diff options
Diffstat (limited to 'drivers/net/can/m_can/m_can.c')
-rw-r--r-- | drivers/net/can/m_can/m_can.c | 1920 |
1 files changed, 1920 insertions, 0 deletions
diff --git a/drivers/net/can/m_can/m_can.c b/drivers/net/can/m_can/m_can.c new file mode 100644 index 000000000..19a19a7b7 --- /dev/null +++ b/drivers/net/can/m_can/m_can.c @@ -0,0 +1,1920 @@ +// SPDX-License-Identifier: GPL-2.0 +// CAN bus driver for Bosch M_CAN controller +// Copyright (C) 2014 Freescale Semiconductor, Inc. +// Dong Aisheng <b29396@freescale.com> +// Copyright (C) 2018-19 Texas Instruments Incorporated - http://www.ti.com/ + +/* Bosch M_CAN user manual can be obtained from: + * http://www.bosch-semiconductors.de/media/pdf_1/ipmodules_1/m_can/ + * mcan_users_manual_v302.pdf + */ + +#include <linux/interrupt.h> +#include <linux/io.h> +#include <linux/kernel.h> +#include <linux/module.h> +#include <linux/netdevice.h> +#include <linux/of.h> +#include <linux/of_device.h> +#include <linux/platform_device.h> +#include <linux/pm_runtime.h> +#include <linux/iopoll.h> +#include <linux/can/dev.h> +#include <linux/pinctrl/consumer.h> + +#include "m_can.h" + +/* registers definition */ +enum m_can_reg { + M_CAN_CREL = 0x0, + M_CAN_ENDN = 0x4, + M_CAN_CUST = 0x8, + M_CAN_DBTP = 0xc, + M_CAN_TEST = 0x10, + M_CAN_RWD = 0x14, + M_CAN_CCCR = 0x18, + M_CAN_NBTP = 0x1c, + M_CAN_TSCC = 0x20, + M_CAN_TSCV = 0x24, + M_CAN_TOCC = 0x28, + M_CAN_TOCV = 0x2c, + M_CAN_ECR = 0x40, + M_CAN_PSR = 0x44, +/* TDCR Register only available for version >=3.1.x */ + M_CAN_TDCR = 0x48, + M_CAN_IR = 0x50, + M_CAN_IE = 0x54, + M_CAN_ILS = 0x58, + M_CAN_ILE = 0x5c, + M_CAN_GFC = 0x80, + M_CAN_SIDFC = 0x84, + M_CAN_XIDFC = 0x88, + M_CAN_XIDAM = 0x90, + M_CAN_HPMS = 0x94, + M_CAN_NDAT1 = 0x98, + M_CAN_NDAT2 = 0x9c, + M_CAN_RXF0C = 0xa0, + M_CAN_RXF0S = 0xa4, + M_CAN_RXF0A = 0xa8, + M_CAN_RXBC = 0xac, + M_CAN_RXF1C = 0xb0, + M_CAN_RXF1S = 0xb4, + M_CAN_RXF1A = 0xb8, + M_CAN_RXESC = 0xbc, + M_CAN_TXBC = 0xc0, + M_CAN_TXFQS = 0xc4, + M_CAN_TXESC = 0xc8, + M_CAN_TXBRP = 0xcc, + M_CAN_TXBAR = 0xd0, + M_CAN_TXBCR = 0xd4, + M_CAN_TXBTO = 0xd8, + M_CAN_TXBCF = 0xdc, + M_CAN_TXBTIE = 0xe0, + M_CAN_TXBCIE = 0xe4, + M_CAN_TXEFC = 0xf0, + M_CAN_TXEFS = 0xf4, + M_CAN_TXEFA = 0xf8, +}; + +/* napi related */ +#define M_CAN_NAPI_WEIGHT 64 + +/* message ram configuration data length */ +#define MRAM_CFG_LEN 8 + +/* Core Release Register (CREL) */ +#define CREL_REL_SHIFT 28 +#define CREL_REL_MASK (0xF << CREL_REL_SHIFT) +#define CREL_STEP_SHIFT 24 +#define CREL_STEP_MASK (0xF << CREL_STEP_SHIFT) +#define CREL_SUBSTEP_SHIFT 20 +#define CREL_SUBSTEP_MASK (0xF << CREL_SUBSTEP_SHIFT) + +/* Data Bit Timing & Prescaler Register (DBTP) */ +#define DBTP_TDC BIT(23) +#define DBTP_DBRP_SHIFT 16 +#define DBTP_DBRP_MASK (0x1f << DBTP_DBRP_SHIFT) +#define DBTP_DTSEG1_SHIFT 8 +#define DBTP_DTSEG1_MASK (0x1f << DBTP_DTSEG1_SHIFT) +#define DBTP_DTSEG2_SHIFT 4 +#define DBTP_DTSEG2_MASK (0xf << DBTP_DTSEG2_SHIFT) +#define DBTP_DSJW_SHIFT 0 +#define DBTP_DSJW_MASK (0xf << DBTP_DSJW_SHIFT) + +/* Transmitter Delay Compensation Register (TDCR) */ +#define TDCR_TDCO_SHIFT 8 +#define TDCR_TDCO_MASK (0x7F << TDCR_TDCO_SHIFT) +#define TDCR_TDCF_SHIFT 0 +#define TDCR_TDCF_MASK (0x7F << TDCR_TDCF_SHIFT) + +/* Test Register (TEST) */ +#define TEST_LBCK BIT(4) + +/* CC Control Register(CCCR) */ +#define CCCR_CMR_MASK 0x3 +#define CCCR_CMR_SHIFT 10 +#define CCCR_CMR_CANFD 0x1 +#define CCCR_CMR_CANFD_BRS 0x2 +#define CCCR_CMR_CAN 0x3 +#define CCCR_CME_MASK 0x3 +#define CCCR_CME_SHIFT 8 +#define CCCR_CME_CAN 0 +#define CCCR_CME_CANFD 0x1 +#define CCCR_CME_CANFD_BRS 0x2 +#define CCCR_TXP BIT(14) +#define CCCR_TEST BIT(7) +#define CCCR_DAR BIT(6) +#define CCCR_MON BIT(5) +#define CCCR_CSR BIT(4) +#define CCCR_CSA BIT(3) +#define CCCR_ASM BIT(2) +#define CCCR_CCE BIT(1) +#define CCCR_INIT BIT(0) +#define CCCR_CANFD 0x10 +/* for version >=3.1.x */ +#define CCCR_EFBI BIT(13) +#define CCCR_PXHD BIT(12) +#define CCCR_BRSE BIT(9) +#define CCCR_FDOE BIT(8) +/* only for version >=3.2.x */ +#define CCCR_NISO BIT(15) + +/* Nominal Bit Timing & Prescaler Register (NBTP) */ +#define NBTP_NSJW_SHIFT 25 +#define NBTP_NSJW_MASK (0x7f << NBTP_NSJW_SHIFT) +#define NBTP_NBRP_SHIFT 16 +#define NBTP_NBRP_MASK (0x1ff << NBTP_NBRP_SHIFT) +#define NBTP_NTSEG1_SHIFT 8 +#define NBTP_NTSEG1_MASK (0xff << NBTP_NTSEG1_SHIFT) +#define NBTP_NTSEG2_SHIFT 0 +#define NBTP_NTSEG2_MASK (0x7f << NBTP_NTSEG2_SHIFT) + +/* Error Counter Register(ECR) */ +#define ECR_RP BIT(15) +#define ECR_REC_SHIFT 8 +#define ECR_REC_MASK (0x7f << ECR_REC_SHIFT) +#define ECR_TEC_SHIFT 0 +#define ECR_TEC_MASK 0xff + +/* Protocol Status Register(PSR) */ +#define PSR_BO BIT(7) +#define PSR_EW BIT(6) +#define PSR_EP BIT(5) +#define PSR_LEC_MASK 0x7 + +/* Interrupt Register(IR) */ +#define IR_ALL_INT 0xffffffff + +/* Renamed bits for versions > 3.1.x */ +#define IR_ARA BIT(29) +#define IR_PED BIT(28) +#define IR_PEA BIT(27) + +/* Bits for version 3.0.x */ +#define IR_STE BIT(31) +#define IR_FOE BIT(30) +#define IR_ACKE BIT(29) +#define IR_BE BIT(28) +#define IR_CRCE BIT(27) +#define IR_WDI BIT(26) +#define IR_BO BIT(25) +#define IR_EW BIT(24) +#define IR_EP BIT(23) +#define IR_ELO BIT(22) +#define IR_BEU BIT(21) +#define IR_BEC BIT(20) +#define IR_DRX BIT(19) +#define IR_TOO BIT(18) +#define IR_MRAF BIT(17) +#define IR_TSW BIT(16) +#define IR_TEFL BIT(15) +#define IR_TEFF BIT(14) +#define IR_TEFW BIT(13) +#define IR_TEFN BIT(12) +#define IR_TFE BIT(11) +#define IR_TCF BIT(10) +#define IR_TC BIT(9) +#define IR_HPM BIT(8) +#define IR_RF1L BIT(7) +#define IR_RF1F BIT(6) +#define IR_RF1W BIT(5) +#define IR_RF1N BIT(4) +#define IR_RF0L BIT(3) +#define IR_RF0F BIT(2) +#define IR_RF0W BIT(1) +#define IR_RF0N BIT(0) +#define IR_ERR_STATE (IR_BO | IR_EW | IR_EP) + +/* Interrupts for version 3.0.x */ +#define IR_ERR_LEC_30X (IR_STE | IR_FOE | IR_ACKE | IR_BE | IR_CRCE) +#define IR_ERR_BUS_30X (IR_ERR_LEC_30X | IR_WDI | IR_BEU | IR_BEC | \ + IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ + IR_RF0L) +#define IR_ERR_ALL_30X (IR_ERR_STATE | IR_ERR_BUS_30X) +/* Interrupts for version >= 3.1.x */ +#define IR_ERR_LEC_31X (IR_PED | IR_PEA) +#define IR_ERR_BUS_31X (IR_ERR_LEC_31X | IR_WDI | IR_BEU | IR_BEC | \ + IR_TOO | IR_MRAF | IR_TSW | IR_TEFL | IR_RF1L | \ + IR_RF0L) +#define IR_ERR_ALL_31X (IR_ERR_STATE | IR_ERR_BUS_31X) + +/* Interrupt Line Select (ILS) */ +#define ILS_ALL_INT0 0x0 +#define ILS_ALL_INT1 0xFFFFFFFF + +/* Interrupt Line Enable (ILE) */ +#define ILE_EINT1 BIT(1) +#define ILE_EINT0 BIT(0) + +/* Rx FIFO 0/1 Configuration (RXF0C/RXF1C) */ +#define RXFC_FWM_SHIFT 24 +#define RXFC_FWM_MASK (0x7f << RXFC_FWM_SHIFT) +#define RXFC_FS_SHIFT 16 +#define RXFC_FS_MASK (0x7f << RXFC_FS_SHIFT) + +/* Rx FIFO 0/1 Status (RXF0S/RXF1S) */ +#define RXFS_RFL BIT(25) +#define RXFS_FF BIT(24) +#define RXFS_FPI_SHIFT 16 +#define RXFS_FPI_MASK 0x3f0000 +#define RXFS_FGI_SHIFT 8 +#define RXFS_FGI_MASK 0x3f00 +#define RXFS_FFL_MASK 0x7f + +/* Rx Buffer / FIFO Element Size Configuration (RXESC) */ +#define M_CAN_RXESC_8BYTES 0x0 +#define M_CAN_RXESC_64BYTES 0x777 + +/* Tx Buffer Configuration(TXBC) */ +#define TXBC_NDTB_SHIFT 16 +#define TXBC_NDTB_MASK (0x3f << TXBC_NDTB_SHIFT) +#define TXBC_TFQS_SHIFT 24 +#define TXBC_TFQS_MASK (0x3f << TXBC_TFQS_SHIFT) + +/* Tx FIFO/Queue Status (TXFQS) */ +#define TXFQS_TFQF BIT(21) +#define TXFQS_TFQPI_SHIFT 16 +#define TXFQS_TFQPI_MASK (0x1f << TXFQS_TFQPI_SHIFT) +#define TXFQS_TFGI_SHIFT 8 +#define TXFQS_TFGI_MASK (0x1f << TXFQS_TFGI_SHIFT) +#define TXFQS_TFFL_SHIFT 0 +#define TXFQS_TFFL_MASK (0x3f << TXFQS_TFFL_SHIFT) + +/* Tx Buffer Element Size Configuration(TXESC) */ +#define TXESC_TBDS_8BYTES 0x0 +#define TXESC_TBDS_64BYTES 0x7 + +/* Tx Event FIFO Configuration (TXEFC) */ +#define TXEFC_EFS_SHIFT 16 +#define TXEFC_EFS_MASK (0x3f << TXEFC_EFS_SHIFT) + +/* Tx Event FIFO Status (TXEFS) */ +#define TXEFS_TEFL BIT(25) +#define TXEFS_EFF BIT(24) +#define TXEFS_EFGI_SHIFT 8 +#define TXEFS_EFGI_MASK (0x1f << TXEFS_EFGI_SHIFT) +#define TXEFS_EFFL_SHIFT 0 +#define TXEFS_EFFL_MASK (0x3f << TXEFS_EFFL_SHIFT) + +/* Tx Event FIFO Acknowledge (TXEFA) */ +#define TXEFA_EFAI_SHIFT 0 +#define TXEFA_EFAI_MASK (0x1f << TXEFA_EFAI_SHIFT) + +/* Message RAM Configuration (in bytes) */ +#define SIDF_ELEMENT_SIZE 4 +#define XIDF_ELEMENT_SIZE 8 +#define RXF0_ELEMENT_SIZE 72 +#define RXF1_ELEMENT_SIZE 72 +#define RXB_ELEMENT_SIZE 72 +#define TXE_ELEMENT_SIZE 8 +#define TXB_ELEMENT_SIZE 72 + +/* Message RAM Elements */ +#define M_CAN_FIFO_ID 0x0 +#define M_CAN_FIFO_DLC 0x4 +#define M_CAN_FIFO_DATA(n) (0x8 + ((n) << 2)) + +/* Rx Buffer Element */ +/* R0 */ +#define RX_BUF_ESI BIT(31) +#define RX_BUF_XTD BIT(30) +#define RX_BUF_RTR BIT(29) +/* R1 */ +#define RX_BUF_ANMF BIT(31) +#define RX_BUF_FDF BIT(21) +#define RX_BUF_BRS BIT(20) + +/* Tx Buffer Element */ +/* T0 */ +#define TX_BUF_ESI BIT(31) +#define TX_BUF_XTD BIT(30) +#define TX_BUF_RTR BIT(29) +/* T1 */ +#define TX_BUF_EFC BIT(23) +#define TX_BUF_FDF BIT(21) +#define TX_BUF_BRS BIT(20) +#define TX_BUF_MM_SHIFT 24 +#define TX_BUF_MM_MASK (0xff << TX_BUF_MM_SHIFT) + +/* Tx event FIFO Element */ +/* E1 */ +#define TX_EVENT_MM_SHIFT TX_BUF_MM_SHIFT +#define TX_EVENT_MM_MASK (0xff << TX_EVENT_MM_SHIFT) + +static inline u32 m_can_read(struct m_can_classdev *cdev, enum m_can_reg reg) +{ + return cdev->ops->read_reg(cdev, reg); +} + +static inline void m_can_write(struct m_can_classdev *cdev, enum m_can_reg reg, + u32 val) +{ + cdev->ops->write_reg(cdev, reg, val); +} + +static u32 m_can_fifo_read(struct m_can_classdev *cdev, + u32 fgi, unsigned int offset) +{ + u32 addr_offset = cdev->mcfg[MRAM_RXF0].off + fgi * RXF0_ELEMENT_SIZE + + offset; + + return cdev->ops->read_fifo(cdev, addr_offset); +} + +static void m_can_fifo_write(struct m_can_classdev *cdev, + u32 fpi, unsigned int offset, u32 val) +{ + u32 addr_offset = cdev->mcfg[MRAM_TXB].off + fpi * TXB_ELEMENT_SIZE + + offset; + + cdev->ops->write_fifo(cdev, addr_offset, val); +} + +static inline void m_can_fifo_write_no_off(struct m_can_classdev *cdev, + u32 fpi, u32 val) +{ + cdev->ops->write_fifo(cdev, fpi, val); +} + +static u32 m_can_txe_fifo_read(struct m_can_classdev *cdev, u32 fgi, u32 offset) +{ + u32 addr_offset = cdev->mcfg[MRAM_TXE].off + fgi * TXE_ELEMENT_SIZE + + offset; + + return cdev->ops->read_fifo(cdev, addr_offset); +} + +static inline bool m_can_tx_fifo_full(struct m_can_classdev *cdev) +{ + return !!(m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQF); +} + +void m_can_config_endisable(struct m_can_classdev *cdev, bool enable) +{ + u32 cccr = m_can_read(cdev, M_CAN_CCCR); + u32 timeout = 10; + u32 val = 0; + + /* Clear the Clock stop request if it was set */ + if (cccr & CCCR_CSR) + cccr &= ~CCCR_CSR; + + if (enable) { + /* enable m_can configuration */ + m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT); + udelay(5); + /* CCCR.CCE can only be set/reset while CCCR.INIT = '1' */ + m_can_write(cdev, M_CAN_CCCR, cccr | CCCR_INIT | CCCR_CCE); + } else { + m_can_write(cdev, M_CAN_CCCR, cccr & ~(CCCR_INIT | CCCR_CCE)); + } + + /* there's a delay for module initialization */ + if (enable) + val = CCCR_INIT | CCCR_CCE; + + while ((m_can_read(cdev, M_CAN_CCCR) & (CCCR_INIT | CCCR_CCE)) != val) { + if (timeout == 0) { + netdev_warn(cdev->net, "Failed to init module\n"); + return; + } + timeout--; + udelay(1); + } +} + +static inline void m_can_enable_all_interrupts(struct m_can_classdev *cdev) +{ + /* Only interrupt line 0 is used in this driver */ + m_can_write(cdev, M_CAN_ILE, ILE_EINT0); +} + +static inline void m_can_disable_all_interrupts(struct m_can_classdev *cdev) +{ + m_can_write(cdev, M_CAN_ILE, 0x0); +} + +static void m_can_clean(struct net_device *net) +{ + struct m_can_classdev *cdev = netdev_priv(net); + + if (cdev->tx_skb) { + int putidx = 0; + + net->stats.tx_errors++; + if (cdev->version > 30) + putidx = ((m_can_read(cdev, M_CAN_TXFQS) & + TXFQS_TFQPI_MASK) >> TXFQS_TFQPI_SHIFT); + + can_free_echo_skb(cdev->net, putidx); + cdev->tx_skb = NULL; + } +} + +static void m_can_read_fifo(struct net_device *dev, u32 rxfs) +{ + struct net_device_stats *stats = &dev->stats; + struct m_can_classdev *cdev = netdev_priv(dev); + struct canfd_frame *cf; + struct sk_buff *skb; + u32 id, fgi, dlc; + int i; + + /* calculate the fifo get index for where to read data */ + fgi = (rxfs & RXFS_FGI_MASK) >> RXFS_FGI_SHIFT; + dlc = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_DLC); + if (dlc & RX_BUF_FDF) + skb = alloc_canfd_skb(dev, &cf); + else + skb = alloc_can_skb(dev, (struct can_frame **)&cf); + if (!skb) { + stats->rx_dropped++; + return; + } + + if (dlc & RX_BUF_FDF) + cf->len = can_dlc2len((dlc >> 16) & 0x0F); + else + cf->len = get_can_dlc((dlc >> 16) & 0x0F); + + id = m_can_fifo_read(cdev, fgi, M_CAN_FIFO_ID); + if (id & RX_BUF_XTD) + cf->can_id = (id & CAN_EFF_MASK) | CAN_EFF_FLAG; + else + cf->can_id = (id >> 18) & CAN_SFF_MASK; + + if (id & RX_BUF_ESI) { + cf->flags |= CANFD_ESI; + netdev_dbg(dev, "ESI Error\n"); + } + + if (!(dlc & RX_BUF_FDF) && (id & RX_BUF_RTR)) { + cf->can_id |= CAN_RTR_FLAG; + } else { + if (dlc & RX_BUF_BRS) + cf->flags |= CANFD_BRS; + + for (i = 0; i < cf->len; i += 4) + *(u32 *)(cf->data + i) = + m_can_fifo_read(cdev, fgi, + M_CAN_FIFO_DATA(i / 4)); + } + + /* acknowledge rx fifo 0 */ + m_can_write(cdev, M_CAN_RXF0A, fgi); + + stats->rx_packets++; + stats->rx_bytes += cf->len; + + netif_receive_skb(skb); +} + +static int m_can_do_rx_poll(struct net_device *dev, int quota) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + u32 pkts = 0; + u32 rxfs; + + rxfs = m_can_read(cdev, M_CAN_RXF0S); + if (!(rxfs & RXFS_FFL_MASK)) { + netdev_dbg(dev, "no messages in fifo0\n"); + return 0; + } + + while ((rxfs & RXFS_FFL_MASK) && (quota > 0)) { + m_can_read_fifo(dev, rxfs); + + quota--; + pkts++; + rxfs = m_can_read(cdev, M_CAN_RXF0S); + } + + if (pkts) + can_led_event(dev, CAN_LED_EVENT_RX); + + return pkts; +} + +static int m_can_handle_lost_msg(struct net_device *dev) +{ + struct net_device_stats *stats = &dev->stats; + struct sk_buff *skb; + struct can_frame *frame; + + netdev_err(dev, "msg lost in rxf0\n"); + + stats->rx_errors++; + stats->rx_over_errors++; + + skb = alloc_can_err_skb(dev, &frame); + if (unlikely(!skb)) + return 0; + + frame->can_id |= CAN_ERR_CRTL; + frame->data[1] = CAN_ERR_CRTL_RX_OVERFLOW; + + netif_receive_skb(skb); + + return 1; +} + +static int m_can_handle_lec_err(struct net_device *dev, + enum m_can_lec_type lec_type) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + struct net_device_stats *stats = &dev->stats; + struct can_frame *cf; + struct sk_buff *skb; + + cdev->can.can_stats.bus_error++; + stats->rx_errors++; + + /* propagate the error condition to the CAN stack */ + skb = alloc_can_err_skb(dev, &cf); + if (unlikely(!skb)) + return 0; + + /* check for 'last error code' which tells us the + * type of the last error to occur on the CAN bus + */ + cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR; + + switch (lec_type) { + case LEC_STUFF_ERROR: + netdev_dbg(dev, "stuff error\n"); + cf->data[2] |= CAN_ERR_PROT_STUFF; + break; + case LEC_FORM_ERROR: + netdev_dbg(dev, "form error\n"); + cf->data[2] |= CAN_ERR_PROT_FORM; + break; + case LEC_ACK_ERROR: + netdev_dbg(dev, "ack error\n"); + cf->data[3] = CAN_ERR_PROT_LOC_ACK; + break; + case LEC_BIT1_ERROR: + netdev_dbg(dev, "bit1 error\n"); + cf->data[2] |= CAN_ERR_PROT_BIT1; + break; + case LEC_BIT0_ERROR: + netdev_dbg(dev, "bit0 error\n"); + cf->data[2] |= CAN_ERR_PROT_BIT0; + break; + case LEC_CRC_ERROR: + netdev_dbg(dev, "CRC error\n"); + cf->data[3] = CAN_ERR_PROT_LOC_CRC_SEQ; + break; + default: + break; + } + + stats->rx_packets++; + stats->rx_bytes += cf->can_dlc; + netif_receive_skb(skb); + + return 1; +} + +static int __m_can_get_berr_counter(const struct net_device *dev, + struct can_berr_counter *bec) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + unsigned int ecr; + + ecr = m_can_read(cdev, M_CAN_ECR); + bec->rxerr = (ecr & ECR_REC_MASK) >> ECR_REC_SHIFT; + bec->txerr = (ecr & ECR_TEC_MASK) >> ECR_TEC_SHIFT; + + return 0; +} + +static int m_can_clk_start(struct m_can_classdev *cdev) +{ + int err; + + if (cdev->pm_clock_support == 0) + return 0; + + err = pm_runtime_get_sync(cdev->dev); + if (err < 0) { + pm_runtime_put_noidle(cdev->dev); + return err; + } + + return 0; +} + +static void m_can_clk_stop(struct m_can_classdev *cdev) +{ + if (cdev->pm_clock_support) + pm_runtime_put_sync(cdev->dev); +} + +static int m_can_get_berr_counter(const struct net_device *dev, + struct can_berr_counter *bec) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + int err; + + err = m_can_clk_start(cdev); + if (err) + return err; + + __m_can_get_berr_counter(dev, bec); + + m_can_clk_stop(cdev); + + return 0; +} + +static int m_can_handle_state_change(struct net_device *dev, + enum can_state new_state) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + struct net_device_stats *stats = &dev->stats; + struct can_frame *cf; + struct sk_buff *skb; + struct can_berr_counter bec; + unsigned int ecr; + + switch (new_state) { + case CAN_STATE_ERROR_WARNING: + /* error warning state */ + cdev->can.can_stats.error_warning++; + cdev->can.state = CAN_STATE_ERROR_WARNING; + break; + case CAN_STATE_ERROR_PASSIVE: + /* error passive state */ + cdev->can.can_stats.error_passive++; + cdev->can.state = CAN_STATE_ERROR_PASSIVE; + break; + case CAN_STATE_BUS_OFF: + /* bus-off state */ + cdev->can.state = CAN_STATE_BUS_OFF; + m_can_disable_all_interrupts(cdev); + cdev->can.can_stats.bus_off++; + can_bus_off(dev); + break; + default: + break; + } + + /* propagate the error condition to the CAN stack */ + skb = alloc_can_err_skb(dev, &cf); + if (unlikely(!skb)) + return 0; + + __m_can_get_berr_counter(dev, &bec); + + switch (new_state) { + case CAN_STATE_ERROR_WARNING: + /* error warning state */ + cf->can_id |= CAN_ERR_CRTL; + cf->data[1] = (bec.txerr > bec.rxerr) ? + CAN_ERR_CRTL_TX_WARNING : + CAN_ERR_CRTL_RX_WARNING; + cf->data[6] = bec.txerr; + cf->data[7] = bec.rxerr; + break; + case CAN_STATE_ERROR_PASSIVE: + /* error passive state */ + cf->can_id |= CAN_ERR_CRTL; + ecr = m_can_read(cdev, M_CAN_ECR); + if (ecr & ECR_RP) + cf->data[1] |= CAN_ERR_CRTL_RX_PASSIVE; + if (bec.txerr > 127) + cf->data[1] |= CAN_ERR_CRTL_TX_PASSIVE; + cf->data[6] = bec.txerr; + cf->data[7] = bec.rxerr; + break; + case CAN_STATE_BUS_OFF: + /* bus-off state */ + cf->can_id |= CAN_ERR_BUSOFF; + break; + default: + break; + } + + stats->rx_packets++; + stats->rx_bytes += cf->can_dlc; + netif_receive_skb(skb); + + return 1; +} + +static int m_can_handle_state_errors(struct net_device *dev, u32 psr) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + int work_done = 0; + + if (psr & PSR_EW && cdev->can.state != CAN_STATE_ERROR_WARNING) { + netdev_dbg(dev, "entered error warning state\n"); + work_done += m_can_handle_state_change(dev, + CAN_STATE_ERROR_WARNING); + } + + if (psr & PSR_EP && cdev->can.state != CAN_STATE_ERROR_PASSIVE) { + netdev_dbg(dev, "entered error passive state\n"); + work_done += m_can_handle_state_change(dev, + CAN_STATE_ERROR_PASSIVE); + } + + if (psr & PSR_BO && cdev->can.state != CAN_STATE_BUS_OFF) { + netdev_dbg(dev, "entered error bus off state\n"); + work_done += m_can_handle_state_change(dev, + CAN_STATE_BUS_OFF); + } + + return work_done; +} + +static void m_can_handle_other_err(struct net_device *dev, u32 irqstatus) +{ + if (irqstatus & IR_WDI) + netdev_err(dev, "Message RAM Watchdog event due to missing READY\n"); + if (irqstatus & IR_BEU) + netdev_err(dev, "Bit Error Uncorrected\n"); + if (irqstatus & IR_BEC) + netdev_err(dev, "Bit Error Corrected\n"); + if (irqstatus & IR_TOO) + netdev_err(dev, "Timeout reached\n"); + if (irqstatus & IR_MRAF) + netdev_err(dev, "Message RAM access failure occurred\n"); +} + +static inline bool is_lec_err(u32 psr) +{ + psr &= LEC_UNUSED; + + return psr && (psr != LEC_UNUSED); +} + +static inline bool m_can_is_protocol_err(u32 irqstatus) +{ + return irqstatus & IR_ERR_LEC_31X; +} + +static int m_can_handle_protocol_error(struct net_device *dev, u32 irqstatus) +{ + struct net_device_stats *stats = &dev->stats; + struct m_can_classdev *cdev = netdev_priv(dev); + struct can_frame *cf; + struct sk_buff *skb; + + /* propagate the error condition to the CAN stack */ + skb = alloc_can_err_skb(dev, &cf); + + /* update tx error stats since there is protocol error */ + stats->tx_errors++; + + /* update arbitration lost status */ + if (cdev->version >= 31 && (irqstatus & IR_PEA)) { + netdev_dbg(dev, "Protocol error in Arbitration fail\n"); + cdev->can.can_stats.arbitration_lost++; + if (skb) { + cf->can_id |= CAN_ERR_LOSTARB; + cf->data[0] |= CAN_ERR_LOSTARB_UNSPEC; + } + } + + if (unlikely(!skb)) { + netdev_dbg(dev, "allocation of skb failed\n"); + return 0; + } + netif_receive_skb(skb); + + return 1; +} + +static int m_can_handle_bus_errors(struct net_device *dev, u32 irqstatus, + u32 psr) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + int work_done = 0; + + if (irqstatus & IR_RF0L) + work_done += m_can_handle_lost_msg(dev); + + /* handle lec errors on the bus */ + if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && + is_lec_err(psr)) + work_done += m_can_handle_lec_err(dev, psr & LEC_UNUSED); + + /* handle protocol errors in arbitration phase */ + if ((cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING) && + m_can_is_protocol_err(irqstatus)) + work_done += m_can_handle_protocol_error(dev, irqstatus); + + /* other unproccessed error interrupts */ + m_can_handle_other_err(dev, irqstatus); + + return work_done; +} + +static int m_can_rx_handler(struct net_device *dev, int quota) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + int work_done = 0; + u32 irqstatus, psr; + + irqstatus = cdev->irqstatus | m_can_read(cdev, M_CAN_IR); + if (!irqstatus) + goto end; + + /* Errata workaround for issue "Needless activation of MRAF irq" + * During frame reception while the MCAN is in Error Passive state + * and the Receive Error Counter has the value MCAN_ECR.REC = 127, + * it may happen that MCAN_IR.MRAF is set although there was no + * Message RAM access failure. + * If MCAN_IR.MRAF is enabled, an interrupt to the Host CPU is generated + * The Message RAM Access Failure interrupt routine needs to check + * whether MCAN_ECR.RP = ’1’ and MCAN_ECR.REC = 127. + * In this case, reset MCAN_IR.MRAF. No further action is required. + */ + if (cdev->version <= 31 && irqstatus & IR_MRAF && + m_can_read(cdev, M_CAN_ECR) & ECR_RP) { + struct can_berr_counter bec; + + __m_can_get_berr_counter(dev, &bec); + if (bec.rxerr == 127) { + m_can_write(cdev, M_CAN_IR, IR_MRAF); + irqstatus &= ~IR_MRAF; + } + } + + psr = m_can_read(cdev, M_CAN_PSR); + + if (irqstatus & IR_ERR_STATE) + work_done += m_can_handle_state_errors(dev, psr); + + if (irqstatus & IR_ERR_BUS_30X) + work_done += m_can_handle_bus_errors(dev, irqstatus, psr); + + if (irqstatus & IR_RF0N) + work_done += m_can_do_rx_poll(dev, (quota - work_done)); +end: + return work_done; +} + +static int m_can_rx_peripheral(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + + m_can_rx_handler(dev, M_CAN_NAPI_WEIGHT); + + m_can_enable_all_interrupts(cdev); + + return 0; +} + +static int m_can_poll(struct napi_struct *napi, int quota) +{ + struct net_device *dev = napi->dev; + struct m_can_classdev *cdev = netdev_priv(dev); + int work_done; + + work_done = m_can_rx_handler(dev, quota); + if (work_done < quota) { + napi_complete_done(napi, work_done); + m_can_enable_all_interrupts(cdev); + } + + return work_done; +} + +static void m_can_echo_tx_event(struct net_device *dev) +{ + u32 txe_count = 0; + u32 m_can_txefs; + u32 fgi = 0; + int i = 0; + unsigned int msg_mark; + + struct m_can_classdev *cdev = netdev_priv(dev); + struct net_device_stats *stats = &dev->stats; + + /* read tx event fifo status */ + m_can_txefs = m_can_read(cdev, M_CAN_TXEFS); + + /* Get Tx Event fifo element count */ + txe_count = (m_can_txefs & TXEFS_EFFL_MASK) + >> TXEFS_EFFL_SHIFT; + + /* Get and process all sent elements */ + for (i = 0; i < txe_count; i++) { + /* retrieve get index */ + fgi = (m_can_read(cdev, M_CAN_TXEFS) & TXEFS_EFGI_MASK) + >> TXEFS_EFGI_SHIFT; + + /* get message marker */ + msg_mark = (m_can_txe_fifo_read(cdev, fgi, 4) & + TX_EVENT_MM_MASK) >> TX_EVENT_MM_SHIFT; + + /* ack txe element */ + m_can_write(cdev, M_CAN_TXEFA, (TXEFA_EFAI_MASK & + (fgi << TXEFA_EFAI_SHIFT))); + + /* update stats */ + stats->tx_bytes += can_get_echo_skb(dev, msg_mark); + stats->tx_packets++; + } +} + +static irqreturn_t m_can_isr(int irq, void *dev_id) +{ + struct net_device *dev = (struct net_device *)dev_id; + struct m_can_classdev *cdev = netdev_priv(dev); + struct net_device_stats *stats = &dev->stats; + u32 ir; + + if (pm_runtime_suspended(cdev->dev)) + return IRQ_NONE; + ir = m_can_read(cdev, M_CAN_IR); + if (!ir) + return IRQ_NONE; + + /* ACK all irqs */ + if (ir & IR_ALL_INT) + m_can_write(cdev, M_CAN_IR, ir); + + if (cdev->ops->clear_interrupts) + cdev->ops->clear_interrupts(cdev); + + /* schedule NAPI in case of + * - rx IRQ + * - state change IRQ + * - bus error IRQ and bus error reporting + */ + if ((ir & IR_RF0N) || (ir & IR_ERR_ALL_30X)) { + cdev->irqstatus = ir; + m_can_disable_all_interrupts(cdev); + if (!cdev->is_peripheral) + napi_schedule(&cdev->napi); + else + m_can_rx_peripheral(dev); + } + + if (cdev->version == 30) { + if (ir & IR_TC) { + /* Transmission Complete Interrupt*/ + stats->tx_bytes += can_get_echo_skb(dev, 0); + stats->tx_packets++; + can_led_event(dev, CAN_LED_EVENT_TX); + netif_wake_queue(dev); + } + } else { + if (ir & IR_TEFN) { + /* New TX FIFO Element arrived */ + m_can_echo_tx_event(dev); + can_led_event(dev, CAN_LED_EVENT_TX); + if (netif_queue_stopped(dev) && + !m_can_tx_fifo_full(cdev)) + netif_wake_queue(dev); + } + } + + return IRQ_HANDLED; +} + +static const struct can_bittiming_const m_can_bittiming_const_30X = { + .name = KBUILD_MODNAME, + .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ + .tseg1_max = 64, + .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ + .tseg2_max = 16, + .sjw_max = 16, + .brp_min = 1, + .brp_max = 1024, + .brp_inc = 1, +}; + +static const struct can_bittiming_const m_can_data_bittiming_const_30X = { + .name = KBUILD_MODNAME, + .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ + .tseg1_max = 16, + .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ + .tseg2_max = 8, + .sjw_max = 4, + .brp_min = 1, + .brp_max = 32, + .brp_inc = 1, +}; + +static const struct can_bittiming_const m_can_bittiming_const_31X = { + .name = KBUILD_MODNAME, + .tseg1_min = 2, /* Time segment 1 = prop_seg + phase_seg1 */ + .tseg1_max = 256, + .tseg2_min = 2, /* Time segment 2 = phase_seg2 */ + .tseg2_max = 128, + .sjw_max = 128, + .brp_min = 1, + .brp_max = 512, + .brp_inc = 1, +}; + +static const struct can_bittiming_const m_can_data_bittiming_const_31X = { + .name = KBUILD_MODNAME, + .tseg1_min = 1, /* Time segment 1 = prop_seg + phase_seg1 */ + .tseg1_max = 32, + .tseg2_min = 1, /* Time segment 2 = phase_seg2 */ + .tseg2_max = 16, + .sjw_max = 16, + .brp_min = 1, + .brp_max = 32, + .brp_inc = 1, +}; + +static int m_can_set_bittiming(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + const struct can_bittiming *bt = &cdev->can.bittiming; + const struct can_bittiming *dbt = &cdev->can.data_bittiming; + u16 brp, sjw, tseg1, tseg2; + u32 reg_btp; + + brp = bt->brp - 1; + sjw = bt->sjw - 1; + tseg1 = bt->prop_seg + bt->phase_seg1 - 1; + tseg2 = bt->phase_seg2 - 1; + reg_btp = (brp << NBTP_NBRP_SHIFT) | (sjw << NBTP_NSJW_SHIFT) | + (tseg1 << NBTP_NTSEG1_SHIFT) | (tseg2 << NBTP_NTSEG2_SHIFT); + m_can_write(cdev, M_CAN_NBTP, reg_btp); + + if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { + reg_btp = 0; + brp = dbt->brp - 1; + sjw = dbt->sjw - 1; + tseg1 = dbt->prop_seg + dbt->phase_seg1 - 1; + tseg2 = dbt->phase_seg2 - 1; + + /* TDC is only needed for bitrates beyond 2.5 MBit/s. + * This is mentioned in the "Bit Time Requirements for CAN FD" + * paper presented at the International CAN Conference 2013 + */ + if (dbt->bitrate > 2500000) { + u32 tdco, ssp; + + /* Use the same value of secondary sampling point + * as the data sampling point + */ + ssp = dbt->sample_point; + + /* Equation based on Bosch's M_CAN User Manual's + * Transmitter Delay Compensation Section + */ + tdco = (cdev->can.clock.freq / 1000) * + ssp / dbt->bitrate; + + /* Max valid TDCO value is 127 */ + if (tdco > 127) { + netdev_warn(dev, "TDCO value of %u is beyond maximum. Using maximum possible value\n", + tdco); + tdco = 127; + } + + reg_btp |= DBTP_TDC; + m_can_write(cdev, M_CAN_TDCR, + tdco << TDCR_TDCO_SHIFT); + } + + reg_btp |= (brp << DBTP_DBRP_SHIFT) | + (sjw << DBTP_DSJW_SHIFT) | + (tseg1 << DBTP_DTSEG1_SHIFT) | + (tseg2 << DBTP_DTSEG2_SHIFT); + + m_can_write(cdev, M_CAN_DBTP, reg_btp); + } + + return 0; +} + +/* Configure M_CAN chip: + * - set rx buffer/fifo element size + * - configure rx fifo + * - accept non-matching frame into fifo 0 + * - configure tx buffer + * - >= v3.1.x: TX FIFO is used + * - configure mode + * - setup bittiming + */ +static void m_can_chip_config(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + u32 cccr, test; + + m_can_config_endisable(cdev, true); + + /* RX Buffer/FIFO Element Size 64 bytes data field */ + m_can_write(cdev, M_CAN_RXESC, M_CAN_RXESC_64BYTES); + + /* Accept Non-matching Frames Into FIFO 0 */ + m_can_write(cdev, M_CAN_GFC, 0x0); + + if (cdev->version == 30) { + /* only support one Tx Buffer currently */ + m_can_write(cdev, M_CAN_TXBC, (1 << TXBC_NDTB_SHIFT) | + cdev->mcfg[MRAM_TXB].off); + } else { + /* TX FIFO is used for newer IP Core versions */ + m_can_write(cdev, M_CAN_TXBC, + (cdev->mcfg[MRAM_TXB].num << TXBC_TFQS_SHIFT) | + (cdev->mcfg[MRAM_TXB].off)); + } + + /* support 64 bytes payload */ + m_can_write(cdev, M_CAN_TXESC, TXESC_TBDS_64BYTES); + + /* TX Event FIFO */ + if (cdev->version == 30) { + m_can_write(cdev, M_CAN_TXEFC, (1 << TXEFC_EFS_SHIFT) | + cdev->mcfg[MRAM_TXE].off); + } else { + /* Full TX Event FIFO is used */ + m_can_write(cdev, M_CAN_TXEFC, + ((cdev->mcfg[MRAM_TXE].num << TXEFC_EFS_SHIFT) + & TXEFC_EFS_MASK) | + cdev->mcfg[MRAM_TXE].off); + } + + /* rx fifo configuration, blocking mode, fifo size 1 */ + m_can_write(cdev, M_CAN_RXF0C, + (cdev->mcfg[MRAM_RXF0].num << RXFC_FS_SHIFT) | + cdev->mcfg[MRAM_RXF0].off); + + m_can_write(cdev, M_CAN_RXF1C, + (cdev->mcfg[MRAM_RXF1].num << RXFC_FS_SHIFT) | + cdev->mcfg[MRAM_RXF1].off); + + cccr = m_can_read(cdev, M_CAN_CCCR); + test = m_can_read(cdev, M_CAN_TEST); + test &= ~TEST_LBCK; + if (cdev->version == 30) { + /* Version 3.0.x */ + + cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_DAR | + (CCCR_CMR_MASK << CCCR_CMR_SHIFT) | + (CCCR_CME_MASK << CCCR_CME_SHIFT)); + + if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) + cccr |= CCCR_CME_CANFD_BRS << CCCR_CME_SHIFT; + + } else { + /* Version 3.1.x or 3.2.x */ + cccr &= ~(CCCR_TEST | CCCR_MON | CCCR_BRSE | CCCR_FDOE | + CCCR_NISO | CCCR_DAR); + + /* Only 3.2.x has NISO Bit implemented */ + if (cdev->can.ctrlmode & CAN_CTRLMODE_FD_NON_ISO) + cccr |= CCCR_NISO; + + if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) + cccr |= (CCCR_BRSE | CCCR_FDOE); + } + + /* Loopback Mode */ + if (cdev->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) { + cccr |= CCCR_TEST | CCCR_MON; + test |= TEST_LBCK; + } + + /* Enable Monitoring (all versions) */ + if (cdev->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) + cccr |= CCCR_MON; + + /* Disable Auto Retransmission (all versions) */ + if (cdev->can.ctrlmode & CAN_CTRLMODE_ONE_SHOT) + cccr |= CCCR_DAR; + + /* Write config */ + m_can_write(cdev, M_CAN_CCCR, cccr); + m_can_write(cdev, M_CAN_TEST, test); + + /* Enable interrupts */ + m_can_write(cdev, M_CAN_IR, IR_ALL_INT); + if (!(cdev->can.ctrlmode & CAN_CTRLMODE_BERR_REPORTING)) + if (cdev->version == 30) + m_can_write(cdev, M_CAN_IE, IR_ALL_INT & + ~(IR_ERR_LEC_30X)); + else + m_can_write(cdev, M_CAN_IE, IR_ALL_INT & + ~(IR_ERR_LEC_31X)); + else + m_can_write(cdev, M_CAN_IE, IR_ALL_INT); + + /* route all interrupts to INT0 */ + m_can_write(cdev, M_CAN_ILS, ILS_ALL_INT0); + + /* set bittiming params */ + m_can_set_bittiming(dev); + + m_can_config_endisable(cdev, false); + + if (cdev->ops->init) + cdev->ops->init(cdev); +} + +static void m_can_start(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + + /* basic m_can configuration */ + m_can_chip_config(dev); + + cdev->can.state = CAN_STATE_ERROR_ACTIVE; + + m_can_enable_all_interrupts(cdev); +} + +static int m_can_set_mode(struct net_device *dev, enum can_mode mode) +{ + switch (mode) { + case CAN_MODE_START: + m_can_clean(dev); + m_can_start(dev); + netif_wake_queue(dev); + break; + default: + return -EOPNOTSUPP; + } + + return 0; +} + +/* Checks core release number of M_CAN + * returns 0 if an unsupported device is detected + * else it returns the release and step coded as: + * return value = 10 * <release> + 1 * <step> + */ +static int m_can_check_core_release(struct m_can_classdev *cdev) +{ + u32 crel_reg; + u8 rel; + u8 step; + int res; + + /* Read Core Release Version and split into version number + * Example: Version 3.2.1 => rel = 3; step = 2; substep = 1; + */ + crel_reg = m_can_read(cdev, M_CAN_CREL); + rel = (u8)((crel_reg & CREL_REL_MASK) >> CREL_REL_SHIFT); + step = (u8)((crel_reg & CREL_STEP_MASK) >> CREL_STEP_SHIFT); + + if (rel == 3) { + /* M_CAN v3.x.y: create return value */ + res = 30 + step; + } else { + /* Unsupported M_CAN version */ + res = 0; + } + + return res; +} + +/* Selectable Non ISO support only in version 3.2.x + * This function checks if the bit is writable. + */ +static bool m_can_niso_supported(struct m_can_classdev *cdev) +{ + u32 cccr_reg, cccr_poll = 0; + int niso_timeout = -ETIMEDOUT; + int i; + + m_can_config_endisable(cdev, true); + cccr_reg = m_can_read(cdev, M_CAN_CCCR); + cccr_reg |= CCCR_NISO; + m_can_write(cdev, M_CAN_CCCR, cccr_reg); + + for (i = 0; i <= 10; i++) { + cccr_poll = m_can_read(cdev, M_CAN_CCCR); + if (cccr_poll == cccr_reg) { + niso_timeout = 0; + break; + } + + usleep_range(1, 5); + } + + /* Clear NISO */ + cccr_reg &= ~(CCCR_NISO); + m_can_write(cdev, M_CAN_CCCR, cccr_reg); + + m_can_config_endisable(cdev, false); + + /* return false if time out (-ETIMEDOUT), else return true */ + return !niso_timeout; +} + +static int m_can_dev_setup(struct m_can_classdev *m_can_dev) +{ + struct net_device *dev = m_can_dev->net; + int m_can_version; + + m_can_version = m_can_check_core_release(m_can_dev); + /* return if unsupported version */ + if (!m_can_version) { + dev_err(m_can_dev->dev, "Unsupported version number: %2d", + m_can_version); + return -EINVAL; + } + + if (!m_can_dev->is_peripheral) + netif_napi_add(dev, &m_can_dev->napi, + m_can_poll, M_CAN_NAPI_WEIGHT); + + /* Shared properties of all M_CAN versions */ + m_can_dev->version = m_can_version; + m_can_dev->can.do_set_mode = m_can_set_mode; + m_can_dev->can.do_get_berr_counter = m_can_get_berr_counter; + + /* Set M_CAN supported operations */ + m_can_dev->can.ctrlmode_supported = CAN_CTRLMODE_LOOPBACK | + CAN_CTRLMODE_LISTENONLY | + CAN_CTRLMODE_BERR_REPORTING | + CAN_CTRLMODE_FD | + CAN_CTRLMODE_ONE_SHOT; + + /* Set properties depending on M_CAN version */ + switch (m_can_dev->version) { + case 30: + /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.0.x */ + can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); + m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? + m_can_dev->bit_timing : &m_can_bittiming_const_30X; + + m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? + m_can_dev->data_timing : + &m_can_data_bittiming_const_30X; + break; + case 31: + /* CAN_CTRLMODE_FD_NON_ISO is fixed with M_CAN IP v3.1.x */ + can_set_static_ctrlmode(dev, CAN_CTRLMODE_FD_NON_ISO); + m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? + m_can_dev->bit_timing : &m_can_bittiming_const_31X; + + m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? + m_can_dev->data_timing : + &m_can_data_bittiming_const_31X; + break; + case 32: + case 33: + /* Support both MCAN version v3.2.x and v3.3.0 */ + m_can_dev->can.bittiming_const = m_can_dev->bit_timing ? + m_can_dev->bit_timing : &m_can_bittiming_const_31X; + + m_can_dev->can.data_bittiming_const = m_can_dev->data_timing ? + m_can_dev->data_timing : + &m_can_data_bittiming_const_31X; + + m_can_dev->can.ctrlmode_supported |= + (m_can_niso_supported(m_can_dev) + ? CAN_CTRLMODE_FD_NON_ISO + : 0); + break; + default: + dev_err(m_can_dev->dev, "Unsupported version number: %2d", + m_can_dev->version); + return -EINVAL; + } + + if (m_can_dev->ops->init) + m_can_dev->ops->init(m_can_dev); + + return 0; +} + +static void m_can_stop(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + + /* disable all interrupts */ + m_can_disable_all_interrupts(cdev); + + /* Set init mode to disengage from the network */ + m_can_config_endisable(cdev, true); + + /* set the state as STOPPED */ + cdev->can.state = CAN_STATE_STOPPED; +} + +static int m_can_close(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + + netif_stop_queue(dev); + + if (!cdev->is_peripheral) + napi_disable(&cdev->napi); + + m_can_stop(dev); + m_can_clk_stop(cdev); + free_irq(dev->irq, dev); + + if (cdev->is_peripheral) { + cdev->tx_skb = NULL; + destroy_workqueue(cdev->tx_wq); + cdev->tx_wq = NULL; + } + + close_candev(dev); + can_led_event(dev, CAN_LED_EVENT_STOP); + + return 0; +} + +static int m_can_next_echo_skb_occupied(struct net_device *dev, int putidx) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + /*get wrap around for loopback skb index */ + unsigned int wrap = cdev->can.echo_skb_max; + int next_idx; + + /* calculate next index */ + next_idx = (++putidx >= wrap ? 0 : putidx); + + /* check if occupied */ + return !!cdev->can.echo_skb[next_idx]; +} + +static netdev_tx_t m_can_tx_handler(struct m_can_classdev *cdev) +{ + struct canfd_frame *cf = (struct canfd_frame *)cdev->tx_skb->data; + struct net_device *dev = cdev->net; + struct sk_buff *skb = cdev->tx_skb; + u32 id, cccr, fdflags; + int i; + int putidx; + + cdev->tx_skb = NULL; + + /* Generate ID field for TX buffer Element */ + /* Common to all supported M_CAN versions */ + if (cf->can_id & CAN_EFF_FLAG) { + id = cf->can_id & CAN_EFF_MASK; + id |= TX_BUF_XTD; + } else { + id = ((cf->can_id & CAN_SFF_MASK) << 18); + } + + if (cf->can_id & CAN_RTR_FLAG) + id |= TX_BUF_RTR; + + if (cdev->version == 30) { + netif_stop_queue(dev); + + /* message ram configuration */ + m_can_fifo_write(cdev, 0, M_CAN_FIFO_ID, id); + m_can_fifo_write(cdev, 0, M_CAN_FIFO_DLC, + can_len2dlc(cf->len) << 16); + + for (i = 0; i < cf->len; i += 4) + m_can_fifo_write(cdev, 0, + M_CAN_FIFO_DATA(i / 4), + *(u32 *)(cf->data + i)); + + if (cdev->can.ctrlmode & CAN_CTRLMODE_FD) { + cccr = m_can_read(cdev, M_CAN_CCCR); + cccr &= ~(CCCR_CMR_MASK << CCCR_CMR_SHIFT); + if (can_is_canfd_skb(skb)) { + if (cf->flags & CANFD_BRS) + cccr |= CCCR_CMR_CANFD_BRS << + CCCR_CMR_SHIFT; + else + cccr |= CCCR_CMR_CANFD << + CCCR_CMR_SHIFT; + } else { + cccr |= CCCR_CMR_CAN << CCCR_CMR_SHIFT; + } + m_can_write(cdev, M_CAN_CCCR, cccr); + } + m_can_write(cdev, M_CAN_TXBTIE, 0x1); + + can_put_echo_skb(skb, dev, 0); + + m_can_write(cdev, M_CAN_TXBAR, 0x1); + /* End of xmit function for version 3.0.x */ + } else { + /* Transmit routine for version >= v3.1.x */ + + /* Check if FIFO full */ + if (m_can_tx_fifo_full(cdev)) { + /* This shouldn't happen */ + netif_stop_queue(dev); + netdev_warn(dev, + "TX queue active although FIFO is full."); + + if (cdev->is_peripheral) { + kfree_skb(skb); + dev->stats.tx_dropped++; + return NETDEV_TX_OK; + } else { + return NETDEV_TX_BUSY; + } + } + + /* get put index for frame */ + putidx = ((m_can_read(cdev, M_CAN_TXFQS) & TXFQS_TFQPI_MASK) + >> TXFQS_TFQPI_SHIFT); + /* Write ID Field to FIFO Element */ + m_can_fifo_write(cdev, putidx, M_CAN_FIFO_ID, id); + + /* get CAN FD configuration of frame */ + fdflags = 0; + if (can_is_canfd_skb(skb)) { + fdflags |= TX_BUF_FDF; + if (cf->flags & CANFD_BRS) + fdflags |= TX_BUF_BRS; + } + + /* Construct DLC Field. Also contains CAN-FD configuration + * use put index of fifo as message marker + * it is used in TX interrupt for + * sending the correct echo frame + */ + m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DLC, + ((putidx << TX_BUF_MM_SHIFT) & + TX_BUF_MM_MASK) | + (can_len2dlc(cf->len) << 16) | + fdflags | TX_BUF_EFC); + + for (i = 0; i < cf->len; i += 4) + m_can_fifo_write(cdev, putidx, M_CAN_FIFO_DATA(i / 4), + *(u32 *)(cf->data + i)); + + /* Push loopback echo. + * Will be looped back on TX interrupt based on message marker + */ + can_put_echo_skb(skb, dev, putidx); + + /* Enable TX FIFO element to start transfer */ + m_can_write(cdev, M_CAN_TXBAR, (1 << putidx)); + + /* stop network queue if fifo full */ + if (m_can_tx_fifo_full(cdev) || + m_can_next_echo_skb_occupied(dev, putidx)) + netif_stop_queue(dev); + } + + return NETDEV_TX_OK; +} + +static void m_can_tx_work_queue(struct work_struct *ws) +{ + struct m_can_classdev *cdev = container_of(ws, struct m_can_classdev, + tx_work); + + m_can_tx_handler(cdev); +} + +static netdev_tx_t m_can_start_xmit(struct sk_buff *skb, + struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + + if (can_dropped_invalid_skb(dev, skb)) + return NETDEV_TX_OK; + + if (cdev->is_peripheral) { + if (cdev->tx_skb) { + netdev_err(dev, "hard_xmit called while tx busy\n"); + return NETDEV_TX_BUSY; + } + + if (cdev->can.state == CAN_STATE_BUS_OFF) { + m_can_clean(dev); + } else { + /* Need to stop the queue to avoid numerous requests + * from being sent. Suggested improvement is to create + * a queueing mechanism that will queue the skbs and + * process them in order. + */ + cdev->tx_skb = skb; + netif_stop_queue(cdev->net); + queue_work(cdev->tx_wq, &cdev->tx_work); + } + } else { + cdev->tx_skb = skb; + return m_can_tx_handler(cdev); + } + + return NETDEV_TX_OK; +} + +static int m_can_open(struct net_device *dev) +{ + struct m_can_classdev *cdev = netdev_priv(dev); + int err; + + err = m_can_clk_start(cdev); + if (err) + return err; + + /* open the can device */ + err = open_candev(dev); + if (err) { + netdev_err(dev, "failed to open can device\n"); + goto exit_disable_clks; + } + + /* register interrupt handler */ + if (cdev->is_peripheral) { + cdev->tx_skb = NULL; + cdev->tx_wq = alloc_workqueue("mcan_wq", + WQ_FREEZABLE | WQ_MEM_RECLAIM, 0); + if (!cdev->tx_wq) { + err = -ENOMEM; + goto out_wq_fail; + } + + INIT_WORK(&cdev->tx_work, m_can_tx_work_queue); + + err = request_threaded_irq(dev->irq, NULL, m_can_isr, + IRQF_ONESHOT, + dev->name, dev); + } else { + err = request_irq(dev->irq, m_can_isr, IRQF_SHARED, dev->name, + dev); + } + + if (err < 0) { + netdev_err(dev, "failed to request interrupt\n"); + goto exit_irq_fail; + } + + /* start the m_can controller */ + m_can_start(dev); + + can_led_event(dev, CAN_LED_EVENT_OPEN); + + if (!cdev->is_peripheral) + napi_enable(&cdev->napi); + + netif_start_queue(dev); + + return 0; + +exit_irq_fail: + if (cdev->is_peripheral) + destroy_workqueue(cdev->tx_wq); +out_wq_fail: + close_candev(dev); +exit_disable_clks: + m_can_clk_stop(cdev); + return err; +} + +static const struct net_device_ops m_can_netdev_ops = { + .ndo_open = m_can_open, + .ndo_stop = m_can_close, + .ndo_start_xmit = m_can_start_xmit, + .ndo_change_mtu = can_change_mtu, +}; + +static int register_m_can_dev(struct net_device *dev) +{ + dev->flags |= IFF_ECHO; /* we support local echo */ + dev->netdev_ops = &m_can_netdev_ops; + + return register_candev(dev); +} + +static void m_can_of_parse_mram(struct m_can_classdev *cdev, + const u32 *mram_config_vals) +{ + cdev->mcfg[MRAM_SIDF].off = mram_config_vals[0]; + cdev->mcfg[MRAM_SIDF].num = mram_config_vals[1]; + cdev->mcfg[MRAM_XIDF].off = cdev->mcfg[MRAM_SIDF].off + + cdev->mcfg[MRAM_SIDF].num * SIDF_ELEMENT_SIZE; + cdev->mcfg[MRAM_XIDF].num = mram_config_vals[2]; + cdev->mcfg[MRAM_RXF0].off = cdev->mcfg[MRAM_XIDF].off + + cdev->mcfg[MRAM_XIDF].num * XIDF_ELEMENT_SIZE; + cdev->mcfg[MRAM_RXF0].num = mram_config_vals[3] & + (RXFC_FS_MASK >> RXFC_FS_SHIFT); + cdev->mcfg[MRAM_RXF1].off = cdev->mcfg[MRAM_RXF0].off + + cdev->mcfg[MRAM_RXF0].num * RXF0_ELEMENT_SIZE; + cdev->mcfg[MRAM_RXF1].num = mram_config_vals[4] & + (RXFC_FS_MASK >> RXFC_FS_SHIFT); + cdev->mcfg[MRAM_RXB].off = cdev->mcfg[MRAM_RXF1].off + + cdev->mcfg[MRAM_RXF1].num * RXF1_ELEMENT_SIZE; + cdev->mcfg[MRAM_RXB].num = mram_config_vals[5]; + cdev->mcfg[MRAM_TXE].off = cdev->mcfg[MRAM_RXB].off + + cdev->mcfg[MRAM_RXB].num * RXB_ELEMENT_SIZE; + cdev->mcfg[MRAM_TXE].num = mram_config_vals[6]; + cdev->mcfg[MRAM_TXB].off = cdev->mcfg[MRAM_TXE].off + + cdev->mcfg[MRAM_TXE].num * TXE_ELEMENT_SIZE; + cdev->mcfg[MRAM_TXB].num = mram_config_vals[7] & + (TXBC_NDTB_MASK >> TXBC_NDTB_SHIFT); + + dev_dbg(cdev->dev, + "sidf 0x%x %d xidf 0x%x %d rxf0 0x%x %d rxf1 0x%x %d rxb 0x%x %d txe 0x%x %d txb 0x%x %d\n", + cdev->mcfg[MRAM_SIDF].off, cdev->mcfg[MRAM_SIDF].num, + cdev->mcfg[MRAM_XIDF].off, cdev->mcfg[MRAM_XIDF].num, + cdev->mcfg[MRAM_RXF0].off, cdev->mcfg[MRAM_RXF0].num, + cdev->mcfg[MRAM_RXF1].off, cdev->mcfg[MRAM_RXF1].num, + cdev->mcfg[MRAM_RXB].off, cdev->mcfg[MRAM_RXB].num, + cdev->mcfg[MRAM_TXE].off, cdev->mcfg[MRAM_TXE].num, + cdev->mcfg[MRAM_TXB].off, cdev->mcfg[MRAM_TXB].num); +} + +void m_can_init_ram(struct m_can_classdev *cdev) +{ + int end, i, start; + + /* initialize the entire Message RAM in use to avoid possible + * ECC/parity checksum errors when reading an uninitialized buffer + */ + start = cdev->mcfg[MRAM_SIDF].off; + end = cdev->mcfg[MRAM_TXB].off + + cdev->mcfg[MRAM_TXB].num * TXB_ELEMENT_SIZE; + + for (i = start; i < end; i += 4) + m_can_fifo_write_no_off(cdev, i, 0x0); +} +EXPORT_SYMBOL_GPL(m_can_init_ram); + +int m_can_class_get_clocks(struct m_can_classdev *m_can_dev) +{ + int ret = 0; + + m_can_dev->hclk = devm_clk_get(m_can_dev->dev, "hclk"); + m_can_dev->cclk = devm_clk_get(m_can_dev->dev, "cclk"); + + if (IS_ERR(m_can_dev->cclk)) { + dev_err(m_can_dev->dev, "no clock found\n"); + ret = -ENODEV; + } + + return ret; +} +EXPORT_SYMBOL_GPL(m_can_class_get_clocks); + +struct m_can_classdev *m_can_class_allocate_dev(struct device *dev) +{ + struct m_can_classdev *class_dev = NULL; + u32 mram_config_vals[MRAM_CFG_LEN]; + struct net_device *net_dev; + u32 tx_fifo_size; + int ret; + + ret = fwnode_property_read_u32_array(dev_fwnode(dev), + "bosch,mram-cfg", + mram_config_vals, + sizeof(mram_config_vals) / 4); + if (ret) { + dev_err(dev, "Could not get Message RAM configuration."); + goto out; + } + + /* Get TX FIFO size + * Defines the total amount of echo buffers for loopback + */ + tx_fifo_size = mram_config_vals[7]; + + /* allocate the m_can device */ + net_dev = alloc_candev(sizeof(*class_dev), tx_fifo_size); + if (!net_dev) { + dev_err(dev, "Failed to allocate CAN device"); + goto out; + } + + class_dev = netdev_priv(net_dev); + if (!class_dev) { + dev_err(dev, "Failed to init netdev cdevate"); + goto out; + } + + class_dev->net = net_dev; + class_dev->dev = dev; + SET_NETDEV_DEV(net_dev, dev); + + m_can_of_parse_mram(class_dev, mram_config_vals); +out: + return class_dev; +} +EXPORT_SYMBOL_GPL(m_can_class_allocate_dev); + +void m_can_class_free_dev(struct net_device *net) +{ + free_candev(net); +} +EXPORT_SYMBOL_GPL(m_can_class_free_dev); + +int m_can_class_register(struct m_can_classdev *m_can_dev) +{ + int ret; + + if (m_can_dev->pm_clock_support) { + pm_runtime_enable(m_can_dev->dev); + ret = m_can_clk_start(m_can_dev); + if (ret) + goto pm_runtime_fail; + } + + ret = m_can_dev_setup(m_can_dev); + if (ret) + goto clk_disable; + + ret = register_m_can_dev(m_can_dev->net); + if (ret) { + dev_err(m_can_dev->dev, "registering %s failed (err=%d)\n", + m_can_dev->net->name, ret); + goto clk_disable; + } + + devm_can_led_init(m_can_dev->net); + + of_can_transceiver(m_can_dev->net); + + dev_info(m_can_dev->dev, "%s device registered (irq=%d, version=%d)\n", + KBUILD_MODNAME, m_can_dev->net->irq, m_can_dev->version); + + /* Probe finished + * Stop clocks. They will be reactivated once the M_CAN device is opened + */ +clk_disable: + m_can_clk_stop(m_can_dev); +pm_runtime_fail: + if (ret) { + if (m_can_dev->pm_clock_support) + pm_runtime_disable(m_can_dev->dev); + } + + return ret; +} +EXPORT_SYMBOL_GPL(m_can_class_register); + +int m_can_class_suspend(struct device *dev) +{ + struct net_device *ndev = dev_get_drvdata(dev); + struct m_can_classdev *cdev = netdev_priv(ndev); + + if (netif_running(ndev)) { + netif_stop_queue(ndev); + netif_device_detach(ndev); + m_can_stop(ndev); + m_can_clk_stop(cdev); + } + + pinctrl_pm_select_sleep_state(dev); + + cdev->can.state = CAN_STATE_SLEEPING; + + return 0; +} +EXPORT_SYMBOL_GPL(m_can_class_suspend); + +int m_can_class_resume(struct device *dev) +{ + struct net_device *ndev = dev_get_drvdata(dev); + struct m_can_classdev *cdev = netdev_priv(ndev); + + pinctrl_pm_select_default_state(dev); + + cdev->can.state = CAN_STATE_ERROR_ACTIVE; + + if (netif_running(ndev)) { + int ret; + + ret = m_can_clk_start(cdev); + if (ret) + return ret; + + m_can_init_ram(cdev); + m_can_start(ndev); + netif_device_attach(ndev); + netif_start_queue(ndev); + } + + return 0; +} +EXPORT_SYMBOL_GPL(m_can_class_resume); + +void m_can_class_unregister(struct m_can_classdev *m_can_dev) +{ + unregister_candev(m_can_dev->net); +} +EXPORT_SYMBOL_GPL(m_can_class_unregister); + +MODULE_AUTHOR("Dong Aisheng <b29396@freescale.com>"); +MODULE_AUTHOR("Dan Murphy <dmurphy@ti.com>"); +MODULE_LICENSE("GPL v2"); +MODULE_DESCRIPTION("CAN bus driver for Bosch M_CAN controller"); |