1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
|
// SPDX-License-Identifier: GPL-2.0-only
/*
* GHES/EDAC Linux driver
*
* Copyright (c) 2013 by Mauro Carvalho Chehab
*
* Red Hat Inc. https://www.redhat.com
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#include <acpi/ghes.h>
#include <linux/edac.h>
#include <linux/dmi.h>
#include "edac_module.h"
#include <ras/ras_event.h>
struct ghes_pvt {
struct mem_ctl_info *mci;
/* Buffers for the error handling routine */
char other_detail[400];
char msg[80];
};
static refcount_t ghes_refcount = REFCOUNT_INIT(0);
/*
* Access to ghes_pvt must be protected by ghes_lock. The spinlock
* also provides the necessary (implicit) memory barrier for the SMP
* case to make the pointer visible on another CPU.
*/
static struct ghes_pvt *ghes_pvt;
/*
* This driver's representation of the system hardware, as collected
* from DMI.
*/
struct ghes_hw_desc {
int num_dimms;
struct dimm_info *dimms;
} ghes_hw;
/* GHES registration mutex */
static DEFINE_MUTEX(ghes_reg_mutex);
/*
* Sync with other, potentially concurrent callers of
* ghes_edac_report_mem_error(). We don't know what the
* "inventive" firmware would do.
*/
static DEFINE_SPINLOCK(ghes_lock);
/* "ghes_edac.force_load=1" skips the platform check */
static bool __read_mostly force_load;
module_param(force_load, bool, 0);
static bool system_scanned;
/* Memory Device - Type 17 of SMBIOS spec */
struct memdev_dmi_entry {
u8 type;
u8 length;
u16 handle;
u16 phys_mem_array_handle;
u16 mem_err_info_handle;
u16 total_width;
u16 data_width;
u16 size;
u8 form_factor;
u8 device_set;
u8 device_locator;
u8 bank_locator;
u8 memory_type;
u16 type_detail;
u16 speed;
u8 manufacturer;
u8 serial_number;
u8 asset_tag;
u8 part_number;
u8 attributes;
u32 extended_size;
u16 conf_mem_clk_speed;
} __attribute__((__packed__));
static struct dimm_info *find_dimm_by_handle(struct mem_ctl_info *mci, u16 handle)
{
struct dimm_info *dimm;
mci_for_each_dimm(mci, dimm) {
if (dimm->smbios_handle == handle)
return dimm;
}
return NULL;
}
static void dimm_setup_label(struct dimm_info *dimm, u16 handle)
{
const char *bank = NULL, *device = NULL;
dmi_memdev_name(handle, &bank, &device);
/*
* Set to a NULL string when both bank and device are zero. In this case,
* the label assigned by default will be preserved.
*/
snprintf(dimm->label, sizeof(dimm->label), "%s%s%s",
(bank && *bank) ? bank : "",
(bank && *bank && device && *device) ? " " : "",
(device && *device) ? device : "");
}
static void assign_dmi_dimm_info(struct dimm_info *dimm, struct memdev_dmi_entry *entry)
{
u16 rdr_mask = BIT(7) | BIT(13);
if (entry->size == 0xffff) {
pr_info("Can't get DIMM%i size\n", dimm->idx);
dimm->nr_pages = MiB_TO_PAGES(32);/* Unknown */
} else if (entry->size == 0x7fff) {
dimm->nr_pages = MiB_TO_PAGES(entry->extended_size);
} else {
if (entry->size & BIT(15))
dimm->nr_pages = MiB_TO_PAGES((entry->size & 0x7fff) << 10);
else
dimm->nr_pages = MiB_TO_PAGES(entry->size);
}
switch (entry->memory_type) {
case 0x12:
if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR;
else
dimm->mtype = MEM_DDR;
break;
case 0x13:
if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR2;
else
dimm->mtype = MEM_DDR2;
break;
case 0x14:
dimm->mtype = MEM_FB_DDR2;
break;
case 0x18:
if (entry->type_detail & BIT(12))
dimm->mtype = MEM_NVDIMM;
else if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR3;
else
dimm->mtype = MEM_DDR3;
break;
case 0x1a:
if (entry->type_detail & BIT(12))
dimm->mtype = MEM_NVDIMM;
else if (entry->type_detail & BIT(13))
dimm->mtype = MEM_RDDR4;
else
dimm->mtype = MEM_DDR4;
break;
default:
if (entry->type_detail & BIT(6))
dimm->mtype = MEM_RMBS;
else if ((entry->type_detail & rdr_mask) == rdr_mask)
dimm->mtype = MEM_RDR;
else if (entry->type_detail & BIT(7))
dimm->mtype = MEM_SDR;
else if (entry->type_detail & BIT(9))
dimm->mtype = MEM_EDO;
else
dimm->mtype = MEM_UNKNOWN;
}
/*
* Actually, we can only detect if the memory has bits for
* checksum or not
*/
if (entry->total_width == entry->data_width)
dimm->edac_mode = EDAC_NONE;
else
dimm->edac_mode = EDAC_SECDED;
dimm->dtype = DEV_UNKNOWN;
dimm->grain = 128; /* Likely, worse case */
dimm_setup_label(dimm, entry->handle);
if (dimm->nr_pages) {
edac_dbg(1, "DIMM%i: %s size = %d MB%s\n",
dimm->idx, edac_mem_types[dimm->mtype],
PAGES_TO_MiB(dimm->nr_pages),
(dimm->edac_mode != EDAC_NONE) ? "(ECC)" : "");
edac_dbg(2, "\ttype %d, detail 0x%02x, width %d(total %d)\n",
entry->memory_type, entry->type_detail,
entry->total_width, entry->data_width);
}
dimm->smbios_handle = entry->handle;
}
static void enumerate_dimms(const struct dmi_header *dh, void *arg)
{
struct memdev_dmi_entry *entry = (struct memdev_dmi_entry *)dh;
struct ghes_hw_desc *hw = (struct ghes_hw_desc *)arg;
struct dimm_info *d;
if (dh->type != DMI_ENTRY_MEM_DEVICE)
return;
/* Enlarge the array with additional 16 */
if (!hw->num_dimms || !(hw->num_dimms % 16)) {
struct dimm_info *new;
new = krealloc(hw->dimms, (hw->num_dimms + 16) * sizeof(struct dimm_info),
GFP_KERNEL);
if (!new) {
WARN_ON_ONCE(1);
return;
}
hw->dimms = new;
}
d = &hw->dimms[hw->num_dimms];
d->idx = hw->num_dimms;
assign_dmi_dimm_info(d, entry);
hw->num_dimms++;
}
static void ghes_scan_system(void)
{
if (system_scanned)
return;
dmi_walk(enumerate_dimms, &ghes_hw);
system_scanned = true;
}
void ghes_edac_report_mem_error(int sev, struct cper_sec_mem_err *mem_err)
{
struct edac_raw_error_desc *e;
struct mem_ctl_info *mci;
struct ghes_pvt *pvt;
unsigned long flags;
char *p;
/*
* We can do the locking below because GHES defers error processing
* from NMI to IRQ context. Whenever that changes, we'd at least
* know.
*/
if (WARN_ON_ONCE(in_nmi()))
return;
spin_lock_irqsave(&ghes_lock, flags);
pvt = ghes_pvt;
if (!pvt)
goto unlock;
mci = pvt->mci;
e = &mci->error_desc;
/* Cleans the error report buffer */
memset(e, 0, sizeof (*e));
e->error_count = 1;
e->grain = 1;
e->msg = pvt->msg;
e->other_detail = pvt->other_detail;
e->top_layer = -1;
e->mid_layer = -1;
e->low_layer = -1;
*pvt->other_detail = '\0';
*pvt->msg = '\0';
switch (sev) {
case GHES_SEV_CORRECTED:
e->type = HW_EVENT_ERR_CORRECTED;
break;
case GHES_SEV_RECOVERABLE:
e->type = HW_EVENT_ERR_UNCORRECTED;
break;
case GHES_SEV_PANIC:
e->type = HW_EVENT_ERR_FATAL;
break;
default:
case GHES_SEV_NO:
e->type = HW_EVENT_ERR_INFO;
}
edac_dbg(1, "error validation_bits: 0x%08llx\n",
(long long)mem_err->validation_bits);
/* Error type, mapped on e->msg */
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_TYPE) {
p = pvt->msg;
switch (mem_err->error_type) {
case 0:
p += sprintf(p, "Unknown");
break;
case 1:
p += sprintf(p, "No error");
break;
case 2:
p += sprintf(p, "Single-bit ECC");
break;
case 3:
p += sprintf(p, "Multi-bit ECC");
break;
case 4:
p += sprintf(p, "Single-symbol ChipKill ECC");
break;
case 5:
p += sprintf(p, "Multi-symbol ChipKill ECC");
break;
case 6:
p += sprintf(p, "Master abort");
break;
case 7:
p += sprintf(p, "Target abort");
break;
case 8:
p += sprintf(p, "Parity Error");
break;
case 9:
p += sprintf(p, "Watchdog timeout");
break;
case 10:
p += sprintf(p, "Invalid address");
break;
case 11:
p += sprintf(p, "Mirror Broken");
break;
case 12:
p += sprintf(p, "Memory Sparing");
break;
case 13:
p += sprintf(p, "Scrub corrected error");
break;
case 14:
p += sprintf(p, "Scrub uncorrected error");
break;
case 15:
p += sprintf(p, "Physical Memory Map-out event");
break;
default:
p += sprintf(p, "reserved error (%d)",
mem_err->error_type);
}
} else {
strcpy(pvt->msg, "unknown error");
}
/* Error address */
if (mem_err->validation_bits & CPER_MEM_VALID_PA) {
e->page_frame_number = PHYS_PFN(mem_err->physical_addr);
e->offset_in_page = offset_in_page(mem_err->physical_addr);
}
/* Error grain */
if (mem_err->validation_bits & CPER_MEM_VALID_PA_MASK)
e->grain = ~mem_err->physical_addr_mask + 1;
/* Memory error location, mapped on e->location */
p = e->location;
if (mem_err->validation_bits & CPER_MEM_VALID_NODE)
p += sprintf(p, "node:%d ", mem_err->node);
if (mem_err->validation_bits & CPER_MEM_VALID_CARD)
p += sprintf(p, "card:%d ", mem_err->card);
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE)
p += sprintf(p, "module:%d ", mem_err->module);
if (mem_err->validation_bits & CPER_MEM_VALID_RANK_NUMBER)
p += sprintf(p, "rank:%d ", mem_err->rank);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK)
p += sprintf(p, "bank:%d ", mem_err->bank);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK_GROUP)
p += sprintf(p, "bank_group:%d ",
mem_err->bank >> CPER_MEM_BANK_GROUP_SHIFT);
if (mem_err->validation_bits & CPER_MEM_VALID_BANK_ADDRESS)
p += sprintf(p, "bank_address:%d ",
mem_err->bank & CPER_MEM_BANK_ADDRESS_MASK);
if (mem_err->validation_bits & (CPER_MEM_VALID_ROW | CPER_MEM_VALID_ROW_EXT)) {
u32 row = mem_err->row;
row |= cper_get_mem_extension(mem_err->validation_bits, mem_err->extended);
p += sprintf(p, "row:%d ", row);
}
if (mem_err->validation_bits & CPER_MEM_VALID_COLUMN)
p += sprintf(p, "col:%d ", mem_err->column);
if (mem_err->validation_bits & CPER_MEM_VALID_BIT_POSITION)
p += sprintf(p, "bit_pos:%d ", mem_err->bit_pos);
if (mem_err->validation_bits & CPER_MEM_VALID_MODULE_HANDLE) {
const char *bank = NULL, *device = NULL;
struct dimm_info *dimm;
dmi_memdev_name(mem_err->mem_dev_handle, &bank, &device);
if (bank != NULL && device != NULL)
p += sprintf(p, "DIMM location:%s %s ", bank, device);
else
p += sprintf(p, "DIMM DMI handle: 0x%.4x ",
mem_err->mem_dev_handle);
dimm = find_dimm_by_handle(mci, mem_err->mem_dev_handle);
if (dimm) {
e->top_layer = dimm->idx;
strcpy(e->label, dimm->label);
}
}
if (mem_err->validation_bits & CPER_MEM_VALID_CHIP_ID)
p += sprintf(p, "chipID: %d ",
mem_err->extended >> CPER_MEM_CHIP_ID_SHIFT);
if (p > e->location)
*(p - 1) = '\0';
if (!*e->label)
strcpy(e->label, "unknown memory");
/* All other fields are mapped on e->other_detail */
p = pvt->other_detail;
p += snprintf(p, sizeof(pvt->other_detail),
"APEI location: %s ", e->location);
if (mem_err->validation_bits & CPER_MEM_VALID_ERROR_STATUS) {
u64 status = mem_err->error_status;
p += sprintf(p, "status(0x%016llx): ", (long long)status);
switch ((status >> 8) & 0xff) {
case 1:
p += sprintf(p, "Error detected internal to the component ");
break;
case 16:
p += sprintf(p, "Error detected in the bus ");
break;
case 4:
p += sprintf(p, "Storage error in DRAM memory ");
break;
case 5:
p += sprintf(p, "Storage error in TLB ");
break;
case 6:
p += sprintf(p, "Storage error in cache ");
break;
case 7:
p += sprintf(p, "Error in one or more functional units ");
break;
case 8:
p += sprintf(p, "component failed self test ");
break;
case 9:
p += sprintf(p, "Overflow or undervalue of internal queue ");
break;
case 17:
p += sprintf(p, "Virtual address not found on IO-TLB or IO-PDIR ");
break;
case 18:
p += sprintf(p, "Improper access error ");
break;
case 19:
p += sprintf(p, "Access to a memory address which is not mapped to any component ");
break;
case 20:
p += sprintf(p, "Loss of Lockstep ");
break;
case 21:
p += sprintf(p, "Response not associated with a request ");
break;
case 22:
p += sprintf(p, "Bus parity error - must also set the A, C, or D Bits ");
break;
case 23:
p += sprintf(p, "Detection of a PATH_ERROR ");
break;
case 25:
p += sprintf(p, "Bus operation timeout ");
break;
case 26:
p += sprintf(p, "A read was issued to data that has been poisoned ");
break;
default:
p += sprintf(p, "reserved ");
break;
}
}
if (mem_err->validation_bits & CPER_MEM_VALID_REQUESTOR_ID)
p += sprintf(p, "requestorID: 0x%016llx ",
(long long)mem_err->requestor_id);
if (mem_err->validation_bits & CPER_MEM_VALID_RESPONDER_ID)
p += sprintf(p, "responderID: 0x%016llx ",
(long long)mem_err->responder_id);
if (mem_err->validation_bits & CPER_MEM_VALID_TARGET_ID)
p += sprintf(p, "targetID: 0x%016llx ",
(long long)mem_err->responder_id);
if (p > pvt->other_detail)
*(p - 1) = '\0';
edac_raw_mc_handle_error(e);
unlock:
spin_unlock_irqrestore(&ghes_lock, flags);
}
/*
* Known systems that are safe to enable this module.
*/
static struct acpi_platform_list plat_list[] = {
{"HPE ", "Server ", 0, ACPI_SIG_FADT, all_versions},
{ } /* End */
};
int ghes_edac_register(struct ghes *ghes, struct device *dev)
{
bool fake = false;
struct mem_ctl_info *mci;
struct ghes_pvt *pvt;
struct edac_mc_layer layers[1];
unsigned long flags;
int idx = -1;
int rc = 0;
if (IS_ENABLED(CONFIG_X86)) {
/* Check if safe to enable on this system */
idx = acpi_match_platform_list(plat_list);
if (!force_load && idx < 0)
return -ENODEV;
} else {
force_load = true;
idx = 0;
}
/* finish another registration/unregistration instance first */
mutex_lock(&ghes_reg_mutex);
/*
* We have only one logical memory controller to which all DIMMs belong.
*/
if (refcount_inc_not_zero(&ghes_refcount))
goto unlock;
ghes_scan_system();
/* Check if we've got a bogus BIOS */
if (!ghes_hw.num_dimms) {
fake = true;
ghes_hw.num_dimms = 1;
}
layers[0].type = EDAC_MC_LAYER_ALL_MEM;
layers[0].size = ghes_hw.num_dimms;
layers[0].is_virt_csrow = true;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(struct ghes_pvt));
if (!mci) {
pr_info("Can't allocate memory for EDAC data\n");
rc = -ENOMEM;
goto unlock;
}
pvt = mci->pvt_info;
pvt->mci = mci;
mci->pdev = dev;
mci->mtype_cap = MEM_FLAG_EMPTY;
mci->edac_ctl_cap = EDAC_FLAG_NONE;
mci->edac_cap = EDAC_FLAG_NONE;
mci->mod_name = "ghes_edac.c";
mci->ctl_name = "ghes_edac";
mci->dev_name = "ghes";
if (fake) {
pr_info("This system has a very crappy BIOS: It doesn't even list the DIMMS.\n");
pr_info("Its SMBIOS info is wrong. It is doubtful that the error report would\n");
pr_info("work on such system. Use this driver with caution\n");
} else if (idx < 0) {
pr_info("This EDAC driver relies on BIOS to enumerate memory and get error reports.\n");
pr_info("Unfortunately, not all BIOSes reflect the memory layout correctly.\n");
pr_info("So, the end result of using this driver varies from vendor to vendor.\n");
pr_info("If you find incorrect reports, please contact your hardware vendor\n");
pr_info("to correct its BIOS.\n");
pr_info("This system has %d DIMM sockets.\n", ghes_hw.num_dimms);
}
if (!fake) {
struct dimm_info *src, *dst;
int i = 0;
mci_for_each_dimm(mci, dst) {
src = &ghes_hw.dimms[i];
dst->idx = src->idx;
dst->smbios_handle = src->smbios_handle;
dst->nr_pages = src->nr_pages;
dst->mtype = src->mtype;
dst->edac_mode = src->edac_mode;
dst->dtype = src->dtype;
dst->grain = src->grain;
/*
* If no src->label, preserve default label assigned
* from EDAC core.
*/
if (strlen(src->label))
memcpy(dst->label, src->label, sizeof(src->label));
i++;
}
} else {
struct dimm_info *dimm = edac_get_dimm(mci, 0, 0, 0);
dimm->nr_pages = 1;
dimm->grain = 128;
dimm->mtype = MEM_UNKNOWN;
dimm->dtype = DEV_UNKNOWN;
dimm->edac_mode = EDAC_SECDED;
}
rc = edac_mc_add_mc(mci);
if (rc < 0) {
pr_info("Can't register with the EDAC core\n");
edac_mc_free(mci);
rc = -ENODEV;
goto unlock;
}
spin_lock_irqsave(&ghes_lock, flags);
ghes_pvt = pvt;
spin_unlock_irqrestore(&ghes_lock, flags);
/* only set on success */
refcount_set(&ghes_refcount, 1);
unlock:
/* Not needed anymore */
kfree(ghes_hw.dimms);
ghes_hw.dimms = NULL;
mutex_unlock(&ghes_reg_mutex);
return rc;
}
void ghes_edac_unregister(struct ghes *ghes)
{
struct mem_ctl_info *mci;
unsigned long flags;
if (!force_load)
return;
mutex_lock(&ghes_reg_mutex);
system_scanned = false;
memset(&ghes_hw, 0, sizeof(struct ghes_hw_desc));
if (!refcount_dec_and_test(&ghes_refcount))
goto unlock;
/*
* Wait for the irq handler being finished.
*/
spin_lock_irqsave(&ghes_lock, flags);
mci = ghes_pvt ? ghes_pvt->mci : NULL;
ghes_pvt = NULL;
spin_unlock_irqrestore(&ghes_lock, flags);
if (!mci)
goto unlock;
mci = edac_mc_del_mc(mci->pdev);
if (mci)
edac_mc_free(mci);
unlock:
mutex_unlock(&ghes_reg_mutex);
}
|