summaryrefslogtreecommitdiffstats
path: root/fs/xfs/xfs_trans_buf.c
diff options
context:
space:
mode:
Diffstat (limited to 'fs/xfs/xfs_trans_buf.c')
-rw-r--r--fs/xfs/xfs_trans_buf.c768
1 files changed, 768 insertions, 0 deletions
diff --git a/fs/xfs/xfs_trans_buf.c b/fs/xfs/xfs_trans_buf.c
new file mode 100644
index 000000000..42d63b830
--- /dev/null
+++ b/fs/xfs/xfs_trans_buf.c
@@ -0,0 +1,768 @@
+// SPDX-License-Identifier: GPL-2.0
+/*
+ * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
+ * All Rights Reserved.
+ */
+#include "xfs.h"
+#include "xfs_fs.h"
+#include "xfs_shared.h"
+#include "xfs_format.h"
+#include "xfs_log_format.h"
+#include "xfs_trans_resv.h"
+#include "xfs_mount.h"
+#include "xfs_trans.h"
+#include "xfs_buf_item.h"
+#include "xfs_trans_priv.h"
+#include "xfs_trace.h"
+
+/*
+ * Check to see if a buffer matching the given parameters is already
+ * a part of the given transaction.
+ */
+STATIC struct xfs_buf *
+xfs_trans_buf_item_match(
+ struct xfs_trans *tp,
+ struct xfs_buftarg *target,
+ struct xfs_buf_map *map,
+ int nmaps)
+{
+ struct xfs_log_item *lip;
+ struct xfs_buf_log_item *blip;
+ int len = 0;
+ int i;
+
+ for (i = 0; i < nmaps; i++)
+ len += map[i].bm_len;
+
+ list_for_each_entry(lip, &tp->t_items, li_trans) {
+ blip = (struct xfs_buf_log_item *)lip;
+ if (blip->bli_item.li_type == XFS_LI_BUF &&
+ blip->bli_buf->b_target == target &&
+ XFS_BUF_ADDR(blip->bli_buf) == map[0].bm_bn &&
+ blip->bli_buf->b_length == len) {
+ ASSERT(blip->bli_buf->b_map_count == nmaps);
+ return blip->bli_buf;
+ }
+ }
+
+ return NULL;
+}
+
+/*
+ * Add the locked buffer to the transaction.
+ *
+ * The buffer must be locked, and it cannot be associated with any
+ * transaction.
+ *
+ * If the buffer does not yet have a buf log item associated with it,
+ * then allocate one for it. Then add the buf item to the transaction.
+ */
+STATIC void
+_xfs_trans_bjoin(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp,
+ int reset_recur)
+{
+ struct xfs_buf_log_item *bip;
+
+ ASSERT(bp->b_transp == NULL);
+
+ /*
+ * The xfs_buf_log_item pointer is stored in b_log_item. If
+ * it doesn't have one yet, then allocate one and initialize it.
+ * The checks to see if one is there are in xfs_buf_item_init().
+ */
+ xfs_buf_item_init(bp, tp->t_mountp);
+ bip = bp->b_log_item;
+ ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+ ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+ ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
+ if (reset_recur)
+ bip->bli_recur = 0;
+
+ /*
+ * Take a reference for this transaction on the buf item.
+ */
+ atomic_inc(&bip->bli_refcount);
+
+ /*
+ * Attach the item to the transaction so we can find it in
+ * xfs_trans_get_buf() and friends.
+ */
+ xfs_trans_add_item(tp, &bip->bli_item);
+ bp->b_transp = tp;
+
+}
+
+void
+xfs_trans_bjoin(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp)
+{
+ _xfs_trans_bjoin(tp, bp, 0);
+ trace_xfs_trans_bjoin(bp->b_log_item);
+}
+
+/*
+ * Get and lock the buffer for the caller if it is not already
+ * locked within the given transaction. If it is already locked
+ * within the transaction, just increment its lock recursion count
+ * and return a pointer to it.
+ *
+ * If the transaction pointer is NULL, make this just a normal
+ * get_buf() call.
+ */
+int
+xfs_trans_get_buf_map(
+ struct xfs_trans *tp,
+ struct xfs_buftarg *target,
+ struct xfs_buf_map *map,
+ int nmaps,
+ xfs_buf_flags_t flags,
+ struct xfs_buf **bpp)
+{
+ xfs_buf_t *bp;
+ struct xfs_buf_log_item *bip;
+ int error;
+
+ *bpp = NULL;
+ if (!tp)
+ return xfs_buf_get_map(target, map, nmaps, flags, bpp);
+
+ /*
+ * If we find the buffer in the cache with this transaction
+ * pointer in its b_fsprivate2 field, then we know we already
+ * have it locked. In this case we just increment the lock
+ * recursion count and return the buffer to the caller.
+ */
+ bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
+ if (bp != NULL) {
+ ASSERT(xfs_buf_islocked(bp));
+ if (XFS_FORCED_SHUTDOWN(tp->t_mountp)) {
+ xfs_buf_stale(bp);
+ bp->b_flags |= XBF_DONE;
+ }
+
+ ASSERT(bp->b_transp == tp);
+ bip = bp->b_log_item;
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+ bip->bli_recur++;
+ trace_xfs_trans_get_buf_recur(bip);
+ *bpp = bp;
+ return 0;
+ }
+
+ error = xfs_buf_get_map(target, map, nmaps, flags, &bp);
+ if (error)
+ return error;
+
+ ASSERT(!bp->b_error);
+
+ _xfs_trans_bjoin(tp, bp, 1);
+ trace_xfs_trans_get_buf(bp->b_log_item);
+ *bpp = bp;
+ return 0;
+}
+
+/*
+ * Get and lock the superblock buffer for the given transaction.
+ */
+struct xfs_buf *
+xfs_trans_getsb(
+ struct xfs_trans *tp)
+{
+ struct xfs_buf *bp = tp->t_mountp->m_sb_bp;
+
+ /*
+ * Just increment the lock recursion count if the buffer is already
+ * attached to this transaction.
+ */
+ if (bp->b_transp == tp) {
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+ bip->bli_recur++;
+
+ trace_xfs_trans_getsb_recur(bip);
+ } else {
+ xfs_buf_lock(bp);
+ xfs_buf_hold(bp);
+ _xfs_trans_bjoin(tp, bp, 1);
+
+ trace_xfs_trans_getsb(bp->b_log_item);
+ }
+
+ return bp;
+}
+
+/*
+ * Get and lock the buffer for the caller if it is not already
+ * locked within the given transaction. If it has not yet been
+ * read in, read it from disk. If it is already locked
+ * within the transaction and already read in, just increment its
+ * lock recursion count and return a pointer to it.
+ *
+ * If the transaction pointer is NULL, make this just a normal
+ * read_buf() call.
+ */
+int
+xfs_trans_read_buf_map(
+ struct xfs_mount *mp,
+ struct xfs_trans *tp,
+ struct xfs_buftarg *target,
+ struct xfs_buf_map *map,
+ int nmaps,
+ xfs_buf_flags_t flags,
+ struct xfs_buf **bpp,
+ const struct xfs_buf_ops *ops)
+{
+ struct xfs_buf *bp = NULL;
+ struct xfs_buf_log_item *bip;
+ int error;
+
+ *bpp = NULL;
+ /*
+ * If we find the buffer in the cache with this transaction
+ * pointer in its b_fsprivate2 field, then we know we already
+ * have it locked. If it is already read in we just increment
+ * the lock recursion count and return the buffer to the caller.
+ * If the buffer is not yet read in, then we read it in, increment
+ * the lock recursion count, and return it to the caller.
+ */
+ if (tp)
+ bp = xfs_trans_buf_item_match(tp, target, map, nmaps);
+ if (bp) {
+ ASSERT(xfs_buf_islocked(bp));
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bp->b_log_item != NULL);
+ ASSERT(!bp->b_error);
+ ASSERT(bp->b_flags & XBF_DONE);
+
+ /*
+ * We never locked this buf ourselves, so we shouldn't
+ * brelse it either. Just get out.
+ */
+ if (XFS_FORCED_SHUTDOWN(mp)) {
+ trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
+ return -EIO;
+ }
+
+ /*
+ * Check if the caller is trying to read a buffer that is
+ * already attached to the transaction yet has no buffer ops
+ * assigned. Ops are usually attached when the buffer is
+ * attached to the transaction, or by the read caller if
+ * special circumstances. That didn't happen, which is not
+ * how this is supposed to go.
+ *
+ * If the buffer passes verification we'll let this go, but if
+ * not we have to shut down. Let the transaction cleanup code
+ * release this buffer when it kills the tranaction.
+ */
+ ASSERT(bp->b_ops != NULL);
+ error = xfs_buf_reverify(bp, ops);
+ if (error) {
+ xfs_buf_ioerror_alert(bp, __return_address);
+
+ if (tp->t_flags & XFS_TRANS_DIRTY)
+ xfs_force_shutdown(tp->t_mountp,
+ SHUTDOWN_META_IO_ERROR);
+
+ /* bad CRC means corrupted metadata */
+ if (error == -EFSBADCRC)
+ error = -EFSCORRUPTED;
+ return error;
+ }
+
+ bip = bp->b_log_item;
+ bip->bli_recur++;
+
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+ trace_xfs_trans_read_buf_recur(bip);
+ ASSERT(bp->b_ops != NULL || ops == NULL);
+ *bpp = bp;
+ return 0;
+ }
+
+ error = xfs_buf_read_map(target, map, nmaps, flags, &bp, ops,
+ __return_address);
+ switch (error) {
+ case 0:
+ break;
+ default:
+ if (tp && (tp->t_flags & XFS_TRANS_DIRTY))
+ xfs_force_shutdown(tp->t_mountp, SHUTDOWN_META_IO_ERROR);
+ /* fall through */
+ case -ENOMEM:
+ case -EAGAIN:
+ return error;
+ }
+
+ if (XFS_FORCED_SHUTDOWN(mp)) {
+ xfs_buf_relse(bp);
+ trace_xfs_trans_read_buf_shut(bp, _RET_IP_);
+ return -EIO;
+ }
+
+ if (tp) {
+ _xfs_trans_bjoin(tp, bp, 1);
+ trace_xfs_trans_read_buf(bp->b_log_item);
+ }
+ ASSERT(bp->b_ops != NULL || ops == NULL);
+ *bpp = bp;
+ return 0;
+
+}
+
+/* Has this buffer been dirtied by anyone? */
+bool
+xfs_trans_buf_is_dirty(
+ struct xfs_buf *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ if (!bip)
+ return false;
+ ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
+ return test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
+}
+
+/*
+ * Release a buffer previously joined to the transaction. If the buffer is
+ * modified within this transaction, decrement the recursion count but do not
+ * release the buffer even if the count goes to 0. If the buffer is not modified
+ * within the transaction, decrement the recursion count and release the buffer
+ * if the recursion count goes to 0.
+ *
+ * If the buffer is to be released and it was not already dirty before this
+ * transaction began, then also free the buf_log_item associated with it.
+ *
+ * If the transaction pointer is NULL, this is a normal xfs_buf_relse() call.
+ */
+void
+xfs_trans_brelse(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+
+ if (!tp) {
+ xfs_buf_relse(bp);
+ return;
+ }
+
+ trace_xfs_trans_brelse(bip);
+ ASSERT(bip->bli_item.li_type == XFS_LI_BUF);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ /*
+ * If the release is for a recursive lookup, then decrement the count
+ * and return.
+ */
+ if (bip->bli_recur > 0) {
+ bip->bli_recur--;
+ return;
+ }
+
+ /*
+ * If the buffer is invalidated or dirty in this transaction, we can't
+ * release it until we commit.
+ */
+ if (test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags))
+ return;
+ if (bip->bli_flags & XFS_BLI_STALE)
+ return;
+
+ /*
+ * Unlink the log item from the transaction and clear the hold flag, if
+ * set. We wouldn't want the next user of the buffer to get confused.
+ */
+ ASSERT(!(bip->bli_flags & XFS_BLI_LOGGED));
+ xfs_trans_del_item(&bip->bli_item);
+ bip->bli_flags &= ~XFS_BLI_HOLD;
+
+ /* drop the reference to the bli */
+ xfs_buf_item_put(bip);
+
+ bp->b_transp = NULL;
+ xfs_buf_relse(bp);
+}
+
+/*
+ * Mark the buffer as not needing to be unlocked when the buf item's
+ * iop_committing() routine is called. The buffer must already be locked
+ * and associated with the given transaction.
+ */
+/* ARGSUSED */
+void
+xfs_trans_bhold(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+ ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ bip->bli_flags |= XFS_BLI_HOLD;
+ trace_xfs_trans_bhold(bip);
+}
+
+/*
+ * Cancel the previous buffer hold request made on this buffer
+ * for this transaction.
+ */
+void
+xfs_trans_bhold_release(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(!(bip->bli_flags & XFS_BLI_STALE));
+ ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_CANCEL));
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+ ASSERT(bip->bli_flags & XFS_BLI_HOLD);
+
+ bip->bli_flags &= ~XFS_BLI_HOLD;
+ trace_xfs_trans_bhold_release(bip);
+}
+
+/*
+ * Mark a buffer dirty in the transaction.
+ */
+void
+xfs_trans_dirty_buf(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+
+ /*
+ * Mark the buffer as needing to be written out eventually,
+ * and set its iodone function to remove the buffer's buf log
+ * item from the AIL and free it when the buffer is flushed
+ * to disk.
+ */
+ bp->b_flags |= XBF_DONE;
+
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ /*
+ * If we invalidated the buffer within this transaction, then
+ * cancel the invalidation now that we're dirtying the buffer
+ * again. There are no races with the code in xfs_buf_item_unpin(),
+ * because we have a reference to the buffer this entire time.
+ */
+ if (bip->bli_flags & XFS_BLI_STALE) {
+ bip->bli_flags &= ~XFS_BLI_STALE;
+ ASSERT(bp->b_flags & XBF_STALE);
+ bp->b_flags &= ~XBF_STALE;
+ bip->__bli_format.blf_flags &= ~XFS_BLF_CANCEL;
+ }
+ bip->bli_flags |= XFS_BLI_DIRTY | XFS_BLI_LOGGED;
+
+ tp->t_flags |= XFS_TRANS_DIRTY;
+ set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
+}
+
+/*
+ * This is called to mark bytes first through last inclusive of the given
+ * buffer as needing to be logged when the transaction is committed.
+ * The buffer must already be associated with the given transaction.
+ *
+ * First and last are numbers relative to the beginning of this buffer,
+ * so the first byte in the buffer is numbered 0 regardless of the
+ * value of b_blkno.
+ */
+void
+xfs_trans_log_buf(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp,
+ uint first,
+ uint last)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(first <= last && last < BBTOB(bp->b_length));
+ ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED));
+
+ xfs_trans_dirty_buf(tp, bp);
+
+ trace_xfs_trans_log_buf(bip);
+ xfs_buf_item_log(bip, first, last);
+}
+
+
+/*
+ * Invalidate a buffer that is being used within a transaction.
+ *
+ * Typically this is because the blocks in the buffer are being freed, so we
+ * need to prevent it from being written out when we're done. Allowing it
+ * to be written again might overwrite data in the free blocks if they are
+ * reallocated to a file.
+ *
+ * We prevent the buffer from being written out by marking it stale. We can't
+ * get rid of the buf log item at this point because the buffer may still be
+ * pinned by another transaction. If that is the case, then we'll wait until
+ * the buffer is committed to disk for the last time (we can tell by the ref
+ * count) and free it in xfs_buf_item_unpin(). Until that happens we will
+ * keep the buffer locked so that the buffer and buf log item are not reused.
+ *
+ * We also set the XFS_BLF_CANCEL flag in the buf log format structure and log
+ * the buf item. This will be used at recovery time to determine that copies
+ * of the buffer in the log before this should not be replayed.
+ *
+ * We mark the item descriptor and the transaction dirty so that we'll hold
+ * the buffer until after the commit.
+ *
+ * Since we're invalidating the buffer, we also clear the state about which
+ * parts of the buffer have been logged. We also clear the flag indicating
+ * that this is an inode buffer since the data in the buffer will no longer
+ * be valid.
+ *
+ * We set the stale bit in the buffer as well since we're getting rid of it.
+ */
+void
+xfs_trans_binval(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+ int i;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ trace_xfs_trans_binval(bip);
+
+ if (bip->bli_flags & XFS_BLI_STALE) {
+ /*
+ * If the buffer is already invalidated, then
+ * just return.
+ */
+ ASSERT(bp->b_flags & XBF_STALE);
+ ASSERT(!(bip->bli_flags & (XFS_BLI_LOGGED | XFS_BLI_DIRTY)));
+ ASSERT(!(bip->__bli_format.blf_flags & XFS_BLF_INODE_BUF));
+ ASSERT(!(bip->__bli_format.blf_flags & XFS_BLFT_MASK));
+ ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL);
+ ASSERT(test_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags));
+ ASSERT(tp->t_flags & XFS_TRANS_DIRTY);
+ return;
+ }
+
+ xfs_buf_stale(bp);
+
+ bip->bli_flags |= XFS_BLI_STALE;
+ bip->bli_flags &= ~(XFS_BLI_INODE_BUF | XFS_BLI_LOGGED | XFS_BLI_DIRTY);
+ bip->__bli_format.blf_flags &= ~XFS_BLF_INODE_BUF;
+ bip->__bli_format.blf_flags |= XFS_BLF_CANCEL;
+ bip->__bli_format.blf_flags &= ~XFS_BLFT_MASK;
+ for (i = 0; i < bip->bli_format_count; i++) {
+ memset(bip->bli_formats[i].blf_data_map, 0,
+ (bip->bli_formats[i].blf_map_size * sizeof(uint)));
+ }
+ set_bit(XFS_LI_DIRTY, &bip->bli_item.li_flags);
+ tp->t_flags |= XFS_TRANS_DIRTY;
+}
+
+/*
+ * This call is used to indicate that the buffer contains on-disk inodes which
+ * must be handled specially during recovery. They require special handling
+ * because only the di_next_unlinked from the inodes in the buffer should be
+ * recovered. The rest of the data in the buffer is logged via the inodes
+ * themselves.
+ *
+ * All we do is set the XFS_BLI_INODE_BUF flag in the items flags so it can be
+ * transferred to the buffer's log format structure so that we'll know what to
+ * do at recovery time.
+ */
+void
+xfs_trans_inode_buf(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ bip->bli_flags |= XFS_BLI_INODE_BUF;
+ bp->b_flags |= _XBF_INODES;
+ xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * This call is used to indicate that the buffer is going to
+ * be staled and was an inode buffer. This means it gets
+ * special processing during unpin - where any inodes
+ * associated with the buffer should be removed from ail.
+ * There is also special processing during recovery,
+ * any replay of the inodes in the buffer needs to be
+ * prevented as the buffer may have been reused.
+ */
+void
+xfs_trans_stale_inode_buf(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ bip->bli_flags |= XFS_BLI_STALE_INODE;
+ bp->b_flags |= _XBF_INODES;
+ xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * Mark the buffer as being one which contains newly allocated
+ * inodes. We need to make sure that even if this buffer is
+ * relogged as an 'inode buf' we still recover all of the inode
+ * images in the face of a crash. This works in coordination with
+ * xfs_buf_item_committed() to ensure that the buffer remains in the
+ * AIL at its original location even after it has been relogged.
+ */
+/* ARGSUSED */
+void
+xfs_trans_inode_alloc_buf(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ bip->bli_flags |= XFS_BLI_INODE_ALLOC_BUF;
+ bp->b_flags |= _XBF_INODES;
+ xfs_trans_buf_set_type(tp, bp, XFS_BLFT_DINO_BUF);
+}
+
+/*
+ * Mark the buffer as ordered for this transaction. This means that the contents
+ * of the buffer are not recorded in the transaction but it is tracked in the
+ * AIL as though it was. This allows us to record logical changes in
+ * transactions rather than the physical changes we make to the buffer without
+ * changing writeback ordering constraints of metadata buffers.
+ */
+bool
+xfs_trans_ordered_buf(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ if (xfs_buf_item_dirty_format(bip))
+ return false;
+
+ bip->bli_flags |= XFS_BLI_ORDERED;
+ trace_xfs_buf_item_ordered(bip);
+
+ /*
+ * We don't log a dirty range of an ordered buffer but it still needs
+ * to be marked dirty and that it has been logged.
+ */
+ xfs_trans_dirty_buf(tp, bp);
+ return true;
+}
+
+/*
+ * Set the type of the buffer for log recovery so that it can correctly identify
+ * and hence attach the correct buffer ops to the buffer after replay.
+ */
+void
+xfs_trans_buf_set_type(
+ struct xfs_trans *tp,
+ struct xfs_buf *bp,
+ enum xfs_blft type)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ if (!tp)
+ return;
+
+ ASSERT(bp->b_transp == tp);
+ ASSERT(bip != NULL);
+ ASSERT(atomic_read(&bip->bli_refcount) > 0);
+
+ xfs_blft_to_flags(&bip->__bli_format, type);
+}
+
+void
+xfs_trans_buf_copy_type(
+ struct xfs_buf *dst_bp,
+ struct xfs_buf *src_bp)
+{
+ struct xfs_buf_log_item *sbip = src_bp->b_log_item;
+ struct xfs_buf_log_item *dbip = dst_bp->b_log_item;
+ enum xfs_blft type;
+
+ type = xfs_blft_from_flags(&sbip->__bli_format);
+ xfs_blft_to_flags(&dbip->__bli_format, type);
+}
+
+/*
+ * Similar to xfs_trans_inode_buf(), this marks the buffer as a cluster of
+ * dquots. However, unlike in inode buffer recovery, dquot buffers get
+ * recovered in their entirety. (Hence, no XFS_BLI_DQUOT_ALLOC_BUF flag).
+ * The only thing that makes dquot buffers different from regular
+ * buffers is that we must not replay dquot bufs when recovering
+ * if a _corresponding_ quotaoff has happened. We also have to distinguish
+ * between usr dquot bufs and grp dquot bufs, because usr and grp quotas
+ * can be turned off independently.
+ */
+/* ARGSUSED */
+void
+xfs_trans_dquot_buf(
+ xfs_trans_t *tp,
+ xfs_buf_t *bp,
+ uint type)
+{
+ struct xfs_buf_log_item *bip = bp->b_log_item;
+
+ ASSERT(type == XFS_BLF_UDQUOT_BUF ||
+ type == XFS_BLF_PDQUOT_BUF ||
+ type == XFS_BLF_GDQUOT_BUF);
+
+ bip->__bli_format.blf_flags |= type;
+
+ switch (type) {
+ case XFS_BLF_UDQUOT_BUF:
+ type = XFS_BLFT_UDQUOT_BUF;
+ break;
+ case XFS_BLF_PDQUOT_BUF:
+ type = XFS_BLFT_PDQUOT_BUF;
+ break;
+ case XFS_BLF_GDQUOT_BUF:
+ type = XFS_BLFT_GDQUOT_BUF;
+ break;
+ default:
+ type = XFS_BLFT_UNKNOWN_BUF;
+ break;
+ }
+
+ bp->b_flags |= _XBF_DQUOTS;
+ xfs_trans_buf_set_type(tp, bp, type);
+}