summaryrefslogtreecommitdiffstats
path: root/tools/generate_gradients.py
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 12:38:06 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-27 12:38:06 +0000
commit695ad2c6d0b157d2969c9b946d9e3765113a61e7 (patch)
treeeaab7e7e2523ad710afe779d532156258e40d5cc /tools/generate_gradients.py
parentInitial commit. (diff)
downloadpowerline-695ad2c6d0b157d2969c9b946d9e3765113a61e7.tar.xz
powerline-695ad2c6d0b157d2969c9b946d9e3765113a61e7.zip
Adding upstream version 2.8.1.upstream/2.8.1upstream
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'tools/generate_gradients.py')
-rwxr-xr-xtools/generate_gradients.py217
1 files changed, 217 insertions, 0 deletions
diff --git a/tools/generate_gradients.py b/tools/generate_gradients.py
new file mode 100755
index 0000000..290e75e
--- /dev/null
+++ b/tools/generate_gradients.py
@@ -0,0 +1,217 @@
+#!/usr/bin/env python
+# vim:fileencoding=utf-8:noet
+
+'''Gradients generator
+'''
+
+from __future__ import (unicode_literals, division, absolute_import, print_function)
+
+import sys
+import json
+import argparse
+
+from itertools import groupby
+
+from colormath.color_objects import sRGBColor, LabColor
+from colormath.color_conversions import convert_color
+from colormath.color_diff import delta_e_cie2000
+
+from powerline.colorscheme import cterm_to_hex
+
+
+def num2(s):
+ try:
+ return (True, [int(v) for v in s.partition(' ')[::2]])
+ except TypeError:
+ return (False, [float(v) for v in s.partition(' ')[::2]])
+
+
+def rgbint_to_lab(rgbint):
+ rgb = sRGBColor(
+ (rgbint >> 16) & 0xFF, (rgbint >> 8) & 0xFF, rgbint & 0xFF,
+ is_upscaled=True
+ )
+ return convert_color(rgb, LabColor)
+
+
+cterm_to_lab = tuple((rgbint_to_lab(v) for v in cterm_to_hex))
+
+
+def color(s):
+ if len(s) <= 3:
+ return cterm_to_lab[int(s)]
+ else:
+ return rgbint_to_lab(int(s, 16))
+
+
+def nums(s):
+ return [int(i) for i in s.split()]
+
+
+def linear_gradient(start_value, stop_value, start_offset, stop_offset, offset):
+ return start_value + ((offset - start_offset) * (stop_value - start_value) / (stop_offset - start_offset))
+
+
+def lab_gradient(slab, elab, soff, eoff, off):
+ svals = slab.get_value_tuple()
+ evals = elab.get_value_tuple()
+ return LabColor(*[
+ linear_gradient(start_value, end_value, soff, eoff, off)
+ for start_value, end_value in zip(svals, evals)
+ ])
+
+
+def generate_gradient_function(DATA):
+ def gradient_function(y):
+ initial_offset = 0
+ for offset, start, end in DATA:
+ if y <= offset:
+ return lab_gradient(start, end, initial_offset, offset, y)
+ initial_offset = offset
+ return gradient_function
+
+
+def get_upscaled_values(rgb):
+ return [min(max(0, i), 255) for i in rgb.get_upscaled_value_tuple()]
+
+
+def get_rgb(lab):
+ rgb = convert_color(lab, sRGBColor)
+ rgb = sRGBColor(*get_upscaled_values(rgb), is_upscaled=True)
+ return rgb.get_rgb_hex()[1:]
+
+
+def find_color(ulab, colors, ctrans):
+ cur_distance = float('inf')
+ cur_color = None
+ i = 0
+ for clab in colors:
+ dist = delta_e_cie2000(ulab, clab)
+ if dist < cur_distance:
+ cur_distance = dist
+ cur_color = (ctrans(i), clab)
+ i += 1
+ return cur_color
+
+
+def print_color(color):
+ if type(color) is int:
+ colstr = '5;' + str(color)
+ else:
+ rgb = convert_color(color, sRGBColor)
+ colstr = '2;' + ';'.join((str(i) for i in get_upscaled_values(rgb)))
+ sys.stdout.write('\033[48;' + colstr + 'm ')
+
+
+def print_colors(colors, num):
+ for i in range(num):
+ color = colors[int(round(i * (len(colors) - 1) / num))]
+ print_color(color)
+ sys.stdout.write('\033[0m\n')
+
+
+def dec_scale_generator(num):
+ j = 0
+ r = ''
+ while num:
+ r += '\033[{0}m'.format(j % 2)
+ for i in range(10):
+ r += str(i)
+ num -= 1
+ if not num:
+ break
+ j += 1
+ r += '\033[0m\n'
+ return r
+
+
+def compute_steps(gradient, weights):
+ maxweight = len(gradient) - 1
+ if weights:
+ weight_sum = sum(weights)
+ norm_weights = [100.0 * weight / weight_sum for weight in weights]
+ steps = [0]
+ for weight in norm_weights:
+ steps.append(steps[-1] + weight)
+ steps.pop(0)
+ steps.pop(0)
+ else:
+ step = m / maxweight
+ steps = [i * step for i in range(1, maxweight + 1)]
+ return steps
+
+
+palettes = {
+ '16': (cterm_to_lab[:16], lambda c: c),
+ '256': (cterm_to_lab, lambda c: c),
+ None: (cterm_to_lab[16:], lambda c: c + 16),
+}
+
+
+def show_scale(rng, num_output):
+ if not rng and num_output >= 32 and (num_output - 1) // 10 >= 4 and (num_output - 1) % 10 == 0:
+ sys.stdout.write('0')
+ sys.stdout.write(''.join(('%*u' % (num_output // 10, i) for i in range(10, 101, 10))))
+ sys.stdout.write('\n')
+ else:
+ if rng:
+ vmin, vmax = rng[1]
+ isint = rng[0]
+ else:
+ isint = True
+ vmin = 0
+ vmax = 100
+ s = ''
+ lasts = ' ' + str(vmax)
+ while len(s) + len(lasts) < num_output:
+ curpc = len(s) + 1 if s else 0
+ curval = vmin + curpc * (vmax - vmin) / num_output
+ if isint:
+ curval = int(round(curval))
+ s += str(curval) + ' '
+ sys.stdout.write(s[:-1] + lasts + '\n')
+ sys.stdout.write(dec_scale_generator(num_output) + '\n')
+
+
+if __name__ == '__main__':
+ p = argparse.ArgumentParser(description=__doc__)
+ p.add_argument('gradient', nargs='*', metavar='COLOR', type=color, help='List of colors (either indexes from 8-bit palette or 24-bit RGB in hexadecimal notation)')
+ p.add_argument('-n', '--num_items', metavar='INT', type=int, help='Number of items in resulting list', default=101)
+ p.add_argument('-N', '--num_output', metavar='INT', type=int, help='Number of characters in sample', default=101)
+ p.add_argument('-r', '--range', metavar='V1 V2', type=num2, help='Use this range when outputting scale')
+ p.add_argument('-s', '--show', action='store_true', help='If present output gradient sample')
+ p.add_argument('-p', '--palette', choices=('16', '256'), help='Use this palette. Defaults to 240-color palette (256 colors without first 16)')
+ p.add_argument('-w', '--weights', metavar='INT INT ...', type=nums, help='Adjust weights of colors. Number of weights must be equal to number of colors')
+ p.add_argument('-C', '--omit-terminal', action='store_true', help='If present do not compute values for terminal')
+
+ args = p.parse_args()
+
+ m = args.num_items
+
+ steps = compute_steps(args.gradient, args.weights)
+
+ data = [
+ (weight, args.gradient[i - 1], args.gradient[i])
+ for weight, i in zip(steps, range(1, len(args.gradient)))
+ ]
+ gr_func = generate_gradient_function(data)
+ gradient = [gr_func(y) for y in range(0, m)]
+
+ r = [get_rgb(lab) for lab in gradient]
+ if not args.omit_terminal:
+ r2 = [find_color(lab, *palettes[args.palette])[0] for lab in gradient]
+ r3 = [i[0] for i in groupby(r2)]
+
+ if not args.omit_terminal:
+ print(json.dumps(r3) + ',')
+ print(json.dumps(r2) + ',')
+ print(json.dumps(r))
+
+ if args.show:
+ print_colors(args.gradient, args.num_output)
+ if not args.omit_terminal:
+ print_colors(r3, args.num_output)
+ print_colors(r2, args.num_output)
+ print_colors(gradient, args.num_output)
+
+ show_scale(args.range, args.num_output)