(long); + else if (size > sizeof(short)) + align = sizeof(int); + else if (size > sizeof(char)) + align = sizeof(short); + else + return (char *)ptr; + + r = (unsigned long)ptr % align; + + if (r == 0) + return (char *)ptr; + + *p += align - r; + + return (void *)(((unsigned long)ptr) + align - r); +} + +static void _edac_mc_free(struct mem_ctl_info *mci) +{ + put_device(&mci->dev); +} + +static void mci_release(struct device *dev) +{ + struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev); + struct csrow_info *csr; + int i, chn, row; + + if (mci->dimms) { + for (i = 0; i < mci->tot_dimms; i++) + kfree(mci->dimms[i]); + kfree(mci->dimms); + } + + if (mci->csrows) { + for (row = 0; row < mci->nr_csrows; row++) { + csr = mci->csrows[row]; + if (!csr) + continue; + + if (csr->channels) { + for (chn = 0; chn < mci->num_cschannel; chn++) + kfree(csr->channels[chn]); + kfree(csr->channels); + } + kfree(csr); + } + kfree(mci->csrows); + } + kfree(mci); +} + +static int edac_mc_alloc_csrows(struct mem_ctl_info *mci) +{ + unsigned int tot_channels = mci->num_cschannel; + unsigned int tot_csrows = mci->nr_csrows; + unsigned int row, chn; + + /* + * Alocate and fill the csrow/channels structs + */ + mci->csrows = kcalloc(tot_csrows, sizeof(*mci->csrows), GFP_KERNEL); + if (!mci->csrows) + return -ENOMEM; + + for (row = 0; row < tot_csrows; row++) { + struct csrow_info *csr; + + csr = kzalloc(sizeof(**mci->csrows), GFP_KERNEL); + if (!csr) + return -ENOMEM; + + mci->csrows[row] = csr; + csr->csrow_idx = row; + csr->mci = mci; + csr->nr_channels = tot_channels; + csr->channels = kcalloc(tot_channels, sizeof(*csr->channels), + GFP_KERNEL); + if (!csr->channels) + return -ENOMEM; + + for (chn = 0; chn < tot_channels; chn++) { + struct rank_info *chan; + + chan = kzalloc(sizeof(**csr->channels), GFP_KERNEL); + if (!chan) + return -ENOMEM; + + csr->channels[chn] = chan; + chan->chan_idx = chn; + chan->csrow = csr; + } + } + + return 0; +} + +static int edac_mc_alloc_dimms(struct mem_ctl_info *mci) +{ + unsigned int pos[EDAC_MAX_LAYERS]; + unsigned int row, chn, idx; + int layer; + void *p; + + /* + * Allocate and fill the dimm structs + */ + mci->dimms = kcalloc(mci->tot_dimms, sizeof(*mci->dimms), GFP_KERNEL); + if (!mci->dimms) + return -ENOMEM; + + memset(&pos, 0, sizeof(pos)); + row = 0; + chn = 0; + for (idx = 0; idx < mci->tot_dimms; idx++) { + struct dimm_info *dimm; + struct rank_info *chan; + int n, len; + + chan = mci->csrows[row]->channels[chn]; + + dimm = kzalloc(sizeof(**mci->dimms), GFP_KERNEL); + if (!dimm) + return -ENOMEM; + mci->dimms[idx] = dimm; + dimm->mci = mci; + dimm->idx = idx; + + /* + * Copy DIMM location and initialize it. + */ + len = sizeof(dimm->label); + p = dimm->label; + n = snprintf(p, len, "mc#%u", mci->mc_idx); + p += n; + len -= n; + for (layer = 0; layer < mci->n_layers; layer++) { + n = snprintf(p, len, "%s#%u", + edac_layer_name[mci->layers[layer].type], + pos[layer]); + p += n; + len -= n; + dimm->location[layer] = pos[layer]; + + if (len <= 0) + break; + } + + /* Link it to the csrows old API data */ + chan->dimm = dimm; + dimm->csrow = row; + dimm->cschannel = chn; + + /* Increment csrow location */ + if (mci->layers[0].is_virt_csrow) { + chn++; + if (chn == mci->num_cschannel) { + chn = 0; + row++; + } + } else { + row++; + if (row == mci->nr_csrows) { + row = 0; + chn++; + } + } + + /* Increment dimm location */ + for (layer = mci->n_layers - 1; layer >= 0; layer--) { + pos[layer]++; + if (pos[layer] < mci->layers[layer].size) + break; + pos[layer] = 0; + } + } + + return 0; +} + +struct mem_ctl_info *edac_mc_alloc(unsigned int mc_num, + unsigned int n_layers, + struct edac_mc_layer *layers, + unsigned int sz_pvt) +{ + struct mem_ctl_info *mci; + struct edac_mc_layer *layer; + unsigned int idx, size, tot_dimms = 1; + unsigned int tot_csrows = 1, tot_channels = 1; + void *pvt, *ptr = NULL; + bool per_rank = false; + + if (WARN_ON(n_layers > EDAC_MAX_LAYERS || n_layers == 0)) + return NULL; + + /* + * Calculate the total amount of dimms and csrows/cschannels while + * in the old API emulation mode + */ + for (idx = 0; idx < n_layers; idx++) { + tot_dimms *= layers[idx].size; + + if (layers[idx].is_virt_csrow) + tot_csrows *= layers[idx].size; + else + tot_channels *= layers[idx].size; + + if (layers[idx].type == EDAC_MC_LAYER_CHIP_SELECT) + per_rank = true; + } + + /* Figure out the offsets of the various items from the start of an mc + * structure. We want the alignment of each item to be at least as + * stringent as what the compiler would provide if we could simply + * hardcode everything into a single struct. + */ + mci = edac_align_ptr(&ptr, sizeof(*mci), 1); + layer = edac_align_ptr(&ptr, sizeof(*layer), n_layers); + pvt = edac_align_ptr(&ptr, sz_pvt, 1); + size = ((unsigned long)pvt) + sz_pvt; + + edac_dbg(1, "allocating %u bytes for mci data (%d %s, %d csrows/channels)\n", + size, + tot_dimms, + per_rank ? "ranks" : "dimms", + tot_csrows * tot_channels); + + mci = kzalloc(size, GFP_KERNEL); + if (mci == NULL) + return NULL; + + mci->dev.release = mci_release; + device_initialize(&mci->dev); + + /* Adjust pointers so they point within the memory we just allocated + * rather than an imaginary chunk of memory located at address 0. + */ + layer = (struct edac_mc_layer *)(((char *)mci) + ((unsigned long)layer)); + pvt = sz_pvt ? (((char *)mci) + ((unsigned long)pvt)) : NULL; + + /* setup index and various internal pointers */ + mci->mc_idx = mc_num; + mci->tot_dimms = tot_dimms; + mci->pvt_info = pvt; + mci->n_layers = n_layers; + mci->layers = layer; + memcpy(mci->layers, layers, sizeof(*layer) * n_layers); + mci->nr_csrows = tot_csrows; + mci->num_cschannel = tot_channels; + mci->csbased = per_rank; + + if (edac_mc_alloc_csrows(mci)) + goto error; + + if (edac_mc_alloc_dimms(mci)) + goto error; + + mci->op_state = OP_ALLOC; + + return mci; + +error: + _edac_mc_free(mci); + + return NULL; +} +EXPORT_SYMBOL_GPL(edac_mc_alloc); + +void edac_mc_free(struct mem_ctl_info *mci) +{ + edac_dbg(1, "\n"); + + _edac_mc_free(mci); +} +EXPORT_SYMBOL_GPL(edac_mc_free); + +bool edac_has_mcs(void) +{ + bool ret; + + mutex_lock(&mem_ctls_mutex); + + ret = list_empty(&mc_devices); + + mutex_unlock(&mem_ctls_mutex); + + return !ret; +} +EXPORT_SYMBOL_GPL(edac_has_mcs); + +/* Caller must hold mem_ctls_mutex */ +static struct mem_ctl_info *__find_mci_by_dev(struct device *dev) +{ + struct mem_ctl_info *mci; + struct list_head *item; + + edac_dbg(3, "\n"); + + list_for_each(item, &mc_devices) { + mci = list_entry(item, struct mem_ctl_info, link); + + if (mci->pdev == dev) + return mci; + } + + return NULL; +} + +/** + * find_mci_by_dev + * + * scan list of controllers looking for the one that manages + * the 'dev' device + * @dev: pointer to a struct device related with the MCI + */ +struct mem_ctl_info *find_mci_by_dev(struct device *dev) +{ + struct mem_ctl_info *ret; + + mutex_lock(&mem_ctls_mutex); + ret = __find_mci_by_dev(dev); + mutex_unlock(&mem_ctls_mutex); + + return ret; +} +EXPORT_SYMBOL_GPL(find_mci_by_dev); + +/* + * edac_mc_workq_function + * performs the operation scheduled by a workq request + */ +static void edac_mc_workq_function(struct work_struct *work_req) +{ + struct delayed_work *d_work = to_delayed_work(work_req); + struct mem_ctl_info *mci = to_edac_mem_ctl_work(d_work); + + mutex_lock(&mem_ctls_mutex); + + if (mci->op_state != OP_RUNNING_POLL) { + mutex_unlock(&mem_ctls_mutex); + return; + } + + if (edac_op_state == EDAC_OPSTATE_POLL) + mci->edac_check(mci); + + mutex_unlock(&mem_ctls_mutex); + + /* Queue ourselves again. */ + edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); +} + +/* + * edac_mc_reset_delay_period(unsigned long value) + * + * user space has updated our poll period value, need to + * reset our workq delays + */ +void edac_mc_reset_delay_period(unsigned long value) +{ + struct mem_ctl_info *mci; + struct list_head *item; + + mutex_lock(&mem_ctls_mutex); + + list_for_each(item, &mc_devices) { + mci = list_entry(item, struct mem_ctl_info, link); + + if (mci->op_state == OP_RUNNING_POLL) + edac_mod_work(&mci->work, value); + } + mutex_unlock(&mem_ctls_mutex); +} + + + +/* Return 0 on success, 1 on failure. + * Before calling this function, caller must + * assign a unique value to mci->mc_idx. + * + * locking model: + * + * called with the mem_ctls_mutex lock held + */ +static int add_mc_to_global_list(struct mem_ctl_info *mci) +{ + struct list_head *item, *insert_before; + struct mem_ctl_info *p; + + insert_before = &mc_devices; + + p = __find_mci_by_dev(mci->pdev); + if (unlikely(p != NULL)) + goto fail0; + + list_for_each(item, &mc_devices) { + p = list_entry(item, struct mem_ctl_info, link); + + if (p->mc_idx >= mci->mc_idx) { + if (unlikely(p->mc_idx == mci->mc_idx)) + goto fail1; + + insert_before = item; + break; + } + } + + list_add_tail_rcu(&mci->link, insert_before); + return 0; + +fail0: + edac_printk(KERN_WARNING, EDAC_MC, + "%s (%s) %s %s already assigned %d\n", dev_name(p->pdev), + edac_dev_name(mci), p->mod_name, p->ctl_name, p->mc_idx); + return 1; + +fail1: + edac_printk(KERN_WARNING, EDAC_MC, + "bug in low-level driver: attempt to assign\n" + " duplicate mc_idx %d in %s()\n", p->mc_idx, __func__); + return 1; +} + +static int del_mc_from_global_list(struct mem_ctl_info *mci) +{ + list_del_rcu(&mci->link); + + /* these are for safe removal of devices from global list while + * NMI handlers may be traversing list + */ + synchronize_rcu(); + INIT_LIST_HEAD(&mci->link); + + return list_empty(&mc_devices); +} + +struct mem_ctl_info *edac_mc_find(int idx) +{ + struct mem_ctl_info *mci; + struct list_head *item; + + mutex_lock(&mem_ctls_mutex); + + list_for_each(item, &mc_devices) { + mci = list_entry(item, struct mem_ctl_info, link); + if (mci->mc_idx == idx) + goto unlock; + } + + mci = NULL; +unlock: + mutex_unlock(&mem_ctls_mutex); + return mci; +} +EXPORT_SYMBOL(edac_mc_find); + +const char *edac_get_owner(void) +{ + return edac_mc_owner; +} +EXPORT_SYMBOL_GPL(edac_get_owner); + +/* FIXME - should a warning be printed if no error detection? correction? */ +int edac_mc_add_mc_with_groups(struct mem_ctl_info *mci, + const struct attribute_group **groups) +{ + int ret = -EINVAL; + edac_dbg(0, "\n"); + +#ifdef CONFIG_EDAC_DEBUG + if (edac_debug_level >= 3) + edac_mc_dump_mci(mci); + + if (edac_debug_level >= 4) { + struct dimm_info *dimm; + int i; + + for (i = 0; i < mci->nr_csrows; i++) { + struct csrow_info *csrow = mci->csrows[i]; + u32 nr_pages = 0; + int j; + + for (j = 0; j < csrow->nr_channels; j++) + nr_pages += csrow->channels[j]->dimm->nr_pages; + if (!nr_pages) + continue; + edac_mc_dump_csrow(csrow); + for (j = 0; j < csrow->nr_channels; j++) + if (csrow->channels[j]->dimm->nr_pages) + edac_mc_dump_channel(csrow->channels[j]); + } + + mci_for_each_dimm(mci, dimm) + edac_mc_dump_dimm(dimm); + } +#endif + mutex_lock(&mem_ctls_mutex); + + if (edac_mc_owner && edac_mc_owner != mci->mod_name) { + ret = -EPERM; + goto fail0; + } + + if (add_mc_to_global_list(mci)) + goto fail0; + + /* set load time so that error rate can be tracked */ + mci->start_time = jiffies; + + mci->bus = edac_get_sysfs_subsys(); + + if (edac_create_sysfs_mci_device(mci, groups)) { + edac_mc_printk(mci, KERN_WARNING, + "failed to create sysfs device\n"); + goto fail1; + } + + if (mci->edac_check) { + mci->op_state = OP_RUNNING_POLL; + + INIT_DELAYED_WORK(&mci->work, edac_mc_workq_function); + edac_queue_work(&mci->work, msecs_to_jiffies(edac_mc_get_poll_msec())); + + } else { + mci->op_state = OP_RUNNING_INTERRUPT; + } + + /* Report action taken */ + edac_mc_printk(mci, KERN_INFO, + "Giving out device to module %s controller %s: DEV %s (%s)\n", + mci->mod_name, mci->ctl_name, mci->dev_name, + edac_op_state_to_string(mci->op_state)); + + edac_mc_owner = mci->mod_name; + + mutex_unlock(&mem_ctls_mutex); + return 0; + +fail1: + del_mc_from_global_list(mci); + +fail0: + mutex_unlock(&mem_ctls_mutex); + return ret; +} +EXPORT_SYMBOL_GPL(edac_mc_add_mc_with_groups); + +struct mem_ctl_info *edac_mc_del_mc(struct device *dev) +{ + struct mem_ctl_info *mci; + + edac_dbg(0, "\n"); + + mutex_lock(&mem_ctls_mutex); + + /* find the requested mci struct in the global list */ + mci = __find_mci_by_dev(dev); + if (mci == NULL) { + mutex_unlock(&mem_ctls_mutex); + return NULL; + } + + /* mark MCI offline: */ + mci->op_state = OP_OFFLINE; + + if (del_mc_from_global_list(mci)) + edac_mc_owner = NULL; + + mutex_unlock(&mem_ctls_mutex); + + if (mci->edac_check) + edac_stop_work(&mci->work); + + /* remove from sysfs */ + edac_remove_sysfs_mci_device(mci); + + edac_printk(KERN_INFO, EDAC_MC, + "Removed device %d for %s %s: DEV %s\n", mci->mc_idx, + mci->mod_name, mci->ctl_name, edac_dev_name(mci)); + + return mci; +} +EXPORT_SYMBOL_GPL(edac_mc_del_mc); + +static void edac_mc_scrub_block(unsigned long page, unsigned long offset, + u32 size) +{ + struct page *pg; + void *virt_addr; + unsigned long flags = 0; + + edac_dbg(3, "\n"); + + /* ECC error page was not in our memory. Ignore it. */ + if (!pfn_valid(page)) + return; + + /* Find the actual page structure then map it and fix */ + pg = pfn_to_page(page); + + if (PageHighMem(pg)) + local_irq_save(flags); + + virt_addr = kmap_atomic(pg); + + /* Perform architecture specific atomic scrub operation */ + edac_atomic_scrub(virt_addr + offset, size); + + /* Unmap and complete */ + kunmap_atomic(virt_addr); + + if (PageHighMem(pg)) + local_irq_restore(flags); +} + +/* FIXME - should return -1 */ +int edac_mc_find_csrow_by_page(struct mem_ctl_info *mci, unsigned long page) +{ + struct csrow_info **csrows = mci->csrows; + int row, i, j, n; + + edac_dbg(1, "MC%d: 0x%lx\n", mci->mc_idx, page); + row = -1; + + for (i = 0; i < mci->nr_csrows; i++) { + struct csrow_info *csrow = csrows[i]; + n = 0; + for (j = 0; j < csrow->nr_channels; j++) { + struct dimm_info *dimm = csrow->channels[j]->dimm; + n += dimm->nr_pages; + } + if (n == 0) + continue; + + edac_dbg(3, "MC%d: first(0x%lx) page(0x%lx) last(0x%lx) mask(0x%lx)\n", + mci->mc_idx, + csrow->first_page, page, csrow->last_page, + csrow->page_mask); + + if ((page >= csrow->first_page) && + (page <= csrow->last_page) && + ((page & csrow->page_mask) == + (csrow->first_page & csrow->page_mask))) { + row = i; + break; + } + } + + if (row == -1) + edac_mc_printk(mci, KERN_ERR, + "could not look up page error address %lx\n", + (unsigned long)page); + + return row; +} +EXPORT_SYMBOL_GPL(edac_mc_find_csrow_by_page); + +const char *edac_layer_name[] = { + [EDAC_MC_LAYER_BRANCH] = "branch", + [EDAC_MC_LAYER_CHANNEL] = "channel", + [EDAC_MC_LAYER_SLOT] = "slot", + [EDAC_MC_LAYER_CHIP_SELECT] = "csrow", + [EDAC_MC_LAYER_ALL_MEM] = "memory", +}; +EXPORT_SYMBOL_GPL(edac_layer_name); + +static void edac_inc_ce_error(struct edac_raw_error_desc *e) +{ + int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; + struct mem_ctl_info *mci = error_desc_to_mci(e); + struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); + + mci->ce_mc += e->error_count; + + if (dimm) + dimm->ce_count += e->error_count; + else + mci->ce_noinfo_count += e->error_count; +} + +static void edac_inc_ue_error(struct edac_raw_error_desc *e) +{ + int pos[EDAC_MAX_LAYERS] = { e->top_layer, e->mid_layer, e->low_layer }; + struct mem_ctl_info *mci = error_desc_to_mci(e); + struct dimm_info *dimm = edac_get_dimm(mci, pos[0], pos[1], pos[2]); + + mci->ue_mc += e->error_count; + + if (dimm) + dimm->ue_count += e->error_count; + else + mci->ue_noinfo_count += e->error_count; +} + +static void edac_ce_error(struct edac_raw_error_desc *e) +{ + struct mem_ctl_info *mci = error_desc_to_mci(e); + unsigned long remapped_page; + + if (edac_mc_get_log_ce()) { + edac_mc_printk(mci, KERN_WARNING, + "%d CE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld syndrome:0x%lx%s%s)\n", + e->error_count, e->msg, + *e->msg ? " " : "", + e->label, e->location, e->page_frame_number, e->offset_in_page, + e->grain, e->syndrome, + *e->other_detail ? " - " : "", + e->other_detail); + } + + edac_inc_ce_error(e); + + if (mci->scrub_mode == SCRUB_SW_SRC) { + /* + * Some memory controllers (called MCs below) can remap + * memory so that it is still available at a different + * address when PCI devices map into memory. + * MC's that can't do this, lose the memory where PCI + * devices are mapped. This mapping is MC-dependent + * and so we call back into the MC driver for it to + * map the MC page to a physical (CPU) page which can + * then be mapped to a virtual page - which can then + * be scrubbed. + */ + remapped_page = mci->ctl_page_to_phys ? + mci->ctl_page_to_phys(mci, e->page_frame_number) : + e->page_frame_number; + + edac_mc_scrub_block(remapped_page, e->offset_in_page, e->grain); + } +} + +static void edac_ue_error(struct edac_raw_error_desc *e) +{ + struct mem_ctl_info *mci = error_desc_to_mci(e); + + if (edac_mc_get_log_ue()) { + edac_mc_printk(mci, KERN_WARNING, + "%d UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", + e->error_count, e->msg, + *e->msg ? " " : "", + e->label, e->location, e->page_frame_number, e->offset_in_page, + e->grain, + *e->other_detail ? " - " : "", + e->other_detail); + } + + edac_inc_ue_error(e); + + if (edac_mc_get_panic_on_ue()) { + panic("UE %s%son %s (%s page:0x%lx offset:0x%lx grain:%ld%s%s)\n", + e->msg, + *e->msg ? " " : "", + e->label, e->location, e->page_frame_number, e->offset_in_page, + e->grain, + *e->other_detail ? " - " : "", + e->other_detail); + } +} + +static void edac_inc_csrow(struct edac_raw_error_desc *e, int row, int chan) +{ + struct mem_ctl_info *mci = error_desc_to_mci(e); + enum hw_event_mc_err_type type = e->type; + u16 count = e->error_count; + + if (row < 0) + return; + + edac_dbg(4, "csrow/channel to increment: (%d,%d)\n", row, chan); + + if (type == HW_EVENT_ERR_CORRECTED) { + mci->csrows[row]->ce_count += count; + if (chan >= 0) + mci->csrows[row]->channels[chan]->ce_count += count; + } else { + mci->csrows[row]->ue_count += count; + } +} + +void edac_raw_mc_handle_error(struct edac_raw_error_desc *e) +{ + struct mem_ctl_info *mci = error_desc_to_mci(e); + u8 grain_bits; + + /* Sanity-check driver-supplied grain value. */ + if (WARN_ON_ONCE(!e->grain)) + e->grain = 1; + + grain_bits = fls_long(e->grain - 1); + + /* Report the error via the trace interface */ + if (IS_ENABLED(CONFIG_RAS)) + trace_mc_event(e->type, e->msg, e->label, e->error_count, + mci->mc_idx, e->top_layer, e->mid_layer, + e->low_layer, + (e->page_frame_number << PAGE_SHIFT) | e->offset_in_page, + grain_bits, e->syndrome, e->other_detail); + + if (e->type == HW_EVENT_ERR_CORRECTED) + edac_ce_error(e); + else + edac_ue_error(e); +} +EXPORT_SYMBOL_GPL(edac_raw_mc_handle_error); + +void edac_mc_handle_error(const enum hw_event_mc_err_type type, + struct mem_ctl_info *mci, + const u16 error_count, + const unsigned long page_frame_number, + const unsigned long offset_in_page, + const unsigned long syndrome, + const int top_layer, + const int mid_layer, + const int low_layer, + const char *msg, + const char *other_detail) +{ + struct dimm_info *dimm; + char *p; + int row = -1, chan = -1; + int pos[EDAC_MAX_LAYERS] = { top_layer, mid_layer, low_layer }; + int i, n_labels = 0; + struct edac_raw_error_desc *e = &mci->error_desc; + bool any_memory = true; + + edac_dbg(3, "MC%d\n", mci->mc_idx); + + /* Fills the error report buffer */ + memset(e, 0, sizeof (*e)); + e->error_count = error_count; + e->type = type; + e->top_layer = top_layer; + e->mid_layer = mid_layer; + e->low_layer = low_layer; + e->page_frame_number = page_frame_number; + e->offset_in_page = offset_in_page; + e->syndrome = syndrome; + /* need valid strings here for both: */ + e->msg = msg ?: ""; + e->other_detail = other_detail ?: ""; + + /* + * Check if the event report is consistent and if the memory location is + * known. If it is, the DIMM(s) label info will be filled and the DIMM's + * error counters will be incremented. + */ + for (i = 0; i < mci->n_layers; i++) { + if (pos[i] >= (int)mci->layers[i].size) { + + edac_mc_printk(mci, KERN_ERR, + "INTERNAL ERROR: %s value is out of range (%d >= %d)\n", + edac_layer_name[mci->layers[i].type], + pos[i], mci->layers[i].size); + /* + * Instead of just returning it, let's use what's + * known about the error. The increment routines and + * the DIMM filter logic will do the right thing by + * pointing the likely damaged DIMMs. + */ + pos[i] = -1; + } + if (pos[i] >= 0) + any_memory = false; + } + + /* + * Get the dimm label/grain that applies to the match criteria. + * As the error algorithm may not be able to point to just one memory + * stick, the logic here will get all possible labels that could + * pottentially be affected by the error. + * On FB-DIMM memory controllers, for uncorrected errors, it is common + * to have only the MC channel and the MC dimm (also called "branch") + * but the channel is not known, as the memory is arranged in pairs, + * where each memory belongs to a separate channel within the same + * branch. + */ + p = e->label; + *p = '\0'; + + mci_for_each_dimm(mci, dimm) { + if (top_layer >= 0 && top_layer != dimm->location[0]) + continue; + if (mid_layer >= 0 && mid_layer != dimm->location[1]) + continue; + if (low_layer >= 0 && low_layer != dimm->location[2]) + continue; + + /* get the max grain, over the error match range */ + if (dimm->grain > e->grain) + e->grain = dimm->grain; + + /* + * If the error is memory-controller wide, there's no need to + * seek for the affected DIMMs because the whole channel/memory + * controller/... may be affected. Also, don't show errors for + * empty DIMM slots. + */ + if (!dimm->nr_pages) + continue; + + n_labels++; + if (n_labels > EDAC_MAX_LABELS) { + p = e->label; + *p = '\0'; + } else { + if (p != e->label) { + strcpy(p, OTHER_LABEL); + p += strlen(OTHER_LABEL); + } + strcpy(p, dimm->label); + p += strlen(p); + } + + /* + * get csrow/channel of the DIMM, in order to allow + * incrementing the compat API counters + */ + edac_dbg(4, "%s csrows map: (%d,%d)\n", + mci->csbased ? "rank" : "dimm", + dimm->csrow, dimm->cschannel); + if (row == -1) + row = dimm->csrow; + else if (row >= 0 && row != dimm->csrow) + row = -2; + + if (chan == -1) + chan = dimm->cschannel; + else if (chan >= 0 && chan != dimm->cschannel) + chan = -2; + } + + if (any_memory) + strcpy(e->label, "any memory"); + else if (!*e->label) + strcpy(e->label, "unknown memory"); + + edac_inc_csrow(e, row, chan); + + /* Fill the RAM location data */ + p = e->location; + + for (i = 0; i < mci->n_layers; i++) { + if (pos[i] < 0) + continue; + + p += sprintf(p, "%s:%d ", + edac_layer_name[mci->layers[i].type], + pos[i]); + } + if (p > e->location) + *(p - 1) = '\0'; + + edac_raw_mc_handle_error(e); +} +EXPORT_SYMBOL_GPL(edac_mc_handle_error); |