1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
|
// SPDX-License-Identifier: GPL-2.0
/*
* (C) COPYRIGHT 2018 ARM Limited. All rights reserved.
* Author: James.Qian.Wang <james.qian.wang@arm.com>
*
*/
#include <drm/drm_print.h>
#include <linux/clk.h>
#include "komeda_dev.h"
#include "komeda_kms.h"
#include "komeda_pipeline.h"
#include "komeda_framebuffer.h"
static inline bool is_switching_user(void *old, void *new)
{
if (!old || !new)
return false;
return old != new;
}
static struct komeda_pipeline_state *
komeda_pipeline_get_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_private_obj_state(state, &pipe->obj);
if (IS_ERR(priv_st))
return ERR_CAST(priv_st);
return priv_to_pipe_st(priv_st);
}
struct komeda_pipeline_state *
komeda_pipeline_get_old_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_old_private_obj_state(state, &pipe->obj);
if (priv_st)
return priv_to_pipe_st(priv_st);
return NULL;
}
static struct komeda_pipeline_state *
komeda_pipeline_get_new_state(struct komeda_pipeline *pipe,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_new_private_obj_state(state, &pipe->obj);
if (priv_st)
return priv_to_pipe_st(priv_st);
return NULL;
}
/* Assign pipeline for crtc */
static struct komeda_pipeline_state *
komeda_pipeline_get_state_and_set_crtc(struct komeda_pipeline *pipe,
struct drm_atomic_state *state,
struct drm_crtc *crtc)
{
struct komeda_pipeline_state *st;
st = komeda_pipeline_get_state(pipe, state);
if (IS_ERR(st))
return st;
if (is_switching_user(crtc, st->crtc)) {
DRM_DEBUG_ATOMIC("CRTC%d required pipeline%d is busy.\n",
drm_crtc_index(crtc), pipe->id);
return ERR_PTR(-EBUSY);
}
/* pipeline only can be disabled when the it is free or unused */
if (!crtc && st->active_comps) {
DRM_DEBUG_ATOMIC("Disabling a busy pipeline:%d.\n", pipe->id);
return ERR_PTR(-EBUSY);
}
st->crtc = crtc;
if (crtc) {
struct komeda_crtc_state *kcrtc_st;
kcrtc_st = to_kcrtc_st(drm_atomic_get_new_crtc_state(state,
crtc));
kcrtc_st->active_pipes |= BIT(pipe->id);
kcrtc_st->affected_pipes |= BIT(pipe->id);
}
return st;
}
static struct komeda_component_state *
komeda_component_get_state(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
WARN_ON(!drm_modeset_is_locked(&c->pipeline->obj.lock));
priv_st = drm_atomic_get_private_obj_state(state, &c->obj);
if (IS_ERR(priv_st))
return ERR_CAST(priv_st);
return priv_to_comp_st(priv_st);
}
static struct komeda_component_state *
komeda_component_get_old_state(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct drm_private_state *priv_st;
priv_st = drm_atomic_get_old_private_obj_state(state, &c->obj);
if (priv_st)
return priv_to_comp_st(priv_st);
return NULL;
}
/**
* komeda_component_get_state_and_set_user()
*
* @c: component to get state and set user
* @state: global atomic state
* @user: direct user, the binding user
* @crtc: the CRTC user, the big boss :)
*
* This function accepts two users:
* - The direct user: can be plane/crtc/wb_connector depends on component
* - The big boss (CRTC)
* CRTC is the big boss (the final user), because all component resources
* eventually will be assigned to CRTC, like the layer will be binding to
* kms_plane, but kms plane will be binding to a CRTC eventually.
*
* The big boss (CRTC) is for pipeline assignment, since &komeda_component isn't
* independent and can be assigned to CRTC freely, but belongs to a specific
* pipeline, only pipeline can be shared between crtc, and pipeline as a whole
* (include all the internal components) assigned to a specific CRTC.
*
* So when set a user to komeda_component, need first to check the status of
* component->pipeline to see if the pipeline is available on this specific
* CRTC. if the pipeline is busy (assigned to another CRTC), even the required
* component is free, the component still cannot be assigned to the direct user.
*/
static struct komeda_component_state *
komeda_component_get_state_and_set_user(struct komeda_component *c,
struct drm_atomic_state *state,
void *user,
struct drm_crtc *crtc)
{
struct komeda_pipeline_state *pipe_st;
struct komeda_component_state *st;
/* First check if the pipeline is available */
pipe_st = komeda_pipeline_get_state_and_set_crtc(c->pipeline,
state, crtc);
if (IS_ERR(pipe_st))
return ERR_CAST(pipe_st);
st = komeda_component_get_state(c, state);
if (IS_ERR(st))
return st;
/* check if the component has been occupied */
if (is_switching_user(user, st->binding_user)) {
DRM_DEBUG_ATOMIC("required %s is busy.\n", c->name);
return ERR_PTR(-EBUSY);
}
st->binding_user = user;
/* mark the component as active if user is valid */
if (st->binding_user)
pipe_st->active_comps |= BIT(c->id);
return st;
}
static void
komeda_component_add_input(struct komeda_component_state *state,
struct komeda_component_output *input,
int idx)
{
struct komeda_component *c = state->component;
WARN_ON((idx < 0 || idx >= c->max_active_inputs));
/* since the inputs[i] is only valid when it is active. So if a input[i]
* is a newly enabled input which switches from disable to enable, then
* the old inputs[i] is undefined (NOT zeroed), we can not rely on
* memcmp, but directly mark it changed
*/
if (!has_bit(idx, state->affected_inputs) ||
memcmp(&state->inputs[idx], input, sizeof(*input))) {
memcpy(&state->inputs[idx], input, sizeof(*input));
state->changed_active_inputs |= BIT(idx);
}
state->active_inputs |= BIT(idx);
state->affected_inputs |= BIT(idx);
}
static int
komeda_component_check_input(struct komeda_component_state *state,
struct komeda_component_output *input,
int idx)
{
struct komeda_component *c = state->component;
if ((idx < 0) || (idx >= c->max_active_inputs)) {
DRM_DEBUG_ATOMIC("%s required an invalid %s-input[%d].\n",
input->component->name, c->name, idx);
return -EINVAL;
}
if (has_bit(idx, state->active_inputs)) {
DRM_DEBUG_ATOMIC("%s required %s-input[%d] has been occupied already.\n",
input->component->name, c->name, idx);
return -EINVAL;
}
return 0;
}
static void
komeda_component_set_output(struct komeda_component_output *output,
struct komeda_component *comp,
u8 output_port)
{
output->component = comp;
output->output_port = output_port;
}
static int
komeda_component_validate_private(struct komeda_component *c,
struct komeda_component_state *st)
{
int err;
if (!c->funcs->validate)
return 0;
err = c->funcs->validate(c, st);
if (err)
DRM_DEBUG_ATOMIC("%s validate private failed.\n", c->name);
return err;
}
/* Get current available scaler from the component->supported_outputs */
static struct komeda_scaler *
komeda_component_get_avail_scaler(struct komeda_component *c,
struct drm_atomic_state *state)
{
struct komeda_pipeline_state *pipe_st;
u32 avail_scalers;
pipe_st = komeda_pipeline_get_state(c->pipeline, state);
if (!pipe_st)
return NULL;
avail_scalers = (pipe_st->active_comps & KOMEDA_PIPELINE_SCALERS) ^
KOMEDA_PIPELINE_SCALERS;
c = komeda_component_pickup_output(c, avail_scalers);
return to_scaler(c);
}
static void
komeda_rotate_data_flow(struct komeda_data_flow_cfg *dflow, u32 rot)
{
if (drm_rotation_90_or_270(rot)) {
swap(dflow->in_h, dflow->in_w);
swap(dflow->total_in_h, dflow->total_in_w);
}
}
static int
komeda_layer_check_cfg(struct komeda_layer *layer,
struct komeda_fb *kfb,
struct komeda_data_flow_cfg *dflow)
{
u32 src_x, src_y, src_w, src_h;
u32 line_sz, max_line_sz;
if (!komeda_fb_is_layer_supported(kfb, layer->layer_type, dflow->rot))
return -EINVAL;
if (layer->base.id == KOMEDA_COMPONENT_WB_LAYER) {
src_x = dflow->out_x;
src_y = dflow->out_y;
src_w = dflow->out_w;
src_h = dflow->out_h;
} else {
src_x = dflow->in_x;
src_y = dflow->in_y;
src_w = dflow->in_w;
src_h = dflow->in_h;
}
if (komeda_fb_check_src_coords(kfb, src_x, src_y, src_w, src_h))
return -EINVAL;
if (!in_range(&layer->hsize_in, src_w)) {
DRM_DEBUG_ATOMIC("invalidate src_w %d.\n", src_w);
return -EINVAL;
}
if (!in_range(&layer->vsize_in, src_h)) {
DRM_DEBUG_ATOMIC("invalidate src_h %d.\n", src_h);
return -EINVAL;
}
if (drm_rotation_90_or_270(dflow->rot))
line_sz = dflow->in_h;
else
line_sz = dflow->in_w;
if (kfb->base.format->hsub > 1)
max_line_sz = layer->yuv_line_sz;
else
max_line_sz = layer->line_sz;
if (line_sz > max_line_sz) {
DRM_DEBUG_ATOMIC("Required line_sz: %d exceeds the max size %d\n",
line_sz, max_line_sz);
return -EINVAL;
}
return 0;
}
static int
komeda_layer_validate(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane_state *plane_st = &kplane_st->base;
struct drm_framebuffer *fb = plane_st->fb;
struct komeda_fb *kfb = to_kfb(fb);
struct komeda_component_state *c_st;
struct komeda_layer_state *st;
int i, err;
err = komeda_layer_check_cfg(layer, kfb, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&layer->base,
plane_st->state, plane_st->plane, plane_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_layer_st(c_st);
st->rot = dflow->rot;
if (fb->modifier) {
st->hsize = kfb->aligned_w;
st->vsize = kfb->aligned_h;
st->afbc_crop_l = dflow->in_x;
st->afbc_crop_r = kfb->aligned_w - dflow->in_x - dflow->in_w;
st->afbc_crop_t = dflow->in_y;
st->afbc_crop_b = kfb->aligned_h - dflow->in_y - dflow->in_h;
} else {
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
st->afbc_crop_l = 0;
st->afbc_crop_r = 0;
st->afbc_crop_t = 0;
st->afbc_crop_b = 0;
}
for (i = 0; i < fb->format->num_planes; i++)
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->in_x,
dflow->in_y, i);
err = komeda_component_validate_private(&layer->base, c_st);
if (err)
return err;
/* update the data flow for the next stage */
komeda_component_set_output(&dflow->input, &layer->base, 0);
/*
* The rotation has been handled by layer, so adjusted the data flow for
* the next stage.
*/
komeda_rotate_data_flow(dflow, st->rot);
return 0;
}
static int
komeda_wb_layer_validate(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_fb *kfb = to_kfb(conn_st->writeback_job->fb);
struct komeda_component_state *c_st;
struct komeda_layer_state *st;
int i, err;
err = komeda_layer_check_cfg(wb_layer, kfb, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&wb_layer->base,
conn_st->state, conn_st->connector, conn_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_layer_st(c_st);
st->hsize = dflow->out_w;
st->vsize = dflow->out_h;
for (i = 0; i < kfb->base.format->num_planes; i++)
st->addr[i] = komeda_fb_get_pixel_addr(kfb, dflow->out_x,
dflow->out_y, i);
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &wb_layer->base, 0);
return 0;
}
static bool scaling_ratio_valid(u32 size_in, u32 size_out,
u32 max_upscaling, u32 max_downscaling)
{
if (size_out > size_in * max_upscaling)
return false;
else if (size_in > size_out * max_downscaling)
return false;
return true;
}
static int
komeda_scaler_check_cfg(struct komeda_scaler *scaler,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
u32 hsize_in, vsize_in, hsize_out, vsize_out;
u32 max_upscaling;
hsize_in = dflow->in_w;
vsize_in = dflow->in_h;
hsize_out = dflow->out_w;
vsize_out = dflow->out_h;
if (!in_range(&scaler->hsize, hsize_in) ||
!in_range(&scaler->hsize, hsize_out)) {
DRM_DEBUG_ATOMIC("Invalid horizontal sizes");
return -EINVAL;
}
if (!in_range(&scaler->vsize, vsize_in) ||
!in_range(&scaler->vsize, vsize_out)) {
DRM_DEBUG_ATOMIC("Invalid vertical sizes");
return -EINVAL;
}
/* If input comes from compiz that means the scaling is for writeback
* and scaler can not do upscaling for writeback
*/
if (has_bit(dflow->input.component->id, KOMEDA_PIPELINE_COMPIZS))
max_upscaling = 1;
else
max_upscaling = scaler->max_upscaling;
if (!scaling_ratio_valid(hsize_in, hsize_out, max_upscaling,
scaler->max_downscaling)) {
DRM_DEBUG_ATOMIC("Invalid horizontal scaling ratio");
return -EINVAL;
}
if (!scaling_ratio_valid(vsize_in, vsize_out, max_upscaling,
scaler->max_downscaling)) {
DRM_DEBUG_ATOMIC("Invalid vertical scaling ratio");
return -EINVAL;
}
if (hsize_in > hsize_out || vsize_in > vsize_out) {
struct komeda_pipeline *pipe = scaler->base.pipeline;
int err;
err = pipe->funcs->downscaling_clk_check(pipe,
&kcrtc_st->base.adjusted_mode,
komeda_crtc_get_aclk(kcrtc_st), dflow);
if (err) {
DRM_DEBUG_ATOMIC("aclk can't satisfy the clock requirement of the downscaling\n");
return err;
}
}
return 0;
}
static int
komeda_scaler_validate(void *user,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_component_state *c_st;
struct komeda_scaler_state *st;
struct komeda_scaler *scaler;
int err = 0;
if (!(dflow->en_scaling || dflow->en_img_enhancement))
return 0;
scaler = komeda_component_get_avail_scaler(dflow->input.component,
drm_st);
if (!scaler) {
DRM_DEBUG_ATOMIC("No scaler available");
return -EINVAL;
}
err = komeda_scaler_check_cfg(scaler, kcrtc_st, dflow);
if (err)
return err;
c_st = komeda_component_get_state_and_set_user(&scaler->base,
drm_st, user, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_scaler_st(c_st);
st->hsize_in = dflow->in_w;
st->vsize_in = dflow->in_h;
st->hsize_out = dflow->out_w;
st->vsize_out = dflow->out_h;
st->right_crop = dflow->right_crop;
st->left_crop = dflow->left_crop;
st->total_vsize_in = dflow->total_in_h;
st->total_hsize_in = dflow->total_in_w;
st->total_hsize_out = dflow->total_out_w;
/* Enable alpha processing if the next stage needs the pixel alpha */
st->en_alpha = dflow->pixel_blend_mode != DRM_MODE_BLEND_PIXEL_NONE;
st->en_scaling = dflow->en_scaling;
st->en_img_enhancement = dflow->en_img_enhancement;
st->en_split = dflow->en_split;
st->right_part = dflow->right_part;
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &scaler->base, 0);
return err;
}
static void komeda_split_data_flow(struct komeda_scaler *scaler,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_dflow,
struct komeda_data_flow_cfg *r_dflow);
static int
komeda_splitter_validate(struct komeda_splitter *splitter,
struct drm_connector_state *conn_st,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_output,
struct komeda_data_flow_cfg *r_output)
{
struct komeda_component_state *c_st;
struct komeda_splitter_state *st;
if (!splitter) {
DRM_DEBUG_ATOMIC("Current HW doesn't support splitter.\n");
return -EINVAL;
}
if (!in_range(&splitter->hsize, dflow->in_w)) {
DRM_DEBUG_ATOMIC("split in_w:%d is out of the acceptable range.\n",
dflow->in_w);
return -EINVAL;
}
if (!in_range(&splitter->vsize, dflow->in_h)) {
DRM_DEBUG_ATOMIC("split in_h: %d exceeds the acceptable range.\n",
dflow->in_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&splitter->base,
conn_st->state, conn_st->connector, conn_st->crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
komeda_split_data_flow(splitter->base.pipeline->scalers[0],
dflow, l_output, r_output);
st = to_splitter_st(c_st);
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
st->overlap = dflow->overlap;
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&l_output->input, &splitter->base, 0);
komeda_component_set_output(&r_output->input, &splitter->base, 1);
return 0;
}
static int
komeda_merger_validate(struct komeda_merger *merger,
void *user,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *left_input,
struct komeda_data_flow_cfg *right_input,
struct komeda_data_flow_cfg *output)
{
struct komeda_component_state *c_st;
struct komeda_merger_state *st;
int err = 0;
if (!merger) {
DRM_DEBUG_ATOMIC("No merger is available");
return -EINVAL;
}
if (!in_range(&merger->hsize_merged, output->out_w)) {
DRM_DEBUG_ATOMIC("merged_w: %d is out of the accepted range.\n",
output->out_w);
return -EINVAL;
}
if (!in_range(&merger->vsize_merged, output->out_h)) {
DRM_DEBUG_ATOMIC("merged_h: %d is out of the accepted range.\n",
output->out_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&merger->base,
kcrtc_st->base.state, kcrtc_st->base.crtc, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_merger_st(c_st);
st->hsize_merged = output->out_w;
st->vsize_merged = output->out_h;
komeda_component_add_input(c_st, &left_input->input, 0);
komeda_component_add_input(c_st, &right_input->input, 1);
komeda_component_set_output(&output->input, &merger->base, 0);
return err;
}
void pipeline_composition_size(struct komeda_crtc_state *kcrtc_st,
u16 *hsize, u16 *vsize)
{
struct drm_display_mode *m = &kcrtc_st->base.adjusted_mode;
if (hsize)
*hsize = m->hdisplay;
if (vsize)
*vsize = m->vdisplay;
}
static int
komeda_compiz_set_input(struct komeda_compiz *compiz,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_component_state *c_st, *old_st;
struct komeda_compiz_input_cfg *cin;
u16 compiz_w, compiz_h;
int idx = dflow->blending_zorder;
pipeline_composition_size(kcrtc_st, &compiz_w, &compiz_h);
/* check display rect */
if ((dflow->out_x + dflow->out_w > compiz_w) ||
(dflow->out_y + dflow->out_h > compiz_h) ||
dflow->out_w == 0 || dflow->out_h == 0) {
DRM_DEBUG_ATOMIC("invalid disp rect [x=%d, y=%d, w=%d, h=%d]\n",
dflow->out_x, dflow->out_y,
dflow->out_w, dflow->out_h);
return -EINVAL;
}
c_st = komeda_component_get_state_and_set_user(&compiz->base, drm_st,
kcrtc_st->base.crtc, kcrtc_st->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
if (komeda_component_check_input(c_st, &dflow->input, idx))
return -EINVAL;
cin = &(to_compiz_st(c_st)->cins[idx]);
cin->hsize = dflow->out_w;
cin->vsize = dflow->out_h;
cin->hoffset = dflow->out_x;
cin->voffset = dflow->out_y;
cin->pixel_blend_mode = dflow->pixel_blend_mode;
cin->layer_alpha = dflow->layer_alpha;
old_st = komeda_component_get_old_state(&compiz->base, drm_st);
WARN_ON(!old_st);
/* compare with old to check if this input has been changed */
if (memcmp(&(to_compiz_st(old_st)->cins[idx]), cin, sizeof(*cin)))
c_st->changed_active_inputs |= BIT(idx);
komeda_component_add_input(c_st, &dflow->input, idx);
komeda_component_set_output(&dflow->input, &compiz->base, 0);
return 0;
}
static int
komeda_compiz_validate(struct komeda_compiz *compiz,
struct komeda_crtc_state *state,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_component_state *c_st;
struct komeda_compiz_state *st;
c_st = komeda_component_get_state_and_set_user(&compiz->base,
state->base.state, state->base.crtc, state->base.crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_compiz_st(c_st);
pipeline_composition_size(state, &st->hsize, &st->vsize);
komeda_component_set_output(&dflow->input, &compiz->base, 0);
/* compiz output dflow will be fed to the next pipeline stage, prepare
* the data flow configuration for the next stage
*/
if (dflow) {
dflow->in_w = st->hsize;
dflow->in_h = st->vsize;
dflow->out_w = dflow->in_w;
dflow->out_h = dflow->in_h;
/* the output data of compiz doesn't have alpha, it only can be
* used as bottom layer when blend it with master layers
*/
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
dflow->layer_alpha = 0xFF;
dflow->blending_zorder = 0;
}
return 0;
}
static int
komeda_improc_validate(struct komeda_improc *improc,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_crtc *crtc = kcrtc_st->base.crtc;
struct drm_crtc_state *crtc_st = &kcrtc_st->base;
struct komeda_component_state *c_st;
struct komeda_improc_state *st;
c_st = komeda_component_get_state_and_set_user(&improc->base,
kcrtc_st->base.state, crtc, crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_improc_st(c_st);
st->hsize = dflow->in_w;
st->vsize = dflow->in_h;
if (drm_atomic_crtc_needs_modeset(crtc_st)) {
u32 output_depths, output_formats;
u32 avail_depths, avail_formats;
komeda_crtc_get_color_config(crtc_st, &output_depths,
&output_formats);
avail_depths = output_depths & improc->supported_color_depths;
if (avail_depths == 0) {
DRM_DEBUG_ATOMIC("No available color depths, conn depths: 0x%x & display: 0x%x\n",
output_depths,
improc->supported_color_depths);
return -EINVAL;
}
avail_formats = output_formats &
improc->supported_color_formats;
if (!avail_formats) {
DRM_DEBUG_ATOMIC("No available color_formats, conn formats 0x%x & display: 0x%x\n",
output_formats,
improc->supported_color_formats);
return -EINVAL;
}
st->color_depth = __fls(avail_depths);
st->color_format = BIT(__ffs(avail_formats));
}
if (kcrtc_st->base.color_mgmt_changed) {
drm_lut_to_fgamma_coeffs(kcrtc_st->base.gamma_lut,
st->fgamma_coeffs);
drm_ctm_to_coeffs(kcrtc_st->base.ctm, st->ctm_coeffs);
}
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &improc->base, 0);
return 0;
}
static int
komeda_timing_ctrlr_validate(struct komeda_timing_ctrlr *ctrlr,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_crtc *crtc = kcrtc_st->base.crtc;
struct komeda_timing_ctrlr_state *st;
struct komeda_component_state *c_st;
c_st = komeda_component_get_state_and_set_user(&ctrlr->base,
kcrtc_st->base.state, crtc, crtc);
if (IS_ERR(c_st))
return PTR_ERR(c_st);
st = to_ctrlr_st(c_st);
komeda_component_add_input(&st->base, &dflow->input, 0);
komeda_component_set_output(&dflow->input, &ctrlr->base, 0);
return 0;
}
void komeda_complete_data_flow_cfg(struct komeda_layer *layer,
struct komeda_data_flow_cfg *dflow,
struct drm_framebuffer *fb)
{
struct komeda_scaler *scaler = layer->base.pipeline->scalers[0];
u32 w = dflow->in_w;
u32 h = dflow->in_h;
dflow->total_in_w = dflow->in_w;
dflow->total_in_h = dflow->in_h;
dflow->total_out_w = dflow->out_w;
/* if format doesn't have alpha, fix blend mode to PIXEL_NONE */
if (!fb->format->has_alpha)
dflow->pixel_blend_mode = DRM_MODE_BLEND_PIXEL_NONE;
if (drm_rotation_90_or_270(dflow->rot))
swap(w, h);
dflow->en_scaling = (w != dflow->out_w) || (h != dflow->out_h);
dflow->is_yuv = fb->format->is_yuv;
/* try to enable image enhancer if data flow is a 2x+ upscaling */
dflow->en_img_enhancement = dflow->out_w >= 2 * w ||
dflow->out_h >= 2 * h;
/* try to enable split if scaling exceed the scaler's acceptable
* input/output range.
*/
if (dflow->en_scaling && scaler)
dflow->en_split = !in_range(&scaler->hsize, dflow->in_w) ||
!in_range(&scaler->hsize, dflow->out_w);
}
static bool merger_is_available(struct komeda_pipeline *pipe,
struct komeda_data_flow_cfg *dflow)
{
u32 avail_inputs = pipe->merger ?
pipe->merger->base.supported_inputs : 0;
return has_bit(dflow->input.component->id, avail_inputs);
}
int komeda_build_layer_data_flow(struct komeda_layer *layer,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane *plane = kplane_st->base.plane;
struct komeda_pipeline *pipe = layer->base.pipeline;
int err;
DRM_DEBUG_ATOMIC("%s handling [PLANE:%d:%s]: src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
layer->base.name, plane->base.id, plane->name,
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
err = komeda_layer_validate(layer, kplane_st, dflow);
if (err)
return err;
err = komeda_scaler_validate(plane, kcrtc_st, dflow);
if (err)
return err;
/* if split, check if can put the data flow into merger */
if (dflow->en_split && merger_is_available(pipe, dflow))
return 0;
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
return err;
}
/*
* Split is introduced for workaround scaler's input/output size limitation.
* The idea is simple, if one scaler can not fit the requirement, use two.
* So split splits the big source image to two half parts (left/right) and do
* the scaling by two scaler separately and independently.
* But split also imports an edge problem in the middle of the image when
* scaling, to avoid it, split isn't a simple half-and-half, but add an extra
* pixels (overlap) to both side, after split the left/right will be:
* - left: [0, src_length/2 + overlap]
* - right: [src_length/2 - overlap, src_length]
* The extra overlap do eliminate the edge problem, but which may also generates
* unnecessary pixels when scaling, we need to crop them before scaler output
* the result to the next stage. and for the how to crop, it depends on the
* unneeded pixels, another words the position where overlay has been added.
* - left: crop the right
* - right: crop the left
*
* The diagram for how to do the split
*
* <---------------------left->out_w ---------------->
* |--------------------------------|---right_crop-----| <- left after split
* \ \ /
* \ \<--overlap--->/
* |-----------------|-------------|(Middle)------|-----------------| <- src
* /<---overlap--->\ \
* / \ \
* right after split->|-----left_crop---|--------------------------------|
* ^<------------------- right->out_w --------------->^
*
* NOTE: To consistent with HW the output_w always contains the crop size.
*/
static void komeda_split_data_flow(struct komeda_scaler *scaler,
struct komeda_data_flow_cfg *dflow,
struct komeda_data_flow_cfg *l_dflow,
struct komeda_data_flow_cfg *r_dflow)
{
bool r90 = drm_rotation_90_or_270(dflow->rot);
bool flip_h = has_flip_h(dflow->rot);
u32 l_out, r_out, overlap;
memcpy(l_dflow, dflow, sizeof(*dflow));
memcpy(r_dflow, dflow, sizeof(*dflow));
l_dflow->right_part = false;
r_dflow->right_part = true;
r_dflow->blending_zorder = dflow->blending_zorder + 1;
overlap = 0;
if (dflow->en_scaling && scaler)
overlap += scaler->scaling_split_overlap;
/* original dflow may fed into splitter, and which doesn't need
* enhancement overlap
*/
dflow->overlap = overlap;
if (dflow->en_img_enhancement && scaler)
overlap += scaler->enh_split_overlap;
l_dflow->overlap = overlap;
r_dflow->overlap = overlap;
/* split the origin content */
/* left/right here always means the left/right part of display image,
* not the source Image
*/
/* DRM rotation is anti-clockwise */
if (r90) {
if (dflow->en_scaling) {
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
r_dflow->in_h = l_dflow->in_h;
} else if (dflow->en_img_enhancement) {
/* enhancer only */
l_dflow->in_h = ALIGN(dflow->in_h, 2) / 2 + l_dflow->overlap;
r_dflow->in_h = dflow->in_h / 2 + r_dflow->overlap;
} else {
/* split without scaler, no overlap */
l_dflow->in_h = ALIGN(((dflow->in_h + 1) >> 1), 2);
r_dflow->in_h = dflow->in_h - l_dflow->in_h;
}
/* Consider YUV format, after split, the split source w/h
* may not aligned to 2. we have two choices for such case.
* 1. scaler is enabled (overlap != 0), we can do a alignment
* both left/right and crop the extra data by scaler.
* 2. scaler is not enabled, only align the split left
* src/disp, and the rest part assign to right
*/
if ((overlap != 0) && dflow->is_yuv) {
l_dflow->in_h = ALIGN(l_dflow->in_h, 2);
r_dflow->in_h = ALIGN(r_dflow->in_h, 2);
}
if (flip_h)
l_dflow->in_y = dflow->in_y + dflow->in_h - l_dflow->in_h;
else
r_dflow->in_y = dflow->in_y + dflow->in_h - r_dflow->in_h;
} else {
if (dflow->en_scaling) {
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
r_dflow->in_w = l_dflow->in_w;
} else if (dflow->en_img_enhancement) {
l_dflow->in_w = ALIGN(dflow->in_w, 2) / 2 + l_dflow->overlap;
r_dflow->in_w = dflow->in_w / 2 + r_dflow->overlap;
} else {
l_dflow->in_w = ALIGN(((dflow->in_w + 1) >> 1), 2);
r_dflow->in_w = dflow->in_w - l_dflow->in_w;
}
/* do YUV alignment when scaler enabled */
if ((overlap != 0) && dflow->is_yuv) {
l_dflow->in_w = ALIGN(l_dflow->in_w, 2);
r_dflow->in_w = ALIGN(r_dflow->in_w, 2);
}
/* on flip_h, the left display content from the right-source */
if (flip_h)
l_dflow->in_x = dflow->in_w + dflow->in_x - l_dflow->in_w;
else
r_dflow->in_x = dflow->in_w + dflow->in_x - r_dflow->in_w;
}
/* split the disp_rect */
if (dflow->en_scaling || dflow->en_img_enhancement)
l_dflow->out_w = ((dflow->out_w + 1) >> 1);
else
l_dflow->out_w = ALIGN(((dflow->out_w + 1) >> 1), 2);
r_dflow->out_w = dflow->out_w - l_dflow->out_w;
l_dflow->out_x = dflow->out_x;
r_dflow->out_x = l_dflow->out_w + l_dflow->out_x;
/* calculate the scaling crop */
/* left scaler output more data and do crop */
if (r90) {
l_out = (dflow->out_w * l_dflow->in_h) / dflow->in_h;
r_out = (dflow->out_w * r_dflow->in_h) / dflow->in_h;
} else {
l_out = (dflow->out_w * l_dflow->in_w) / dflow->in_w;
r_out = (dflow->out_w * r_dflow->in_w) / dflow->in_w;
}
l_dflow->left_crop = 0;
l_dflow->right_crop = l_out - l_dflow->out_w;
r_dflow->left_crop = r_out - r_dflow->out_w;
r_dflow->right_crop = 0;
/* out_w includes the crop length */
l_dflow->out_w += l_dflow->right_crop + l_dflow->left_crop;
r_dflow->out_w += r_dflow->right_crop + r_dflow->left_crop;
}
/* For layer split, a plane state will be split to two data flows and handled
* by two separated komeda layer input pipelines. komeda supports two types of
* layer split:
* - none-scaling split:
* / layer-left -> \
* plane_state compiz-> ...
* \ layer-right-> /
*
* - scaling split:
* / layer-left -> scaler->\
* plane_state merger -> compiz-> ...
* \ layer-right-> scaler->/
*
* Since merger only supports scaler as input, so for none-scaling split, two
* layer data flows will be output to compiz directly. for scaling_split, two
* data flow will be merged by merger firstly, then merger outputs one merged
* data flow to compiz.
*/
int komeda_build_layer_split_data_flow(struct komeda_layer *left,
struct komeda_plane_state *kplane_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_plane *plane = kplane_st->base.plane;
struct komeda_pipeline *pipe = left->base.pipeline;
struct komeda_layer *right = left->right;
struct komeda_data_flow_cfg l_dflow, r_dflow;
int err;
komeda_split_data_flow(pipe->scalers[0], dflow, &l_dflow, &r_dflow);
DRM_DEBUG_ATOMIC("Assign %s + %s to [PLANE:%d:%s]: "
"src[x/y:%d/%d, w/h:%d/%d] disp[x/y:%d/%d, w/h:%d/%d]",
left->base.name, right->base.name,
plane->base.id, plane->name,
dflow->in_x, dflow->in_y, dflow->in_w, dflow->in_h,
dflow->out_x, dflow->out_y, dflow->out_w, dflow->out_h);
err = komeda_build_layer_data_flow(left, kplane_st, kcrtc_st, &l_dflow);
if (err)
return err;
err = komeda_build_layer_data_flow(right, kplane_st, kcrtc_st, &r_dflow);
if (err)
return err;
/* The rotation has been handled by layer, so adjusted the data flow */
komeda_rotate_data_flow(dflow, dflow->rot);
/* left and right dflow has been merged to compiz already,
* no need merger to merge them anymore.
*/
if (r_dflow.input.component == l_dflow.input.component)
return 0;
/* line merger path */
err = komeda_merger_validate(pipe->merger, plane, kcrtc_st,
&l_dflow, &r_dflow, dflow);
if (err)
return err;
err = komeda_compiz_set_input(pipe->compiz, kcrtc_st, dflow);
return err;
}
/* writeback data path: compiz -> scaler -> wb_layer -> memory */
int komeda_build_wb_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct drm_connector *conn = conn_st->connector;
int err;
err = komeda_scaler_validate(conn, kcrtc_st, dflow);
if (err)
return err;
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
}
/* writeback scaling split data path:
* /-> scaler ->\
* compiz -> splitter merger -> wb_layer -> memory
* \-> scaler ->/
*/
int komeda_build_wb_split_data_flow(struct komeda_layer *wb_layer,
struct drm_connector_state *conn_st,
struct komeda_crtc_state *kcrtc_st,
struct komeda_data_flow_cfg *dflow)
{
struct komeda_pipeline *pipe = wb_layer->base.pipeline;
struct drm_connector *conn = conn_st->connector;
struct komeda_data_flow_cfg l_dflow, r_dflow;
int err;
err = komeda_splitter_validate(pipe->splitter, conn_st,
dflow, &l_dflow, &r_dflow);
if (err)
return err;
err = komeda_scaler_validate(conn, kcrtc_st, &l_dflow);
if (err)
return err;
err = komeda_scaler_validate(conn, kcrtc_st, &r_dflow);
if (err)
return err;
err = komeda_merger_validate(pipe->merger, conn_st, kcrtc_st,
&l_dflow, &r_dflow, dflow);
if (err)
return err;
return komeda_wb_layer_validate(wb_layer, conn_st, dflow);
}
/* build display output data flow, the data path is:
* compiz -> improc -> timing_ctrlr
*/
int komeda_build_display_data_flow(struct komeda_crtc *kcrtc,
struct komeda_crtc_state *kcrtc_st)
{
struct komeda_pipeline *master = kcrtc->master;
struct komeda_pipeline *slave = kcrtc->slave;
struct komeda_data_flow_cfg m_dflow; /* master data flow */
struct komeda_data_flow_cfg s_dflow; /* slave data flow */
int err;
memset(&m_dflow, 0, sizeof(m_dflow));
memset(&s_dflow, 0, sizeof(s_dflow));
if (slave && has_bit(slave->id, kcrtc_st->active_pipes)) {
err = komeda_compiz_validate(slave->compiz, kcrtc_st, &s_dflow);
if (err)
return err;
/* merge the slave dflow into master pipeline */
err = komeda_compiz_set_input(master->compiz, kcrtc_st,
&s_dflow);
if (err)
return err;
}
err = komeda_compiz_validate(master->compiz, kcrtc_st, &m_dflow);
if (err)
return err;
err = komeda_improc_validate(master->improc, kcrtc_st, &m_dflow);
if (err)
return err;
err = komeda_timing_ctrlr_validate(master->ctrlr, kcrtc_st, &m_dflow);
if (err)
return err;
return 0;
}
static int
komeda_pipeline_unbound_components(struct komeda_pipeline *pipe,
struct komeda_pipeline_state *new)
{
struct drm_atomic_state *drm_st = new->obj.state;
struct komeda_pipeline_state *old = priv_to_pipe_st(pipe->obj.state);
struct komeda_component_state *c_st;
struct komeda_component *c;
u32 id;
unsigned long disabling_comps;
WARN_ON(!old);
disabling_comps = (~new->active_comps) & old->active_comps;
/* unbound all disabling component */
for_each_set_bit(id, &disabling_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
c_st = komeda_component_get_state_and_set_user(c,
drm_st, NULL, new->crtc);
if (PTR_ERR(c_st) == -EDEADLK)
return -EDEADLK;
WARN_ON(IS_ERR(c_st));
}
return 0;
}
/* release unclaimed pipeline resource */
int komeda_release_unclaimed_resources(struct komeda_pipeline *pipe,
struct komeda_crtc_state *kcrtc_st)
{
struct drm_atomic_state *drm_st = kcrtc_st->base.state;
struct komeda_pipeline_state *st;
/* ignore the pipeline which is not affected */
if (!pipe || !has_bit(pipe->id, kcrtc_st->affected_pipes))
return 0;
if (has_bit(pipe->id, kcrtc_st->active_pipes))
st = komeda_pipeline_get_new_state(pipe, drm_st);
else
st = komeda_pipeline_get_state_and_set_crtc(pipe, drm_st, NULL);
if (WARN_ON(IS_ERR_OR_NULL(st)))
return -EINVAL;
return komeda_pipeline_unbound_components(pipe, st);
}
/* Since standalong disabled components must be disabled separately and in the
* last, So a complete disable operation may needs to call pipeline_disable
* twice (two phase disabling).
* Phase 1: disable the common components, flush it.
* Phase 2: disable the standalone disabled components, flush it.
*
* RETURNS:
* true: disable is not complete, needs a phase 2 disable.
* false: disable is complete.
*/
bool komeda_pipeline_disable(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state)
{
struct komeda_pipeline_state *old;
struct komeda_component *c;
struct komeda_component_state *c_st;
u32 id;
unsigned long disabling_comps;
old = komeda_pipeline_get_old_state(pipe, old_state);
disabling_comps = old->active_comps &
(~pipe->standalone_disabled_comps);
if (!disabling_comps)
disabling_comps = old->active_comps &
pipe->standalone_disabled_comps;
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, disabling_comps: 0x%lx.\n",
pipe->id, old->active_comps, disabling_comps);
for_each_set_bit(id, &disabling_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
c_st = priv_to_comp_st(c->obj.state);
/*
* If we disabled a component then all active_inputs should be
* put in the list of changed_active_inputs, so they get
* re-enabled.
* This usually happens during a modeset when the pipeline is
* first disabled and then the actual state gets committed
* again.
*/
c_st->changed_active_inputs |= c_st->active_inputs;
c->funcs->disable(c);
}
/* Update the pipeline state, if there are components that are still
* active, return true for calling the phase 2 disable.
*/
old->active_comps &= ~disabling_comps;
return old->active_comps ? true : false;
}
void komeda_pipeline_update(struct komeda_pipeline *pipe,
struct drm_atomic_state *old_state)
{
struct komeda_pipeline_state *new = priv_to_pipe_st(pipe->obj.state);
struct komeda_pipeline_state *old;
struct komeda_component *c;
u32 id;
unsigned long changed_comps;
old = komeda_pipeline_get_old_state(pipe, old_state);
changed_comps = new->active_comps | old->active_comps;
DRM_DEBUG_ATOMIC("PIPE%d: active_comps: 0x%x, changed: 0x%lx.\n",
pipe->id, new->active_comps, changed_comps);
for_each_set_bit(id, &changed_comps, 32) {
c = komeda_pipeline_get_component(pipe, id);
if (new->active_comps & BIT(c->id))
c->funcs->update(c, priv_to_comp_st(c->obj.state));
else
c->funcs->disable(c);
}
}
|