summaryrefslogtreecommitdiffstats
path: root/src/modules/rtp/module-rtp-recv.c
blob: a9b42bbc529c9ef15b1e4910cf90ad99c0a5be46 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
/***
  This file is part of PulseAudio.

  Copyright 2006 Lennart Poettering

  PulseAudio is free software; you can redistribute it and/or modify
  it under the terms of the GNU Lesser General Public License as published
  by the Free Software Foundation; either version 2.1 of the License,
  or (at your option) any later version.

  PulseAudio is distributed in the hope that it will be useful, but
  WITHOUT ANY WARRANTY; without even the implied warranty of
  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
  General Public License for more details.

  You should have received a copy of the GNU Lesser General Public License
  along with PulseAudio; if not, see <http://www.gnu.org/licenses/>.
***/

#ifdef HAVE_CONFIG_H
#include <config.h>
#endif

#include <stdio.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <errno.h>
#include <string.h>
#include <unistd.h>
#include <math.h>

#include <pulse/rtclock.h>
#include <pulse/timeval.h>
#include <pulse/xmalloc.h>

#include <pulsecore/core-error.h>
#include <pulsecore/module.h>
#include <pulsecore/llist.h>
#include <pulsecore/sink.h>
#include <pulsecore/sink-input.h>
#include <pulsecore/memblockq.h>
#include <pulsecore/log.h>
#include <pulsecore/core-rtclock.h>
#include <pulsecore/core-util.h>
#include <pulsecore/modargs.h>
#include <pulsecore/namereg.h>
#include <pulsecore/sample-util.h>
#include <pulsecore/macro.h>
#include <pulsecore/socket-util.h>
#include <pulsecore/atomic.h>
#include <pulsecore/once.h>
#include <pulsecore/poll.h>
#include <pulsecore/arpa-inet.h>

#include "rtp.h"
#include "sdp.h"
#include "sap.h"

PA_MODULE_AUTHOR("Lennart Poettering");
PA_MODULE_DESCRIPTION("Receive data from a network via RTP/SAP/SDP");
PA_MODULE_VERSION(PACKAGE_VERSION);
PA_MODULE_LOAD_ONCE(false);
PA_MODULE_USAGE(
        "sink=<name of the sink> "
        "sap_address=<multicast address to listen on> "
        "latency_msec=<latency in ms> "
);

#define SAP_PORT 9875
#define DEFAULT_SAP_ADDRESS "224.0.0.56"
#define DEFAULT_LATENCY_MSEC 500
#define MEMBLOCKQ_MAXLENGTH (1024*1024*40)
#define MAX_SESSIONS 16
#define DEATH_TIMEOUT 20
#define RATE_UPDATE_INTERVAL (5*PA_USEC_PER_SEC)

static const char* const valid_modargs[] = {
    "sink",
    "sap_address",
    "latency_msec",
    NULL
};

struct session {
    struct userdata *userdata;
    PA_LLIST_FIELDS(struct session);

    pa_sink_input *sink_input;
    pa_memblockq *memblockq;

    bool first_packet;
    uint32_t offset;

    struct pa_sdp_info sdp_info;

    pa_rtp_context *rtp_context;

    pa_rtpoll_item *rtpoll_item;

    pa_atomic_t timestamp;

    pa_usec_t intended_latency;
    pa_usec_t sink_latency;

    unsigned int base_rate;
    pa_usec_t last_rate_update;
    pa_usec_t last_latency;
    double estimated_rate;
    double avg_estimated_rate;
};

struct userdata {
    pa_module *module;
    pa_core *core;

    pa_sap_context sap_context;
    pa_io_event* sap_event;

    pa_time_event *check_death_event;

    char *sink_name;

    PA_LLIST_HEAD(struct session, sessions);
    pa_hashmap *by_origin;
    int n_sessions;

    pa_usec_t latency;
};

static void session_free(struct session *s);

/* Called from I/O thread context */
static int sink_input_process_msg(pa_msgobject *o, int code, void *data, int64_t offset, pa_memchunk *chunk) {
    struct session *s = PA_SINK_INPUT(o)->userdata;

    switch (code) {
        case PA_SINK_INPUT_MESSAGE_GET_LATENCY:
            *((pa_usec_t*) data) = pa_bytes_to_usec(pa_memblockq_get_length(s->memblockq), &s->sink_input->sample_spec);

            /* Fall through, the default handler will add in the extra
             * latency added by the resampler */
            break;
    }

    return pa_sink_input_process_msg(o, code, data, offset, chunk);
}

/* Called from I/O thread context */
static int sink_input_pop_cb(pa_sink_input *i, size_t length, pa_memchunk *chunk) {
    struct session *s;
    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    if (pa_memblockq_peek(s->memblockq, chunk) < 0)
        return -1;

    pa_memblockq_drop(s->memblockq, chunk->length);

    return 0;
}

/* Called from I/O thread context */
static void sink_input_process_rewind_cb(pa_sink_input *i, size_t nbytes) {
    struct session *s;

    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    pa_memblockq_rewind(s->memblockq, nbytes);
}

/* Called from I/O thread context */
static void sink_input_update_max_rewind_cb(pa_sink_input *i, size_t nbytes) {
    struct session *s;

    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    pa_memblockq_set_maxrewind(s->memblockq, nbytes);
}

/* Called from main context */
static void sink_input_kill(pa_sink_input* i) {
    struct session *s;
    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    pa_hashmap_remove_and_free(s->userdata->by_origin, s->sdp_info.origin);
}

/* Called from IO context */
static void sink_input_suspend_within_thread(pa_sink_input* i, bool b) {
    struct session *s;
    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    if (b)
        pa_memblockq_flush_read(s->memblockq);
    else
        s->first_packet = false;
}

/* Called from I/O thread context */
static int rtpoll_work_cb(pa_rtpoll_item *i) {
    pa_memchunk chunk;
    uint32_t timestamp;
    int64_t k, j, delta;
    struct timeval now = { 0, 0 };
    struct session *s;
    struct pollfd *p;

    pa_assert_se(s = pa_rtpoll_item_get_work_userdata(i));

    p = pa_rtpoll_item_get_pollfd(i, NULL);

    if (p->revents & (POLLERR|POLLNVAL|POLLHUP|POLLOUT)) {
        pa_log("poll() signalled bad revents.");
        return -1;
    }

    if ((p->revents & POLLIN) == 0)
        return 0;

    p->revents = 0;

    if (pa_rtp_recv(s->rtp_context, &chunk, s->userdata->module->core->mempool, &timestamp, &now) < 0)
        return 0;

    if (!PA_SINK_IS_OPENED(s->sink_input->sink->thread_info.state)) {
        pa_memblock_unref(chunk.memblock);
        return 0;
    }

    if (!s->first_packet) {
        s->first_packet = true;
        s->offset = timestamp;
    }

    /* Check whether there was a timestamp overflow */
    k = (int64_t) timestamp - (int64_t) s->offset;
    j = (int64_t) 0x100000000LL - (int64_t) s->offset + (int64_t) timestamp;

    if ((k < 0 ? -k : k) < (j < 0 ? -j : j))
        delta = k;
    else
        delta = j;

    pa_memblockq_seek(s->memblockq, delta * (int64_t) pa_rtp_context_get_frame_size(s->rtp_context), PA_SEEK_RELATIVE,
            true);

    if (now.tv_sec == 0) {
        PA_ONCE_BEGIN {
            pa_log_warn("Using artificial time instead of timestamp");
        } PA_ONCE_END;
        pa_rtclock_get(&now);
    } else
        pa_rtclock_from_wallclock(&now);

    if (pa_memblockq_push(s->memblockq, &chunk) < 0) {
        pa_log_warn("Queue overrun");
        pa_memblockq_seek(s->memblockq, (int64_t) chunk.length, PA_SEEK_RELATIVE, true);
    }

/*     pa_log("blocks in q: %u", pa_memblockq_get_nblocks(s->memblockq)); */

    pa_memblock_unref(chunk.memblock);

    /* The next timestamp we expect */
    s->offset = timestamp + (uint32_t) (chunk.length / pa_rtp_context_get_frame_size(s->rtp_context));

    pa_atomic_store(&s->timestamp, (int) now.tv_sec);

    if (s->last_rate_update + RATE_UPDATE_INTERVAL < pa_timeval_load(&now)) {
        pa_usec_t wi, ri, render_delay, sink_delay = 0, latency;
        uint32_t current_rate = s->sink_input->sample_spec.rate;
        uint32_t new_rate;
        double estimated_rate, alpha = 0.02;

        pa_log_debug("Updating sample rate");

        wi = pa_bytes_to_usec((uint64_t) pa_memblockq_get_write_index(s->memblockq), &s->sink_input->sample_spec);
        ri = pa_bytes_to_usec((uint64_t) pa_memblockq_get_read_index(s->memblockq), &s->sink_input->sample_spec);

        pa_log_debug("wi=%lu ri=%lu", (unsigned long) wi, (unsigned long) ri);

        sink_delay = pa_sink_get_latency_within_thread(s->sink_input->sink, false);
        render_delay = pa_bytes_to_usec(pa_memblockq_get_length(s->sink_input->thread_info.render_memblockq), &s->sink_input->sink->sample_spec);

        if (ri > render_delay+sink_delay)
            ri -= render_delay+sink_delay;
        else
            ri = 0;

        if (wi < ri)
            latency = 0;
        else
            latency = wi - ri;

        pa_log_debug("Write index deviates by %0.2f ms, expected %0.2f ms", (double) latency/PA_USEC_PER_MSEC, (double) s->intended_latency/PA_USEC_PER_MSEC);

        /* The buffer is filling with some unknown rate R̂ samples/second. If the rate of reading in
         * the last T seconds was Rⁿ, then the increase in buffer latency ΔLⁿ = Lⁿ - Lⁿ⁻ⁱ in that
         * same period is ΔLⁿ = (TR̂ - TRⁿ) / R̂, giving the estimated target rate
         *                                           T
         *                                 R̂ = ─────────────── Rⁿ .                             (1)
         *                                     T - (Lⁿ - Lⁿ⁻ⁱ)
         *
         * Setting the sample rate to R̂ results in the latency being constant (if the estimate of R̂
         * is correct).  But there is also the requirement to keep the buffer at a predefined target
         * latency L̂.  So instead of setting Rⁿ⁺ⁱ to R̂ immediately, the strategy will be to reduce R
         * from Rⁿ⁺ⁱ to R̂ in a steps of T seconds, where Rⁿ⁺ⁱ is chosen such that in the total time
         * aT the latency is reduced from Lⁿ to L̂.  This strategy translates to the requirements
         *            ₐ      R̂ - Rⁿ⁺ʲ                            a-j+1         j-1
         *            Σ  T ────────── = L̂ - Lⁿ    with    Rⁿ⁺ʲ = ───── Rⁿ⁺ⁱ + ───── R̂ .
         *           ʲ⁼ⁱ        R̂                                  a            a
         * Solving for Rⁿ⁺ⁱ gives
         *                                     T - ²∕ₐ₊₁(L̂ - Lⁿ)
         *                              Rⁿ⁺ⁱ = ───────────────── R̂ .                            (2)
         *                                            T
         * In the code below a = 7 is used.
         *
         * Equation (1) is not directly used in (2), but instead an exponentially weighted average
         * of the estimated rate R̂ is used.  This average R̅ is defined as
         *                                R̅ⁿ = α R̂ⁿ + (1-α) R̅ⁿ⁻ⁱ .
         * Because it is difficult to find a fixed value for the coefficient α such that the
         * averaging is without significant lag but oscillations are filtered out, a heuristic is
         * used.  When the successive estimates R̂ⁿ do not change much then α→1, but when there is a
         * sudden spike in the estimated rate α→0, such that the deviation is given little weight.
         */
        estimated_rate = (double) current_rate * (double) RATE_UPDATE_INTERVAL / (double) (RATE_UPDATE_INTERVAL + s->last_latency - latency);
        if (fabs(s->estimated_rate - s->avg_estimated_rate) > 1) {
          double ratio = (estimated_rate + s->estimated_rate - 2*s->avg_estimated_rate) / (s->estimated_rate - s->avg_estimated_rate);
          alpha = PA_CLAMP(2 * (ratio + fabs(ratio)) / (4 + ratio*ratio), 0.02, 0.8);
        }
        s->avg_estimated_rate = alpha * estimated_rate + (1-alpha) * s->avg_estimated_rate;
        s->estimated_rate = estimated_rate;
        pa_log_debug("Estimated target rate: %.0f Hz, using average of %.0f Hz  (α=%.3f)", estimated_rate, s->avg_estimated_rate, alpha);
        new_rate = (uint32_t) ((double) (RATE_UPDATE_INTERVAL + latency/4 - s->intended_latency/4) / (double) RATE_UPDATE_INTERVAL * s->avg_estimated_rate);
        s->last_latency = latency;

        if (new_rate < (uint32_t) (s->base_rate*0.8) || new_rate > (uint32_t) (s->base_rate*1.25)) {
            pa_log_warn("Sample rates too different, not adjusting (%u vs. %u).", s->base_rate, new_rate);
            new_rate = s->base_rate;
        } else {
            if (s->base_rate < new_rate + 20 && new_rate < s->base_rate + 20)
                new_rate = s->base_rate;
            /* Do the adjustment in small steps; 2‰ can be considered inaudible */
            if (new_rate < (uint32_t) (current_rate*0.998) || new_rate > (uint32_t) (current_rate*1.002)) {
                pa_log_info("New rate of %u Hz not within 2‰ of %u Hz, forcing smaller adjustment", new_rate, current_rate);
                new_rate = PA_CLAMP(new_rate, (uint32_t) (current_rate*0.998), (uint32_t) (current_rate*1.002));
            }
        }
        s->sink_input->sample_spec.rate = new_rate;

        pa_assert(pa_sample_spec_valid(&s->sink_input->sample_spec));

        pa_resampler_set_input_rate(s->sink_input->thread_info.resampler, s->sink_input->sample_spec.rate);

        pa_log_debug("Updated sampling rate to %lu Hz.", (unsigned long) s->sink_input->sample_spec.rate);

        s->last_rate_update = pa_timeval_load(&now);
    }

    if (pa_memblockq_is_readable(s->memblockq) &&
        s->sink_input->thread_info.underrun_for > 0) {
        pa_log_debug("Requesting rewind due to end of underrun");
        pa_sink_input_request_rewind(s->sink_input,
                                     (size_t) (s->sink_input->thread_info.underrun_for == (uint64_t) -1 ? 0 : s->sink_input->thread_info.underrun_for),
                                     false, true, false);
    }

    return 1;
}

/* Called from I/O thread context */
static void sink_input_attach(pa_sink_input *i) {
    struct session *s;

    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    pa_assert(!s->rtpoll_item);
    s->rtpoll_item = pa_rtp_context_get_rtpoll_item(s->rtp_context, i->sink->thread_info.rtpoll);

    pa_rtpoll_item_set_work_callback(s->rtpoll_item, rtpoll_work_cb, s);
}

/* Called from I/O thread context */
static void sink_input_detach(pa_sink_input *i) {
    struct session *s;
    pa_sink_input_assert_ref(i);
    pa_assert_se(s = i->userdata);

    pa_assert(s->rtpoll_item);
    pa_rtpoll_item_free(s->rtpoll_item);
    s->rtpoll_item = NULL;
}

static int mcast_socket(const struct sockaddr* sa, socklen_t salen) {
    int af, fd = -1, r, one;

    pa_assert(sa);
    pa_assert(salen > 0);

    af = sa->sa_family;
    if ((fd = pa_socket_cloexec(af, SOCK_DGRAM, 0)) < 0) {
        pa_log("Failed to create socket: %s", pa_cstrerror(errno));
        goto fail;
    }

    pa_make_udp_socket_low_delay(fd);

#ifdef SO_TIMESTAMP
    one = 1;
    if (setsockopt(fd, SOL_SOCKET, SO_TIMESTAMP, &one, sizeof(one)) < 0) {
        pa_log("SO_TIMESTAMP failed: %s", pa_cstrerror(errno));
        goto fail;
    }
#else
    pa_log("SO_TIMESTAMP unsupported on this platform");
    goto fail;
#endif

    one = 1;
    if (setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, &one, sizeof(one)) < 0) {
        pa_log("SO_REUSEADDR failed: %s", pa_cstrerror(errno));
        goto fail;
    }

    r = 0;
    if (af == AF_INET) {
        /* IPv4 multicast addresses are in the 224.0.0.0-239.255.255.255 range */
        static const uint32_t ipv4_mcast_mask = 0xe0000000;

        if ((ntohl(((const struct sockaddr_in*) sa)->sin_addr.s_addr) & ipv4_mcast_mask) == ipv4_mcast_mask) {
            struct ip_mreq mr4;
            memset(&mr4, 0, sizeof(mr4));
            mr4.imr_multiaddr = ((const struct sockaddr_in*) sa)->sin_addr;
            r = setsockopt(fd, IPPROTO_IP, IP_ADD_MEMBERSHIP, &mr4, sizeof(mr4));
        }
#ifdef HAVE_IPV6
    } else if (af == AF_INET6) {
        /* IPv6 multicast addresses have 255 as the most significant byte */
        if (((const struct sockaddr_in6*) sa)->sin6_addr.s6_addr[0] == 0xff) {
            struct ipv6_mreq mr6;
            memset(&mr6, 0, sizeof(mr6));
            mr6.ipv6mr_multiaddr = ((const struct sockaddr_in6*) sa)->sin6_addr;
            r = setsockopt(fd, IPPROTO_IPV6, IPV6_JOIN_GROUP, &mr6, sizeof(mr6));
        }
#endif
    } else
        pa_assert_not_reached();

    if (r < 0) {
        pa_log_info("Joining mcast group failed: %s", pa_cstrerror(errno));
        goto fail;
    }

    if (bind(fd, sa, salen) < 0) {
        pa_log("bind() failed: %s", pa_cstrerror(errno));
        goto fail;
    }

    return fd;

fail:
    if (fd >= 0)
        close(fd);

    return -1;
}

static struct session *session_new(struct userdata *u, const pa_sdp_info *sdp_info) {
    struct session *s = NULL;
    pa_sink *sink;
    int fd = -1;
    pa_memchunk silence;
    pa_sink_input_new_data data;
    struct timeval now;

    pa_assert(u);
    pa_assert(sdp_info);

    if (u->n_sessions >= MAX_SESSIONS) {
        pa_log("Session limit reached.");
        goto fail;
    }

    if (!(sink = pa_namereg_get(u->module->core, u->sink_name, PA_NAMEREG_SINK))) {
        pa_log("Sink does not exist.");
        goto fail;
    }

    pa_rtclock_get(&now);

    s = pa_xnew0(struct session, 1);
    s->userdata = u;
    s->first_packet = false;
    s->sdp_info = *sdp_info;
    s->rtpoll_item = NULL;
    s->intended_latency = u->latency;
    s->last_rate_update = pa_timeval_load(&now);
    s->last_latency = u->latency;
    pa_atomic_store(&s->timestamp, (int) now.tv_sec);

    if ((fd = mcast_socket((const struct sockaddr*) &sdp_info->sa, sdp_info->salen)) < 0)
        goto fail;

    pa_sink_input_new_data_init(&data);
    pa_sink_input_new_data_set_sink(&data, sink, false, true);
    data.driver = __FILE__;
    pa_proplist_sets(data.proplist, PA_PROP_MEDIA_ROLE, "stream");
    pa_proplist_setf(data.proplist, PA_PROP_MEDIA_NAME,
                     "RTP Stream%s%s%s",
                     sdp_info->session_name ? " (" : "",
                     sdp_info->session_name ? sdp_info->session_name : "",
                     sdp_info->session_name ? ")" : "");

    if (sdp_info->session_name)
        pa_proplist_sets(data.proplist, "rtp.session", sdp_info->session_name);
    pa_proplist_sets(data.proplist, "rtp.origin", sdp_info->origin);
    pa_proplist_setf(data.proplist, "rtp.payload", "%u", (unsigned) sdp_info->payload);
    data.module = u->module;
    pa_sink_input_new_data_set_sample_spec(&data, &sdp_info->sample_spec);
    data.flags = PA_SINK_INPUT_VARIABLE_RATE;

    pa_sink_input_new(&s->sink_input, u->module->core, &data);
    pa_sink_input_new_data_done(&data);

    if (!s->sink_input) {
        pa_log("Failed to create sink input.");
        goto fail;
    }

    s->base_rate = (double) s->sink_input->sample_spec.rate;
    s->estimated_rate = (double) s->sink_input->sample_spec.rate;
    s->avg_estimated_rate = (double) s->sink_input->sample_spec.rate;

    s->sink_input->userdata = s;

    s->sink_input->parent.process_msg = sink_input_process_msg;
    s->sink_input->pop = sink_input_pop_cb;
    s->sink_input->process_rewind = sink_input_process_rewind_cb;
    s->sink_input->update_max_rewind = sink_input_update_max_rewind_cb;
    s->sink_input->kill = sink_input_kill;
    s->sink_input->attach = sink_input_attach;
    s->sink_input->detach = sink_input_detach;
    s->sink_input->suspend_within_thread = sink_input_suspend_within_thread;

    pa_sink_input_get_silence(s->sink_input, &silence);

    s->sink_latency = pa_sink_input_set_requested_latency(s->sink_input, s->intended_latency/2);

    if (s->intended_latency < s->sink_latency*2)
        s->intended_latency = s->sink_latency*2;

    s->memblockq = pa_memblockq_new(
            "module-rtp-recv memblockq",
            0,
            MEMBLOCKQ_MAXLENGTH,
            MEMBLOCKQ_MAXLENGTH,
            &s->sink_input->sample_spec,
            pa_usec_to_bytes(s->intended_latency - s->sink_latency, &s->sink_input->sample_spec),
            0,
            0,
            &silence);

    pa_memblock_unref(silence.memblock);

    if (!(s->rtp_context = pa_rtp_context_new_recv(fd, sdp_info->payload, &s->sdp_info.sample_spec)))
        goto fail;

    pa_hashmap_put(s->userdata->by_origin, s->sdp_info.origin, s);
    u->n_sessions++;
    PA_LLIST_PREPEND(struct session, s->userdata->sessions, s);

    pa_sink_input_put(s->sink_input);

    pa_log_info("New session '%s'", s->sdp_info.session_name);

    return s;

fail:
    pa_xfree(s);

    if (fd >= 0)
        pa_close(fd);

    return NULL;
}

static void session_free(struct session *s) {
    pa_assert(s);

    pa_log_info("Freeing session '%s'", s->sdp_info.session_name);

    pa_sink_input_unlink(s->sink_input);
    pa_sink_input_unref(s->sink_input);

    PA_LLIST_REMOVE(struct session, s->userdata->sessions, s);
    pa_assert(s->userdata->n_sessions >= 1);
    s->userdata->n_sessions--;

    pa_memblockq_free(s->memblockq);
    pa_sdp_info_destroy(&s->sdp_info);
    pa_rtp_context_free(s->rtp_context);

    pa_xfree(s);
}

static void sap_event_cb(pa_mainloop_api *m, pa_io_event *e, int fd, pa_io_event_flags_t flags, void *userdata) {
    struct userdata *u = userdata;
    bool goodbye = false;
    pa_sdp_info info;
    struct session *s;

    pa_assert(m);
    pa_assert(e);
    pa_assert(u);
    pa_assert(fd == u->sap_context.fd);
    pa_assert(flags == PA_IO_EVENT_INPUT);

    if (pa_sap_recv(&u->sap_context, &goodbye) < 0)
        return;

    if (!pa_sdp_parse(u->sap_context.sdp_data, &info, goodbye))
        return;

    if (goodbye) {
        pa_hashmap_remove_and_free(u->by_origin, info.origin);
        pa_sdp_info_destroy(&info);
    } else {

        if (!(s = pa_hashmap_get(u->by_origin, info.origin))) {
            if (!session_new(u, &info))
                pa_sdp_info_destroy(&info);

        } else {
            struct timeval now;
            pa_rtclock_get(&now);
            pa_atomic_store(&s->timestamp, (int) now.tv_sec);

            pa_sdp_info_destroy(&info);
        }
    }
}

static void check_death_event_cb(pa_mainloop_api *m, pa_time_event *t, const struct timeval *tv, void *userdata) {
    struct session *s, *n;
    struct userdata *u = userdata;
    struct timeval now;

    pa_assert(m);
    pa_assert(t);
    pa_assert(u);

    pa_rtclock_get(&now);

    pa_log_debug("Checking for dead streams ...");

    for (s = u->sessions; s; s = n) {
        int k;
        n = s->next;

        k = pa_atomic_load(&s->timestamp);

        if (k + DEATH_TIMEOUT < now.tv_sec)
            pa_hashmap_remove_and_free(u->by_origin, s->sdp_info.origin);
    }

    /* Restart timer */
    pa_core_rttime_restart(u->module->core, t, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC);
}

int pa__init(pa_module*m) {
    struct userdata *u;
    pa_modargs *ma = NULL;
    struct sockaddr_in sa4;
#ifdef HAVE_IPV6
    struct sockaddr_in6 sa6;
#endif
    struct sockaddr *sa;
    socklen_t salen;
    const char *sap_address;
    uint32_t latency_msec;
    int fd = -1;

    pa_assert(m);

    if (!(ma = pa_modargs_new(m->argument, valid_modargs))) {
        pa_log("failed to parse module arguments");
        goto fail;
    }

    sap_address = pa_modargs_get_value(ma, "sap_address", DEFAULT_SAP_ADDRESS);

    if (inet_pton(AF_INET, sap_address, &sa4.sin_addr) > 0) {
        sa4.sin_family = AF_INET;
        sa4.sin_port = htons(SAP_PORT);
        sa = (struct sockaddr*) &sa4;
        salen = sizeof(sa4);
#ifdef HAVE_IPV6
    } else if (inet_pton(AF_INET6, sap_address, &sa6.sin6_addr) > 0) {
        sa6.sin6_family = AF_INET6;
        sa6.sin6_port = htons(SAP_PORT);
        sa = (struct sockaddr*) &sa6;
        salen = sizeof(sa6);
#endif
    } else {
        pa_log("Invalid SAP address '%s'", sap_address);
        goto fail;
    }

    latency_msec = DEFAULT_LATENCY_MSEC;
    if (pa_modargs_get_value_u32(ma, "latency_msec", &latency_msec) < 0 || latency_msec < 1 || latency_msec > 300000) {
        pa_log("Invalid latency specification");
        goto fail;
    }

    if ((fd = mcast_socket(sa, salen)) < 0)
        goto fail;

    m->userdata = u = pa_xnew(struct userdata, 1);
    u->module = m;
    u->core = m->core;
    u->sink_name = pa_xstrdup(pa_modargs_get_value(ma, "sink", NULL));
    u->latency = (pa_usec_t) latency_msec * PA_USEC_PER_MSEC;

    u->sap_event = m->core->mainloop->io_new(m->core->mainloop, fd, PA_IO_EVENT_INPUT, sap_event_cb, u);
    pa_sap_context_init_recv(&u->sap_context, fd);

    PA_LLIST_HEAD_INIT(struct session, u->sessions);
    u->n_sessions = 0;
    u->by_origin = pa_hashmap_new_full(pa_idxset_string_hash_func, pa_idxset_string_compare_func, NULL, (pa_free_cb_t) session_free);

    u->check_death_event = pa_core_rttime_new(m->core, pa_rtclock_now() + DEATH_TIMEOUT * PA_USEC_PER_SEC, check_death_event_cb, u);

    pa_modargs_free(ma);

    return 0;

fail:
    if (ma)
        pa_modargs_free(ma);

    if (fd >= 0)
        pa_close(fd);

    return -1;
}

void pa__done(pa_module*m) {
    struct userdata *u;

    pa_assert(m);

    if (!(u = m->userdata))
        return;

    if (u->sap_event)
        m->core->mainloop->io_free(u->sap_event);

    if (u->check_death_event)
        m->core->mainloop->time_free(u->check_death_event);

    pa_sap_context_destroy(&u->sap_context);

    if (u->by_origin)
        pa_hashmap_free(u->by_origin);

    pa_xfree(u->sink_name);
    pa_xfree(u);
}