1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
|
// SPDX-License-Identifier: GPL-2.0-or-later
/*
* HW_breakpoint: a unified kernel/user-space hardware breakpoint facility,
* using the CPU's debug registers. Derived from
* "arch/x86/kernel/hw_breakpoint.c"
*
* Copyright 2010 IBM Corporation
* Author: K.Prasad <prasad@linux.vnet.ibm.com>
*/
#include <linux/hw_breakpoint.h>
#include <linux/notifier.h>
#include <linux/kprobes.h>
#include <linux/percpu.h>
#include <linux/kernel.h>
#include <linux/sched.h>
#include <linux/smp.h>
#include <linux/debugfs.h>
#include <linux/init.h>
#include <asm/hw_breakpoint.h>
#include <asm/processor.h>
#include <asm/sstep.h>
#include <asm/debug.h>
#include <asm/debugfs.h>
#include <asm/hvcall.h>
#include <asm/inst.h>
#include <linux/uaccess.h>
/*
* Stores the breakpoints currently in use on each breakpoint address
* register for every cpu
*/
static DEFINE_PER_CPU(struct perf_event *, bp_per_reg[HBP_NUM_MAX]);
/*
* Returns total number of data or instruction breakpoints available.
*/
int hw_breakpoint_slots(int type)
{
if (type == TYPE_DATA)
return nr_wp_slots();
return 0; /* no instruction breakpoints available */
}
static bool single_step_pending(void)
{
int i;
for (i = 0; i < nr_wp_slots(); i++) {
if (current->thread.last_hit_ubp[i])
return true;
}
return false;
}
/*
* Install a perf counter breakpoint.
*
* We seek a free debug address register and use it for this
* breakpoint.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
int arch_install_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint *info = counter_arch_bp(bp);
struct perf_event **slot;
int i;
for (i = 0; i < nr_wp_slots(); i++) {
slot = this_cpu_ptr(&bp_per_reg[i]);
if (!*slot) {
*slot = bp;
break;
}
}
if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
return -EBUSY;
/*
* Do not install DABR values if the instruction must be single-stepped.
* If so, DABR will be populated in single_step_dabr_instruction().
*/
if (!single_step_pending())
__set_breakpoint(i, info);
return 0;
}
/*
* Uninstall the breakpoint contained in the given counter.
*
* First we search the debug address register it uses and then we disable
* it.
*
* Atomic: we hold the counter->ctx->lock and we only handle variables
* and registers local to this cpu.
*/
void arch_uninstall_hw_breakpoint(struct perf_event *bp)
{
struct arch_hw_breakpoint null_brk = {0};
struct perf_event **slot;
int i;
for (i = 0; i < nr_wp_slots(); i++) {
slot = this_cpu_ptr(&bp_per_reg[i]);
if (*slot == bp) {
*slot = NULL;
break;
}
}
if (WARN_ONCE(i == nr_wp_slots(), "Can't find any breakpoint slot"))
return;
__set_breakpoint(i, &null_brk);
}
static bool is_ptrace_bp(struct perf_event *bp)
{
return bp->overflow_handler == ptrace_triggered;
}
struct breakpoint {
struct list_head list;
struct perf_event *bp;
bool ptrace_bp;
};
static DEFINE_PER_CPU(struct breakpoint *, cpu_bps[HBP_NUM_MAX]);
static LIST_HEAD(task_bps);
static struct breakpoint *alloc_breakpoint(struct perf_event *bp)
{
struct breakpoint *tmp;
tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
if (!tmp)
return ERR_PTR(-ENOMEM);
tmp->bp = bp;
tmp->ptrace_bp = is_ptrace_bp(bp);
return tmp;
}
static bool bp_addr_range_overlap(struct perf_event *bp1, struct perf_event *bp2)
{
__u64 bp1_saddr, bp1_eaddr, bp2_saddr, bp2_eaddr;
bp1_saddr = ALIGN_DOWN(bp1->attr.bp_addr, HW_BREAKPOINT_SIZE);
bp1_eaddr = ALIGN(bp1->attr.bp_addr + bp1->attr.bp_len, HW_BREAKPOINT_SIZE);
bp2_saddr = ALIGN_DOWN(bp2->attr.bp_addr, HW_BREAKPOINT_SIZE);
bp2_eaddr = ALIGN(bp2->attr.bp_addr + bp2->attr.bp_len, HW_BREAKPOINT_SIZE);
return (bp1_saddr < bp2_eaddr && bp1_eaddr > bp2_saddr);
}
static bool alternate_infra_bp(struct breakpoint *b, struct perf_event *bp)
{
return is_ptrace_bp(bp) ? !b->ptrace_bp : b->ptrace_bp;
}
static bool can_co_exist(struct breakpoint *b, struct perf_event *bp)
{
return !(alternate_infra_bp(b, bp) && bp_addr_range_overlap(b->bp, bp));
}
static int task_bps_add(struct perf_event *bp)
{
struct breakpoint *tmp;
tmp = alloc_breakpoint(bp);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
list_add(&tmp->list, &task_bps);
return 0;
}
static void task_bps_remove(struct perf_event *bp)
{
struct list_head *pos, *q;
list_for_each_safe(pos, q, &task_bps) {
struct breakpoint *tmp = list_entry(pos, struct breakpoint, list);
if (tmp->bp == bp) {
list_del(&tmp->list);
kfree(tmp);
break;
}
}
}
/*
* If any task has breakpoint from alternate infrastructure,
* return true. Otherwise return false.
*/
static bool all_task_bps_check(struct perf_event *bp)
{
struct breakpoint *tmp;
list_for_each_entry(tmp, &task_bps, list) {
if (!can_co_exist(tmp, bp))
return true;
}
return false;
}
/*
* If same task has breakpoint from alternate infrastructure,
* return true. Otherwise return false.
*/
static bool same_task_bps_check(struct perf_event *bp)
{
struct breakpoint *tmp;
list_for_each_entry(tmp, &task_bps, list) {
if (tmp->bp->hw.target == bp->hw.target &&
!can_co_exist(tmp, bp))
return true;
}
return false;
}
static int cpu_bps_add(struct perf_event *bp)
{
struct breakpoint **cpu_bp;
struct breakpoint *tmp;
int i = 0;
tmp = alloc_breakpoint(bp);
if (IS_ERR(tmp))
return PTR_ERR(tmp);
cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
for (i = 0; i < nr_wp_slots(); i++) {
if (!cpu_bp[i]) {
cpu_bp[i] = tmp;
break;
}
}
return 0;
}
static void cpu_bps_remove(struct perf_event *bp)
{
struct breakpoint **cpu_bp;
int i = 0;
cpu_bp = per_cpu_ptr(cpu_bps, bp->cpu);
for (i = 0; i < nr_wp_slots(); i++) {
if (!cpu_bp[i])
continue;
if (cpu_bp[i]->bp == bp) {
kfree(cpu_bp[i]);
cpu_bp[i] = NULL;
break;
}
}
}
static bool cpu_bps_check(int cpu, struct perf_event *bp)
{
struct breakpoint **cpu_bp;
int i;
cpu_bp = per_cpu_ptr(cpu_bps, cpu);
for (i = 0; i < nr_wp_slots(); i++) {
if (cpu_bp[i] && !can_co_exist(cpu_bp[i], bp))
return true;
}
return false;
}
static bool all_cpu_bps_check(struct perf_event *bp)
{
int cpu;
for_each_online_cpu(cpu) {
if (cpu_bps_check(cpu, bp))
return true;
}
return false;
}
/*
* We don't use any locks to serialize accesses to cpu_bps or task_bps
* because are already inside nr_bp_mutex.
*/
int arch_reserve_bp_slot(struct perf_event *bp)
{
int ret;
/* ptrace breakpoint */
if (is_ptrace_bp(bp)) {
if (all_cpu_bps_check(bp))
return -ENOSPC;
if (same_task_bps_check(bp))
return -ENOSPC;
return task_bps_add(bp);
}
/* perf breakpoint */
if (is_kernel_addr(bp->attr.bp_addr))
return 0;
if (bp->hw.target && bp->cpu == -1) {
if (same_task_bps_check(bp))
return -ENOSPC;
return task_bps_add(bp);
} else if (!bp->hw.target && bp->cpu != -1) {
if (all_task_bps_check(bp))
return -ENOSPC;
return cpu_bps_add(bp);
}
if (same_task_bps_check(bp))
return -ENOSPC;
ret = cpu_bps_add(bp);
if (ret)
return ret;
ret = task_bps_add(bp);
if (ret)
cpu_bps_remove(bp);
return ret;
}
void arch_release_bp_slot(struct perf_event *bp)
{
if (!is_kernel_addr(bp->attr.bp_addr)) {
if (bp->hw.target)
task_bps_remove(bp);
if (bp->cpu != -1)
cpu_bps_remove(bp);
}
}
/*
* Perform cleanup of arch-specific counters during unregistration
* of the perf-event
*/
void arch_unregister_hw_breakpoint(struct perf_event *bp)
{
/*
* If the breakpoint is unregistered between a hw_breakpoint_handler()
* and the single_step_dabr_instruction(), then cleanup the breakpoint
* restoration variables to prevent dangling pointers.
* FIXME, this should not be using bp->ctx at all! Sayeth peterz.
*/
if (bp->ctx && bp->ctx->task && bp->ctx->task != ((void *)-1L)) {
int i;
for (i = 0; i < nr_wp_slots(); i++) {
if (bp->ctx->task->thread.last_hit_ubp[i] == bp)
bp->ctx->task->thread.last_hit_ubp[i] = NULL;
}
}
}
/*
* Check for virtual address in kernel space.
*/
int arch_check_bp_in_kernelspace(struct arch_hw_breakpoint *hw)
{
return is_kernel_addr(hw->address);
}
int arch_bp_generic_fields(int type, int *gen_bp_type)
{
*gen_bp_type = 0;
if (type & HW_BRK_TYPE_READ)
*gen_bp_type |= HW_BREAKPOINT_R;
if (type & HW_BRK_TYPE_WRITE)
*gen_bp_type |= HW_BREAKPOINT_W;
if (*gen_bp_type == 0)
return -EINVAL;
return 0;
}
/*
* Watchpoint match range is always doubleword(8 bytes) aligned on
* powerpc. If the given range is crossing doubleword boundary, we
* need to increase the length such that next doubleword also get
* covered. Ex,
*
* address len = 6 bytes
* |=========.
* |------------v--|------v--------|
* | | | | | | | | | | | | | | | | |
* |---------------|---------------|
* <---8 bytes--->
*
* In this case, we should configure hw as:
* start_addr = address & ~(HW_BREAKPOINT_SIZE - 1)
* len = 16 bytes
*
* @start_addr is inclusive but @end_addr is exclusive.
*/
static int hw_breakpoint_validate_len(struct arch_hw_breakpoint *hw)
{
u16 max_len = DABR_MAX_LEN;
u16 hw_len;
unsigned long start_addr, end_addr;
start_addr = ALIGN_DOWN(hw->address, HW_BREAKPOINT_SIZE);
end_addr = ALIGN(hw->address + hw->len, HW_BREAKPOINT_SIZE);
hw_len = end_addr - start_addr;
if (dawr_enabled()) {
max_len = DAWR_MAX_LEN;
/* DAWR region can't cross 512 bytes boundary on p10 predecessors */
if (!cpu_has_feature(CPU_FTR_ARCH_31) &&
(ALIGN_DOWN(start_addr, SZ_512) != ALIGN_DOWN(end_addr - 1, SZ_512)))
return -EINVAL;
} else if (IS_ENABLED(CONFIG_PPC_8xx)) {
/* 8xx can setup a range without limitation */
max_len = U16_MAX;
}
if (hw_len > max_len)
return -EINVAL;
hw->hw_len = hw_len;
return 0;
}
/*
* Validate the arch-specific HW Breakpoint register settings
*/
int hw_breakpoint_arch_parse(struct perf_event *bp,
const struct perf_event_attr *attr,
struct arch_hw_breakpoint *hw)
{
int ret = -EINVAL;
if (!bp || !attr->bp_len)
return ret;
hw->type = HW_BRK_TYPE_TRANSLATE;
if (attr->bp_type & HW_BREAKPOINT_R)
hw->type |= HW_BRK_TYPE_READ;
if (attr->bp_type & HW_BREAKPOINT_W)
hw->type |= HW_BRK_TYPE_WRITE;
if (hw->type == HW_BRK_TYPE_TRANSLATE)
/* must set alteast read or write */
return ret;
if (!attr->exclude_user)
hw->type |= HW_BRK_TYPE_USER;
if (!attr->exclude_kernel)
hw->type |= HW_BRK_TYPE_KERNEL;
if (!attr->exclude_hv)
hw->type |= HW_BRK_TYPE_HYP;
hw->address = attr->bp_addr;
hw->len = attr->bp_len;
if (!ppc_breakpoint_available())
return -ENODEV;
return hw_breakpoint_validate_len(hw);
}
/*
* Restores the breakpoint on the debug registers.
* Invoke this function if it is known that the execution context is
* about to change to cause loss of MSR_SE settings.
*/
void thread_change_pc(struct task_struct *tsk, struct pt_regs *regs)
{
struct arch_hw_breakpoint *info;
int i;
preempt_disable();
for (i = 0; i < nr_wp_slots(); i++) {
if (unlikely(tsk->thread.last_hit_ubp[i]))
goto reset;
}
goto out;
reset:
regs->msr &= ~MSR_SE;
for (i = 0; i < nr_wp_slots(); i++) {
info = counter_arch_bp(__this_cpu_read(bp_per_reg[i]));
__set_breakpoint(i, info);
tsk->thread.last_hit_ubp[i] = NULL;
}
out:
preempt_enable();
}
static bool is_larx_stcx_instr(int type)
{
return type == LARX || type == STCX;
}
/*
* We've failed in reliably handling the hw-breakpoint. Unregister
* it and throw a warning message to let the user know about it.
*/
static void handler_error(struct perf_event *bp, struct arch_hw_breakpoint *info)
{
WARN(1, "Unable to handle hardware breakpoint. Breakpoint at 0x%lx will be disabled.",
info->address);
perf_event_disable_inatomic(bp);
}
static void larx_stcx_err(struct perf_event *bp, struct arch_hw_breakpoint *info)
{
printk_ratelimited("Breakpoint hit on instruction that can't be emulated. Breakpoint at 0x%lx will be disabled.\n",
info->address);
perf_event_disable_inatomic(bp);
}
static bool stepping_handler(struct pt_regs *regs, struct perf_event **bp,
struct arch_hw_breakpoint **info, int *hit,
struct ppc_inst instr)
{
int i;
int stepped;
/* Do not emulate user-space instructions, instead single-step them */
if (user_mode(regs)) {
for (i = 0; i < nr_wp_slots(); i++) {
if (!hit[i])
continue;
current->thread.last_hit_ubp[i] = bp[i];
info[i] = NULL;
}
regs->msr |= MSR_SE;
return false;
}
stepped = emulate_step(regs, instr);
if (!stepped) {
for (i = 0; i < nr_wp_slots(); i++) {
if (!hit[i])
continue;
handler_error(bp[i], info[i]);
info[i] = NULL;
}
return false;
}
return true;
}
int hw_breakpoint_handler(struct die_args *args)
{
bool err = false;
int rc = NOTIFY_STOP;
struct perf_event *bp[HBP_NUM_MAX] = { NULL };
struct pt_regs *regs = args->regs;
struct arch_hw_breakpoint *info[HBP_NUM_MAX] = { NULL };
int i;
int hit[HBP_NUM_MAX] = {0};
int nr_hit = 0;
bool ptrace_bp = false;
struct ppc_inst instr = ppc_inst(0);
int type = 0;
int size = 0;
unsigned long ea;
/* Disable breakpoints during exception handling */
hw_breakpoint_disable();
/*
* The counter may be concurrently released but that can only
* occur from a call_rcu() path. We can then safely fetch
* the breakpoint, use its callback, touch its counter
* while we are in an rcu_read_lock() path.
*/
rcu_read_lock();
if (!IS_ENABLED(CONFIG_PPC_8xx))
wp_get_instr_detail(regs, &instr, &type, &size, &ea);
for (i = 0; i < nr_wp_slots(); i++) {
bp[i] = __this_cpu_read(bp_per_reg[i]);
if (!bp[i])
continue;
info[i] = counter_arch_bp(bp[i]);
info[i]->type &= ~HW_BRK_TYPE_EXTRANEOUS_IRQ;
if (wp_check_constraints(regs, instr, ea, type, size, info[i])) {
if (!IS_ENABLED(CONFIG_PPC_8xx) &&
ppc_inst_equal(instr, ppc_inst(0))) {
handler_error(bp[i], info[i]);
info[i] = NULL;
err = 1;
continue;
}
if (is_ptrace_bp(bp[i]))
ptrace_bp = true;
hit[i] = 1;
nr_hit++;
}
}
if (err)
goto reset;
if (!nr_hit) {
rc = NOTIFY_DONE;
goto out;
}
/*
* Return early after invoking user-callback function without restoring
* DABR if the breakpoint is from ptrace which always operates in
* one-shot mode. The ptrace-ed process will receive the SIGTRAP signal
* generated in do_dabr().
*/
if (ptrace_bp) {
for (i = 0; i < nr_wp_slots(); i++) {
if (!hit[i])
continue;
perf_bp_event(bp[i], regs);
info[i] = NULL;
}
rc = NOTIFY_DONE;
goto reset;
}
if (!IS_ENABLED(CONFIG_PPC_8xx)) {
if (is_larx_stcx_instr(type)) {
for (i = 0; i < nr_wp_slots(); i++) {
if (!hit[i])
continue;
larx_stcx_err(bp[i], info[i]);
info[i] = NULL;
}
goto reset;
}
if (!stepping_handler(regs, bp, info, hit, instr))
goto reset;
}
/*
* As a policy, the callback is invoked in a 'trigger-after-execute'
* fashion
*/
for (i = 0; i < nr_wp_slots(); i++) {
if (!hit[i])
continue;
if (!(info[i]->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
perf_bp_event(bp[i], regs);
}
reset:
for (i = 0; i < nr_wp_slots(); i++) {
if (!info[i])
continue;
__set_breakpoint(i, info[i]);
}
out:
rcu_read_unlock();
return rc;
}
NOKPROBE_SYMBOL(hw_breakpoint_handler);
/*
* Handle single-step exceptions following a DABR hit.
*/
static int single_step_dabr_instruction(struct die_args *args)
{
struct pt_regs *regs = args->regs;
struct perf_event *bp = NULL;
struct arch_hw_breakpoint *info;
int i;
bool found = false;
/*
* Check if we are single-stepping as a result of a
* previous HW Breakpoint exception
*/
for (i = 0; i < nr_wp_slots(); i++) {
bp = current->thread.last_hit_ubp[i];
if (!bp)
continue;
found = true;
info = counter_arch_bp(bp);
/*
* We shall invoke the user-defined callback function in the
* single stepping handler to confirm to 'trigger-after-execute'
* semantics
*/
if (!(info->type & HW_BRK_TYPE_EXTRANEOUS_IRQ))
perf_bp_event(bp, regs);
current->thread.last_hit_ubp[i] = NULL;
}
if (!found)
return NOTIFY_DONE;
for (i = 0; i < nr_wp_slots(); i++) {
bp = __this_cpu_read(bp_per_reg[i]);
if (!bp)
continue;
info = counter_arch_bp(bp);
__set_breakpoint(i, info);
}
/*
* If the process was being single-stepped by ptrace, let the
* other single-step actions occur (e.g. generate SIGTRAP).
*/
if (test_thread_flag(TIF_SINGLESTEP))
return NOTIFY_DONE;
return NOTIFY_STOP;
}
NOKPROBE_SYMBOL(single_step_dabr_instruction);
/*
* Handle debug exception notifications.
*/
int hw_breakpoint_exceptions_notify(
struct notifier_block *unused, unsigned long val, void *data)
{
int ret = NOTIFY_DONE;
switch (val) {
case DIE_DABR_MATCH:
ret = hw_breakpoint_handler(data);
break;
case DIE_SSTEP:
ret = single_step_dabr_instruction(data);
break;
}
return ret;
}
NOKPROBE_SYMBOL(hw_breakpoint_exceptions_notify);
/*
* Release the user breakpoints used by ptrace
*/
void flush_ptrace_hw_breakpoint(struct task_struct *tsk)
{
int i;
struct thread_struct *t = &tsk->thread;
for (i = 0; i < nr_wp_slots(); i++) {
unregister_hw_breakpoint(t->ptrace_bps[i]);
t->ptrace_bps[i] = NULL;
}
}
void hw_breakpoint_pmu_read(struct perf_event *bp)
{
/* TODO */
}
void ptrace_triggered(struct perf_event *bp,
struct perf_sample_data *data, struct pt_regs *regs)
{
struct perf_event_attr attr;
/*
* Disable the breakpoint request here since ptrace has defined a
* one-shot behaviour for breakpoint exceptions in PPC64.
* The SIGTRAP signal is generated automatically for us in do_dabr().
* We don't have to do anything about that here
*/
attr = bp->attr;
attr.disabled = true;
modify_user_hw_breakpoint(bp, &attr);
}
|