1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
|
*quickfix.txt* For Vim version 8.2. Last change: 2020 May 31
VIM REFERENCE MANUAL by Bram Moolenaar
This subject is introduced in section |30.1| of the user manual.
1. Using QuickFix commands |quickfix|
2. The error window |quickfix-window|
3. Using more than one list of errors |quickfix-error-lists|
4. Using :make |:make_makeprg|
5. Using :grep |grep|
6. Selecting a compiler |compiler-select|
7. The error format |error-file-format|
8. The directory stack |quickfix-directory-stack|
9. Specific error file formats |errorformats|
10. Customizing the quickfix window |quickfix-window-function|
The quickfix commands are not available when the |+quickfix| feature was
disabled at compile time.
=============================================================================
1. Using QuickFix commands *quickfix* *Quickfix* *E42*
Vim has a special mode to speedup the edit-compile-edit cycle. This is
inspired by the quickfix option of the Manx's Aztec C compiler on the Amiga.
The idea is to save the error messages from the compiler in a file and use Vim
to jump to the errors one by one. You can examine each problem and fix it,
without having to remember all the error messages.
In Vim the quickfix commands are used more generally to find a list of
positions in files. For example, |:vimgrep| finds pattern matches. You can
use the positions in a script with the |getqflist()| function. Thus you can
do a lot more than the edit/compile/fix cycle!
If you have the error messages in a file you can start Vim with: >
vim -q filename
From inside Vim an easy way to run a command and handle the output is with the
|:make| command (see below).
The 'errorformat' option should be set to match the error messages from your
compiler (see |errorformat| below).
*quickfix-ID*
Each quickfix list has a unique identifier called the quickfix ID and this
number will not change within a Vim session. The |getqflist()| function can be
used to get the identifier assigned to a list. There is also a quickfix list
number which may change whenever more than ten lists are added to a quickfix
stack.
*location-list* *E776*
A location list is a window-local quickfix list. You get one after commands
like `:lvimgrep`, `:lgrep`, `:lhelpgrep`, `:lmake`, etc., which create a
location list instead of a quickfix list as the corresponding `:vimgrep`,
`:grep`, `:helpgrep`, `:make` do.
*location-list-file-window*
A location list is associated with a window and each window can have a
separate location list. A location list can be associated with only one
window. The location list is independent of the quickfix list.
When a window with a location list is split, the new window gets a copy of the
location list. When there are no longer any references to a location list,
the location list is destroyed.
*quickfix-changedtick*
Every quickfix and location list has a read-only changedtick variable that
tracks the total number of changes made to the list. Every time the quickfix
list is modified, this count is incremented. This can be used to perform an
action only when the list has changed. The |getqflist()| and |getloclist()|
functions can be used to query the current value of changedtick. You cannot
change the changedtick variable.
The following quickfix commands can be used. The location list commands are
similar to the quickfix commands, replacing the 'c' prefix in the quickfix
command with 'l'.
*E924*
If the current window was closed by an |autocommand| while processing a
location list command, it will be aborted.
*E925* *E926*
If the current quickfix or location list was changed by an |autocommand| while
processing a quickfix or location list command, it will be aborted.
*:cc*
:cc[!] [nr] Display error [nr]. If [nr] is omitted, the same
:[nr]cc[!] error is displayed again. Without [!] this doesn't
work when jumping to another buffer, the current buffer
has been changed, there is the only window for the
buffer and both 'hidden' and 'autowrite' are off.
When jumping to another buffer with [!] any changes to
the current buffer are lost, unless 'hidden' is set or
there is another window for this buffer.
The 'switchbuf' settings are respected when jumping
to a buffer.
When used in the quickfix window the line number can
be used, including "." for the current line and "$"
for the last line.
*:ll*
:ll[!] [nr] Same as ":cc", except the location list for the
:[nr]ll[!] current window is used instead of the quickfix list.
*:cn* *:cne* *:cnext* *E553*
:[count]cn[ext][!] Display the [count] next error in the list that
includes a file name. If there are no file names at
all, go to the [count] next error. See |:cc| for
[!] and 'switchbuf'.
*:lne* *:lnext*
:[count]lne[xt][!] Same as ":cnext", except the location list for the
current window is used instead of the quickfix list.
:[count]cN[ext][!] *:cp* *:cprevious* *:cprev* *:cN* *:cNext*
:[count]cp[revious][!] Display the [count] previous error in the list that
includes a file name. If there are no file names at
all, go to the [count] previous error. See |:cc| for
[!] and 'switchbuf'.
:[count]lN[ext][!] *:lp* *:lprevious* *:lprev* *:lN* *:lNext*
:[count]lp[revious][!] Same as ":cNext" and ":cprevious", except the location
list for the current window is used instead of the
quickfix list.
*:cabo* *:cabove*
:[count]cabo[ve] Go to the [count] error above the current line in the
current buffer. If [count] is omitted, then 1 is
used. If there are no errors, then an error message
is displayed. Assumes that the entries in a quickfix
list are sorted by their buffer number and line
number. If there are multiple errors on the same line,
then only the first entry is used. If [count] exceeds
the number of entries above the current line, then the
first error in the file is selected.
*:lab* *:labove*
:[count]lab[ove] Same as ":cabove", except the location list for the
current window is used instead of the quickfix list.
*:cbel* *:cbelow*
:[count]cbel[ow] Go to the [count] error below the current line in the
current buffer. If [count] is omitted, then 1 is
used. If there are no errors, then an error message
is displayed. Assumes that the entries in a quickfix
list are sorted by their buffer number and line
number. If there are multiple errors on the same
line, then only the first entry is used. If [count]
exceeds the number of entries below the current line,
then the last error in the file is selected.
*:lbel* *:lbelow*
:[count]lbel[ow] Same as ":cbelow", except the location list for the
current window is used instead of the quickfix list.
*:cbe* *:cbefore*
:[count]cbe[fore] Go to the [count] error before the current cursor
position in the current buffer. If [count] is
omitted, then 1 is used. If there are no errors, then
an error message is displayed. Assumes that the
entries in a quickfix list are sorted by their buffer,
line and column numbers. If [count] exceeds the
number of entries before the current position, then
the first error in the file is selected.
*:lbe* *:lbefore*
:[count]lbe[fore] Same as ":cbefore", except the location list for the
current window is used instead of the quickfix list.
*:caf* *:cafter*
:[count]caf[ter] Go to the [count] error after the current cursor
position in the current buffer. If [count] is
omitted, then 1 is used. If there are no errors, then
an error message is displayed. Assumes that the
entries in a quickfix list are sorted by their buffer,
line and column numbers. If [count] exceeds the
number of entries after the current position, then
the last error in the file is selected.
*:laf* *:lafter*
:[count]laf[ter] Same as ":cafter", except the location list for the
current window is used instead of the quickfix list.
*:cnf* *:cnfile*
:[count]cnf[ile][!] Display the first error in the [count] next file in
the list that includes a file name. If there are no
file names at all or if there is no next file, go to
the [count] next error. See |:cc| for [!] and
'switchbuf'.
*:lnf* *:lnfile*
:[count]lnf[ile][!] Same as ":cnfile", except the location list for the
current window is used instead of the quickfix list.
:[count]cNf[ile][!] *:cpf* *:cpfile* *:cNf* *:cNfile*
:[count]cpf[ile][!] Display the last error in the [count] previous file in
the list that includes a file name. If there are no
file names at all or if there is no next file, go to
the [count] previous error. See |:cc| for [!] and
'switchbuf'.
:[count]lNf[ile][!] *:lpf* *:lpfile* *:lNf* *:lNfile*
:[count]lpf[ile][!] Same as ":cNfile" and ":cpfile", except the location
list for the current window is used instead of the
quickfix list.
*:crewind* *:cr*
:cr[ewind][!] [nr] Display error [nr]. If [nr] is omitted, the FIRST
error is displayed. See |:cc|.
*:lrewind* *:lr*
:lr[ewind][!] [nr] Same as ":crewind", except the location list for the
current window is used instead of the quickfix list.
*:cfirst* *:cfir*
:cfir[st][!] [nr] Same as ":crewind".
*:lfirst* *:lfir*
:lfir[st][!] [nr] Same as ":lrewind".
*:clast* *:cla*
:cla[st][!] [nr] Display error [nr]. If [nr] is omitted, the LAST
error is displayed. See |:cc|.
*:llast* *:lla*
:lla[st][!] [nr] Same as ":clast", except the location list for the
current window is used instead of the quickfix list.
*:cq* *:cquit*
:cq[uit][!]
:{N}cq[uit][!]
:cq[uit][!] {N} Quit Vim with error code {N}. {N} defaults to one.
Useful when Vim is called from another program:
e.g., a compiler will not compile the same file again,
`git commit` will abort the committing process, `fc`
(built-in for shells like bash and zsh) will not
execute the command, etc.
{N} can also be zero, in which case Vim exits
normally.
WARNING: All changes in files are lost! Also when the
[!] is not used. It works like ":qall!" |:qall|,
except that Vim returns a non-zero exit code.
*:cf* *:cfile*
:cf[ile][!] [errorfile] Read the error file and jump to the first error.
This is done automatically when Vim is started with
the -q option. You can use this command when you
keep Vim running while compiling. If you give the
name of the errorfile, the 'errorfile' option will
be set to [errorfile]. See |:cc| for [!].
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
*:lf* *:lfi* *:lfile*
:lf[ile][!] [errorfile] Same as ":cfile", except the location list for the
current window is used instead of the quickfix list.
You can not use the -q command-line option to set
the location list.
:cg[etfile] [errorfile] *:cg* *:cgetfile*
Read the error file. Just like ":cfile" but don't
jump to the first error.
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
:lg[etfile] [errorfile] *:lg* *:lge* *:lgetfile*
Same as ":cgetfile", except the location list for the
current window is used instead of the quickfix list.
*:caddf* *:caddfile*
:caddf[ile] [errorfile] Read the error file and add the errors from the
errorfile to the current quickfix list. If a quickfix
list is not present, then a new list is created.
If the encoding of the error file differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
*:laddf* *:laddfile*
:laddf[ile] [errorfile] Same as ":caddfile", except the location list for the
current window is used instead of the quickfix list.
*:cb* *:cbuffer* *E681*
:cb[uffer][!] [bufnr] Read the error list from the current buffer.
When [bufnr] is given it must be the number of a
loaded buffer. That buffer will then be used instead
of the current buffer.
A range can be specified for the lines to be used.
Otherwise all lines in the buffer are used.
See |:cc| for [!].
*:lb* *:lbuffer*
:lb[uffer][!] [bufnr] Same as ":cbuffer", except the location list for the
current window is used instead of the quickfix list.
*:cgetb* *:cgetbuffer*
:cgetb[uffer] [bufnr] Read the error list from the current buffer. Just
like ":cbuffer" but don't jump to the first error.
*:lgetb* *:lgetbuffer*
:lgetb[uffer] [bufnr] Same as ":cgetbuffer", except the location list for
the current window is used instead of the quickfix
list.
*:cad* *:cadd* *:caddbuffer*
:cad[dbuffer] [bufnr] Read the error list from the current buffer and add
the errors to the current quickfix list. If a
quickfix list is not present, then a new list is
created. Otherwise, same as ":cbuffer".
*:laddb* *:laddbuffer*
:laddb[uffer] [bufnr] Same as ":caddbuffer", except the location list for
the current window is used instead of the quickfix
list.
*:cex* *:cexpr* *E777*
:cex[pr][!] {expr} Create a quickfix list using the result of {expr} and
jump to the first error.
If {expr} is a String, then each newline terminated
line in the String is processed using the global value
of 'errorformat' and the result is added to the
quickfix list.
If {expr} is a List, then each String item in the list
is processed and added to the quickfix list. Non
String items in the List are ignored.
See |:cc| for [!].
Examples: >
:cexpr system('grep -n xyz *')
:cexpr getline(1, '$')
<
*:lex* *:lexpr*
:lex[pr][!] {expr} Same as |:cexpr|, except the location list for the
current window is used instead of the quickfix list.
*:cgete* *:cgetexpr*
:cgete[xpr] {expr} Create a quickfix list using the result of {expr}.
Just like |:cexpr|, but don't jump to the first error.
*:lgete* *:lgetexpr*
:lgete[xpr] {expr} Same as |:cgetexpr|, except the location list for the
current window is used instead of the quickfix list.
*:cadde* *:caddexpr*
:cadde[xpr] {expr} Evaluate {expr} and add the resulting lines to the
current quickfix list. If a quickfix list is not
present, then a new list is created. The current
cursor position will not be changed. See |:cexpr| for
more information.
Example: >
:g/mypattern/caddexpr expand("%") . ":" . line(".") . ":" . getline(".")
<
*:lad* *:addd* *:laddexpr*
:lad[dexpr] {expr} Same as ":caddexpr", except the location list for the
current window is used instead of the quickfix list.
*:cl* *:clist*
:cl[ist] [from] [, [to]]
List all errors that are valid |quickfix-valid|.
If numbers [from] and/or [to] are given, the respective
range of errors is listed. A negative number counts
from the last error backwards, -1 being the last error.
The 'switchbuf' settings are respected when jumping
to a buffer.
The |:filter| command can be used to display only the
quickfix entries matching a supplied pattern. The
pattern is matched against the filename, module name,
pattern and text of the entry.
:cl[ist] +{count} List the current and next {count} valid errors. This
is similar to ":clist from from+count", where "from"
is the current error position.
:cl[ist]! [from] [, [to]]
List all errors.
:cl[ist]! +{count} List the current and next {count} error lines. This
is useful to see unrecognized lines after the current
one. For example, if ":clist" shows:
8384 testje.java:252: error: cannot find symbol ~
Then using ":cl! +3" shows the reason:
8384 testje.java:252: error: cannot find symbol ~
8385: ZexitCode = Fmainx(); ~
8386: ^ ~
8387: symbol: method Fmainx() ~
:lli[st] [from] [, [to]] *:lli* *:llist*
Same as ":clist", except the location list for the
current window is used instead of the quickfix list.
:lli[st]! [from] [, [to]]
List all the entries in the location list for the
current window.
If you insert or delete lines, mostly the correct error location is still
found because hidden marks are used. Sometimes, when the mark has been
deleted for some reason, the message "line changed" is shown to warn you that
the error location may not be correct. If you quit Vim and start again the
marks are lost and the error locations may not be correct anymore.
Two autocommands are available for running commands before and after a
quickfix command (':make', ':grep' and so on) is executed. See
|QuickFixCmdPre| and |QuickFixCmdPost| for details.
*QuickFixCmdPost-example*
When 'encoding' differs from the locale, the error messages may have a
different encoding from what Vim is using. To convert the messages you can
use this code: >
function QfMakeConv()
let qflist = getqflist()
for i in qflist
let i.text = iconv(i.text, "cp936", "utf-8")
endfor
call setqflist(qflist)
endfunction
au QuickfixCmdPost make call QfMakeConv()
Another option is using 'makeencoding'.
*quickfix-title*
Every quickfix and location list has a title. By default the title is set to
the command that created the list. The |getqflist()| and |getloclist()|
functions can be used to get the title of a quickfix and a location list
respectively. The |setqflist()| and |setloclist()| functions can be used to
modify the title of a quickfix and location list respectively. Examples: >
call setqflist([], 'a', {'title' : 'Cmd output'})
echo getqflist({'title' : 1})
call setloclist(3, [], 'a', {'title' : 'Cmd output'})
echo getloclist(3, {'title' : 1})
<
*quickfix-index*
When you jump to a quickfix/location list entry using any of the quickfix
commands (e.g. |:cc|, |:cnext|, |:cprev|, etc.), that entry becomes the
currently selected entry. The index of the currently selected entry in a
quickfix/location list can be obtained using the getqflist()/getloclist()
functions. Examples: >
echo getqflist({'idx' : 0}).idx
echo getqflist({'id' : qfid, 'idx' : 0}).idx
echo getloclist(2, {'idx' : 0}).idx
<
For a new quickfix list, the first entry is selected and the index is 1. Any
entry in any quickfix/location list can be set as the currently selected entry
using the setqflist() function. Examples: >
call setqflist([], 'a', {'idx' : 12})
call setqflist([], 'a', {'id' : qfid, 'idx' : 7})
call setloclist(1, [], 'a', {'idx' : 7})
<
*quickfix-size*
You can get the number of entries (size) in a quickfix and a location list
using the |getqflist()| and |getloclist()| functions respectively. Examples: >
echo getqflist({'size' : 1})
echo getloclist(5, {'size' : 1})
<
*quickfix-context*
Any Vim type can be associated as a context with a quickfix or location list.
The |setqflist()| and the |setloclist()| functions can be used to associate a
context with a quickfix and a location list respectively. The |getqflist()|
and the |getloclist()| functions can be used to retrieve the context of a
quickfix and a location list respectively. This is useful for a Vim plugin
dealing with multiple quickfix/location lists.
Examples: >
let somectx = {'name' : 'Vim', 'type' : 'Editor'}
call setqflist([], 'a', {'context' : somectx})
echo getqflist({'context' : 1})
let newctx = ['red', 'green', 'blue']
call setloclist(2, [], 'a', {'id' : qfid, 'context' : newctx})
echo getloclist(2, {'id' : qfid, 'context' : 1})
<
*quickfix-parse*
You can parse a list of lines using 'errorformat' without creating or
modifying a quickfix list using the |getqflist()| function. Examples: >
echo getqflist({'lines' : ["F1:10:Line10", "F2:20:Line20"]})
echo getqflist({'lines' : systemlist('grep -Hn quickfix *')})
This returns a dictionary where the 'items' key contains the list of quickfix
entries parsed from lines. The following shows how to use a custom
'errorformat' to parse the lines without modifying the 'errorformat' option: >
echo getqflist({'efm' : '%f#%l#%m', 'lines' : ['F1#10#Line']})
<
EXECUTE A COMMAND IN ALL THE BUFFERS IN QUICKFIX OR LOCATION LIST:
*:cdo*
:cdo[!] {cmd} Execute {cmd} in each valid entry in the quickfix list.
It works like doing this: >
:cfirst
:{cmd}
:cnext
:{cmd}
etc.
< When the current file can't be |abandon|ed and the [!]
is not present, the command fails.
When going to the next entry fails execution stops.
The last buffer (or where an error occurred) becomes
the current buffer.
{cmd} can contain '|' to concatenate several commands.
Only valid entries in the quickfix list are used.
A range can be used to select entries, e.g.: >
:10,$cdo cmd
< To skip entries 1 to 9.
Note: While this command is executing, the Syntax
autocommand event is disabled by adding it to
'eventignore'. This considerably speeds up editing
each buffer.
Also see |:bufdo|, |:tabdo|, |:argdo|, |:windo|,
|:ldo|, |:cfdo| and |:lfdo|.
*:cfdo*
:cfdo[!] {cmd} Execute {cmd} in each file in the quickfix list.
It works like doing this: >
:cfirst
:{cmd}
:cnfile
:{cmd}
etc.
< Otherwise it works the same as `:cdo`.
*:ldo*
:ld[o][!] {cmd} Execute {cmd} in each valid entry in the location list
for the current window.
It works like doing this: >
:lfirst
:{cmd}
:lnext
:{cmd}
etc.
< Only valid entries in the location list are used.
Otherwise it works the same as `:cdo`.
*:lfdo*
:lfdo[!] {cmd} Execute {cmd} in each file in the location list for
the current window.
It works like doing this: >
:lfirst
:{cmd}
:lnfile
:{cmd}
etc.
< Otherwise it works the same as `:ldo`.
FILTERING A QUICKFIX OR LOCATION LIST:
*cfilter-plugin* *:Cfilter* *:Lfilter*
If you have too many entries in a quickfix list, you can use the cfilter
plugin to reduce the number of entries. Load the plugin with: >
packadd cfilter
Then you can use the following commands to filter a quickfix/location list: >
:Cfilter[!] /{pat}/
:Lfilter[!] /{pat}/
The |:Cfilter| command creates a new quickfix list from the entries matching
{pat} in the current quickfix list. {pat} is a Vim |regular-expression|
pattern. Both the file name and the text of the entries are matched against
{pat}. If the optional ! is supplied, then the entries not matching {pat} are
used. The pattern can be optionally enclosed using one of the following
characters: ', ", /. If the pattern is empty, then the last used search
pattern is used.
The |:Lfilter| command does the same as |:Cfilter| but operates on the current
location list.
=============================================================================
2. The error window *quickfix-window*
*:cope* *:copen* *w:quickfix_title*
:cope[n] [height] Open a window to show the current list of errors.
When [height] is given, the window becomes that high
(if there is room). When [height] is omitted the
window is made ten lines high.
If there already is a quickfix window, it will be made
the current window. It is not possible to open a
second quickfix window. If [height] is given the
existing window will be resized to it.
*quickfix-buffer*
The window will contain a special buffer, with
'buftype' equal to "quickfix". Don't change this!
The window will have the w:quickfix_title variable set
which will indicate the command that produced the
quickfix list. This can be used to compose a custom
status line if the value of 'statusline' is adjusted
properly. Whenever this buffer is modified by a
quickfix command or function, the |b:changedtick|
variable is incremented. You can get the number of
this buffer using the getqflist() and getloclist()
functions by passing the 'qfbufnr' item. For a
location list, this buffer is wiped out when the
location list is removed.
*:lop* *:lopen*
:lop[en] [height] Open a window to show the location list for the
current window. Works only when the location list for
the current window is present. You can have more than
one location window opened at a time. Otherwise, it
acts the same as ":copen".
*:ccl* *:cclose*
:ccl[ose] Close the quickfix window.
*:lcl* *:lclose*
:lcl[ose] Close the window showing the location list for the
current window.
*:cw* *:cwindow*
:cw[indow] [height] Open the quickfix window when there are recognized
errors. If the window is already open and there are
no recognized errors, close the window.
*:lw* *:lwindow*
:lw[indow] [height] Same as ":cwindow", except use the window showing the
location list for the current window.
*:cbo* *:cbottom*
:cbo[ttom] Put the cursor in the last line of the quickfix window
and scroll to make it visible. This is useful for
when errors are added by an asynchronous callback.
Only call it once in a while if there are many
updates to avoid a lot of redrawing.
*:lbo* *:lbottom*
:lbo[ttom] Same as ":cbottom", except use the window showing the
location list for the current window.
Normally the quickfix window is at the bottom of the screen. If there are
vertical splits, it's at the bottom of the rightmost column of windows. To
make it always occupy the full width: >
:botright cwindow
You can move the window around with |window-moving| commands.
For example, to move it to the top: CTRL-W K
The 'winfixheight' option will be set, which means that the window will mostly
keep its height, ignoring 'winheight' and 'equalalways'. You can change the
height manually (e.g., by dragging the status line above it with the mouse).
In the quickfix window, each line is one error. The line number is equal to
the error number. The current entry is highlighted with the QuickFixLine
highlighting. You can change it to your liking, e.g.: >
:hi QuickFixLine ctermbg=Yellow guibg=Yellow
You can use ":.cc" to jump to the error under the cursor.
Hitting the <Enter> key or double-clicking the mouse on a line has the same
effect. The file containing the error is opened in the window above the
quickfix window. If there already is a window for that file, it is used
instead. If the buffer in the used window has changed, and the error is in
another file, jumping to the error will fail. You will first have to make
sure the window contains a buffer which can be abandoned.
*CTRL-W_<Enter>* *CTRL-W_<CR>*
You can use CTRL-W <Enter> to open a new window and jump to the error there.
When the quickfix window has been filled, two autocommand events are
triggered. First the 'filetype' option is set to "qf", which triggers the
FileType event (also see |qf.vim|). Then the BufReadPost event is triggered,
using "quickfix" for the buffer name. This can be used to perform some action
on the listed errors. Example: >
au BufReadPost quickfix setlocal modifiable
\ | silent exe 'g/^/s//\=line(".")." "/'
\ | setlocal nomodifiable
This prepends the line number to each line. Note the use of "\=" in the
substitute string of the ":s" command, which is used to evaluate an
expression.
The BufWinEnter event is also triggered, again using "quickfix" for the buffer
name.
Note: When adding to an existing quickfix list the autocommand are not
triggered.
Note: Making changes in the quickfix window has no effect on the list of
errors. 'modifiable' is off to avoid making changes. If you delete or insert
lines anyway, the relation between the text and the error number is messed up.
If you really want to do this, you could write the contents of the quickfix
window to a file and use ":cfile" to have it parsed and used as the new error
list.
*location-list-window*
The location list window displays the entries in a location list. When you
open a location list window, it is created below the current window and
displays the location list for the current window. The location list window
is similar to the quickfix window, except that you can have more than one
location list window open at a time. When you use a location list command in
this window, the displayed location list is used.
When you select a file from the location list window, the following steps are
used to find a window to edit the file:
1. If a window with the location list displayed in the location list window is
present, then the file is opened in that window.
2. If the above step fails and if the file is already opened in another
window, then that window is used.
3. If the above step fails then an existing window showing a buffer with
'buftype' not set is used.
4. If the above step fails, then the file is edited in a new window.
In all of the above cases, if the location list for the selected window is not
yet set, then it is set to the location list displayed in the location list
window.
*quickfix-window-ID*
You can use the |getqflist()| and |getloclist()| functions to obtain the
window ID of the quickfix window and location list window respectively (if
present). Examples: >
echo getqflist({'winid' : 1}).winid
echo getloclist(2, {'winid' : 1}).winid
<
*getqflist-examples*
The |getqflist()| and |getloclist()| functions can be used to get the various
attributes of a quickfix and location list respectively. Some examples for
using these functions are below:
>
" get the title of the current quickfix list
:echo getqflist({'title' : 0}).title
" get the identifier of the current quickfix list
:let qfid = getqflist({'id' : 0}).id
" get the identifier of the fourth quickfix list in the stack
:let qfid = getqflist({'nr' : 4, 'id' : 0}).id
" check whether a quickfix list with a specific identifier exists
:if getqflist({'id' : qfid}).id == qfid
" get the index of the current quickfix list in the stack
:let qfnum = getqflist({'nr' : 0}).nr
" get the items of a quickfix list specified by an identifier
:echo getqflist({'id' : qfid, 'items' : 0}).items
" get the number of entries in a quickfix list specified by an id
:echo getqflist({'id' : qfid, 'size' : 0}).size
" get the context of the third quickfix list in the stack
:echo getqflist({'nr' : 3, 'context' : 0}).context
" get the number of quickfix lists in the stack
:echo getqflist({'nr' : '$'}).nr
" get the number of times the current quickfix list is changed
:echo getqflist({'changedtick' : 0}).changedtick
" get the current entry in a quickfix list specified by an identifier
:echo getqflist({'id' : qfid, 'idx' : 0}).idx
" get all the quickfix list attributes using an identifier
:echo getqflist({'id' : qfid, 'all' : 0})
" parse text from a List of lines and return a quickfix list
:let myList = ["a.java:10:L10", "b.java:20:L20"]
:echo getqflist({'lines' : myList}).items
" parse text using a custom 'efm' and return a quickfix list
:echo getqflist({'lines' : ['a.c#10#Line 10'], 'efm':'%f#%l#%m'}).items
" get the quickfix list window id
:echo getqflist({'winid' : 0}).winid
" get the quickfix list window buffer number
:echo getqflist({'qfbufnr' : 0}).qfbufnr
" get the context of the current location list
:echo getloclist(0, {'context' : 0}).context
" get the location list window id of the third window
:echo getloclist(3, {'winid' : 0}).winid
" get the location list window buffer number of the third window
:echo getloclist(3, {'qfbufnr' : 0}).qfbufnr
" get the file window id of a location list window (winnr: 4)
:echo getloclist(4, {'filewinid' : 0}).filewinid
<
*setqflist-examples*
The |setqflist()| and |setloclist()| functions can be used to set the various
attributes of a quickfix and location list respectively. Some examples for
using these functions are below:
>
" create an empty quickfix list with a title and a context
:let t = 'Search results'
:let c = {'cmd' : 'grep'}
:call setqflist([], ' ', {'title' : t, 'context' : c})
" set the title of the current quickfix list
:call setqflist([], 'a', {'title' : 'Mytitle'})
" change the current entry in the list specified by an identifier
:call setqflist([], 'a', {'id' : qfid, 'idx' : 10})
" set the context of a quickfix list specified by an identifier
:call setqflist([], 'a', {'id' : qfid, 'context' : {'val' : 100}})
" create a new quickfix list from a command output
:call setqflist([], ' ', {'lines' : systemlist('grep -Hn main *.c')})
" parse text using a custom efm and add to a particular quickfix list
:call setqflist([], 'a', {'id' : qfid,
\ 'lines' : ["a.c#10#L10", "b.c#20#L20"], 'efm':'%f#%l#%m'})
" add items to the quickfix list specified by an identifier
:let newItems = [{'filename' : 'a.txt', 'lnum' : 10, 'text' : "Apple"},
\ {'filename' : 'b.txt', 'lnum' : 20, 'text' : "Orange"}]
:call setqflist([], 'a', {'id' : qfid, 'items' : newItems})
" empty a quickfix list specified by an identifier
:call setqflist([], 'r', {'id' : qfid, 'items' : []})
" free all the quickfix lists in the stack
:call setqflist([], 'f')
" set the title of the fourth quickfix list
:call setqflist([], 'a', {'nr' : 4, 'title' : 'SomeTitle'})
" create a new quickfix list at the end of the stack
:call setqflist([], ' ', {'nr' : '$',
\ 'lines' : systemlist('grep -Hn class *.java')})
" create a new location list from a command output
:call setloclist(0, [], ' ', {'lines' : systemlist('grep -Hn main *.c')})
" replace the location list entries for the third window
:call setloclist(3, [], 'r', {'items' : newItems})
<
=============================================================================
3. Using more than one list of errors *quickfix-error-lists*
So far has been assumed that there is only one list of errors. Actually the
ten last used lists are remembered. When starting a new list, the previous
ones are automatically kept. Two commands can be used to access older error
lists. They set one of the existing error lists as the current one.
*:colder* *:col* *E380*
:col[der] [count] Go to older error list. When [count] is given, do
this [count] times. When already at the oldest error
list, an error message is given.
*:lolder* *:lol*
:lol[der] [count] Same as `:colder`, except use the location list for
the current window instead of the quickfix list.
*:cnewer* *:cnew* *E381*
:cnew[er] [count] Go to newer error list. When [count] is given, do
this [count] times. When already at the newest error
list, an error message is given.
*:lnewer* *:lnew*
:lnew[er] [count] Same as `:cnewer`, except use the location list for
the current window instead of the quickfix list.
*:chistory* *:chi*
:[count]chi[story] Show the list of error lists. The current list is
marked with ">". The output looks like:
error list 1 of 3; 43 errors ~
> error list 2 of 3; 0 errors ~
error list 3 of 3; 15 errors ~
When [count] is given, then the count'th quickfix
list is made the current list. Example: >
" Make the 4th quickfix list current
:4chistory
<
*:lhistory* *:lhi*
:[count]lhi[story] Show the list of location lists, otherwise like
`:chistory`.
When adding a new error list, it becomes the current list.
When ":colder" has been used and ":make" or ":grep" is used to add a new error
list, one newer list is overwritten. This is especially useful if you are
browsing with ":grep" |grep|. If you want to keep the more recent error
lists, use ":cnewer 99" first.
To get the number of lists in the quickfix and location list stack, you can
use the |getqflist()| and |getloclist()| functions respectively with the list
number set to the special value '$'. Examples: >
echo getqflist({'nr' : '$'}).nr
echo getloclist(3, {'nr' : '$'}).nr
To get the number of the current list in the stack: >
echo getqflist({'nr' : 0}).nr
<
=============================================================================
4. Using :make *:make_makeprg*
*:mak* *:make*
:mak[e][!] [arguments] 1. All relevant |QuickFixCmdPre| autocommands are
executed.
2. If the 'autowrite' option is on, write any changed
buffers
3. An errorfile name is made from 'makeef'. If
'makeef' doesn't contain "##", and a file with this
name already exists, it is deleted.
4. The program given with the 'makeprg' option is
started (default "make") with the optional
[arguments] and the output is saved in the
errorfile (for Unix it is also echoed on the
screen).
5. The errorfile is read using 'errorformat'.
6. All relevant |QuickFixCmdPost| autocommands are
executed. See example below.
7. If [!] is not given the first error is jumped to.
8. The errorfile is deleted.
9. You can now move through the errors with commands
like |:cnext| and |:cprevious|, see above.
This command does not accept a comment, any "
characters are considered part of the arguments.
If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
*:lmak* *:lmake*
:lmak[e][!] [arguments]
Same as ":make", except the location list for the
current window is used instead of the quickfix list.
The ":make" command executes the command given with the 'makeprg' option.
This is done by passing the command to the shell given with the 'shell'
option. This works almost like typing
":!{makeprg} [arguments] {shellpipe} {errorfile}".
{makeprg} is the string given with the 'makeprg' option. Any command can be
used, not just "make". Characters '%' and '#' are expanded as usual on a
command-line. You can use "%<" to insert the current file name without
extension, or "#<" to insert the alternate file name without extension, for
example: >
:set makeprg=make\ #<.o
[arguments] is anything that is typed after ":make".
{shellpipe} is the 'shellpipe' option.
{errorfile} is the 'makeef' option, with ## replaced to make it unique.
The placeholder "$*" can be used for the argument list in {makeprg} if the
command needs some additional characters after its arguments. The $* is
replaced then by all arguments. Example: >
:set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
or simpler >
:let &mp = 'latex \\nonstopmode \\input\{$*}'
"$*" can be given multiple times, for example: >
:set makeprg=gcc\ -o\ $*\ $*
The 'shellpipe' option defaults to ">" for the Amiga and ">%s 2>&1" for Win32.
This means that the output of the compiler is saved in a file and not shown on
the screen directly. For Unix "| tee" is used. The compiler output is shown
on the screen and saved in a file the same time. Depending on the shell used
"|& tee" or "2>&1| tee" is the default, so stderr output will be included.
If 'shellpipe' is empty, the {errorfile} part will be omitted. This is useful
for compilers that write to an errorfile themselves (e.g., Manx's Amiga C).
Using QuickFixCmdPost to fix the encoding ~
It may be that 'encoding' is set to an encoding that differs from the messages
your build program produces. This example shows how to fix this after Vim has
read the error messages: >
function QfMakeConv()
let qflist = getqflist()
for i in qflist
let i.text = iconv(i.text, "cp936", "utf-8")
endfor
call setqflist(qflist)
endfunction
au QuickfixCmdPost make call QfMakeConv()
(Example by Faque Cheng)
Another option is using 'makeencoding'.
==============================================================================
5. Using :vimgrep and :grep *grep* *lid*
Vim has two ways to find matches for a pattern: Internal and external. The
advantage of the internal grep is that it works on all systems and uses the
powerful Vim search patterns. An external grep program can be used when the
Vim grep does not do what you want.
The internal method will be slower, because files are read into memory. The
advantages are:
- Line separators and encoding are automatically recognized, as if a file is
being edited.
- Uses Vim search patterns. Multi-line patterns can be used.
- When plugins are enabled: compressed and remote files can be searched.
|gzip| |netrw|
To be able to do this Vim loads each file as if it is being edited. When
there is no match in the file the associated buffer is wiped out again. The
'hidden' option is ignored here to avoid running out of memory or file
descriptors when searching many files. However, when the |:hide| command
modifier is used the buffers are kept loaded. This makes following searches
in the same files a lot faster.
Note that |:copen| (or |:lopen| for |:lgrep|) may be used to open a buffer
containing the search results in linked form. The |:silent| command may be
used to suppress the default full screen grep output. The ":grep!" form of
the |:grep| command doesn't jump to the first match automatically. These
commands can be combined to create a NewGrep command: >
command! -nargs=+ NewGrep execute 'silent grep! <args>' | copen 42
5.1 using Vim's internal grep
*:vim* *:vimgrep* *E682* *E683*
:vim[grep][!] /{pattern}/[g][j] {file} ...
Search for {pattern} in the files {file} ... and set
the error list to the matches. Files matching
'wildignore' are ignored; files in 'suffixes' are
searched last.
Without the 'g' flag each line is added only once.
With 'g' every match is added.
{pattern} is a Vim search pattern. Instead of
enclosing it in / any non-ID character (see
|'isident'|) can be used, so long as it does not
appear in {pattern}.
'ignorecase' applies. To overrule it put |/\c| in the
pattern to ignore case or |/\C| to match case.
'smartcase' is not used.
If {pattern} is empty (e.g. // is specified), the last
used search pattern is used. |last-pattern|
:{count}vim[grep] ...
When a number is put before the command this is used
as the maximum number of matches to find. Use
":1vimgrep pattern file" to find only the first.
Useful if you only want to check if there is a match
and quit quickly when it's found.
Without the 'j' flag Vim jumps to the first match.
With 'j' only the quickfix list is updated.
With the [!] any changes in the current buffer are
abandoned.
Every second or so the searched file name is displayed
to give you an idea of the progress made.
Examples: >
:vimgrep /an error/ *.c
:vimgrep /\<FileName\>/ *.h include/*
:vimgrep /myfunc/ **/*.c
< For the use of "**" see |starstar-wildcard|.
:vim[grep][!] {pattern} {file} ...
Like above, but instead of enclosing the pattern in a
non-ID character use a white-separated pattern. The
pattern must start with an ID character.
Example: >
:vimgrep Error *.c
<
*:lv* *:lvimgrep*
:lv[imgrep][!] /{pattern}/[g][j] {file} ...
:lv[imgrep][!] {pattern} {file} ...
Same as ":vimgrep", except the location list for the
current window is used instead of the quickfix list.
*:vimgrepa* *:vimgrepadd*
:vimgrepa[dd][!] /{pattern}/[g][j] {file} ...
:vimgrepa[dd][!] {pattern} {file} ...
Just like ":vimgrep", but instead of making a new list
of errors the matches are appended to the current
list.
*:lvimgrepa* *:lvimgrepadd*
:lvimgrepa[dd][!] /{pattern}/[g][j] {file} ...
:lvimgrepa[dd][!] {pattern} {file} ...
Same as ":vimgrepadd", except the location list for
the current window is used instead of the quickfix
list.
5.2 External grep
Vim can interface with "grep" and grep-like programs (such as the GNU
id-utils) in a similar way to its compiler integration (see |:make| above).
[Unix trivia: The name for the Unix "grep" command comes from ":g/re/p", where
"re" stands for Regular Expression.]
*:gr* *:grep*
:gr[ep][!] [arguments] Just like ":make", but use 'grepprg' instead of
'makeprg' and 'grepformat' instead of 'errorformat'.
When 'grepprg' is "internal" this works like
|:vimgrep|. Note that the pattern needs to be
enclosed in separator characters then.
If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
*:lgr* *:lgrep*
:lgr[ep][!] [arguments] Same as ":grep", except the location list for the
current window is used instead of the quickfix list.
*:grepa* *:grepadd*
:grepa[dd][!] [arguments]
Just like ":grep", but instead of making a new list of
errors the matches are appended to the current list.
Example: >
:call setqflist([])
:bufdo grepadd! something %
< The first command makes a new error list which is
empty. The second command executes "grepadd" for each
listed buffer. Note the use of ! to avoid that
":grepadd" jumps to the first error, which is not
allowed with |:bufdo|.
An example that uses the argument list and avoids
errors for files without matches: >
:silent argdo try
\ | grepadd! something %
\ | catch /E480:/
\ | endtry"
<
If the encoding of the program output differs from the
'encoding' option, you can use the 'makeencoding'
option to specify the encoding.
*:lgrepa* *:lgrepadd*
:lgrepa[dd][!] [arguments]
Same as ":grepadd", except the location list for the
current window is used instead of the quickfix list.
5.3 Setting up external grep
If you have a standard "grep" program installed, the :grep command may work
well with the defaults. The syntax is very similar to the standard command: >
:grep foo *.c
Will search all files with the .c extension for the substring "foo". The
arguments to :grep are passed straight to the "grep" program, so you can use
whatever options your "grep" supports.
By default, :grep invokes grep with the -n option (show file and line
numbers). You can change this with the 'grepprg' option. You will need to set
'grepprg' if:
a) You are using a program that isn't called "grep"
b) You have to call grep with a full path
c) You want to pass other options automatically (e.g. case insensitive
search.)
Once "grep" has executed, Vim parses the results using the 'grepformat'
option. This option works in the same way as the 'errorformat' option - see
that for details. You may need to change 'grepformat' from the default if
your grep outputs in a non-standard format, or you are using some other
program with a special format.
Once the results are parsed, Vim loads the first file containing a match and
jumps to the appropriate line, in the same way that it jumps to a compiler
error in |quickfix| mode. You can then use the |:cnext|, |:clist|, etc.
commands to see the other matches.
5.4 Using :grep with id-utils
You can set up :grep to work with the GNU id-utils like this: >
:set grepprg=lid\ -Rgrep\ -s
:set grepformat=%f:%l:%m
then >
:grep (regexp)
works just as you'd expect.
(provided you remembered to mkid first :)
5.5 Browsing source code with :vimgrep or :grep
Using the stack of error lists that Vim keeps, you can browse your files to
look for functions and the functions they call. For example, suppose that you
have to add an argument to the read_file() function. You enter this command: >
:vimgrep /\<read_file\>/ *.c
You use ":cn" to go along the list of matches and add the argument. At one
place you have to get the new argument from a higher level function msg(), and
need to change that one too. Thus you use: >
:vimgrep /\<msg\>/ *.c
While changing the msg() functions, you find another function that needs to
get the argument from a higher level. You can again use ":vimgrep" to find
these functions. Once you are finished with one function, you can use >
:colder
to go back to the previous one.
This works like browsing a tree: ":vimgrep" goes one level deeper, creating a
list of branches. ":colder" goes back to the previous level. You can mix
this use of ":vimgrep" and "colder" to browse all the locations in a tree-like
way. If you do this consistently, you will find all locations without the
need to write down a "todo" list.
=============================================================================
6. Selecting a compiler *compiler-select*
*:comp* *:compiler* *E666*
:comp[iler][!] {name} Set options to work with compiler {name}.
Without the "!" options are set for the
current buffer. With "!" global options are
set.
If you use ":compiler foo" in "file.foo" and
then ":compiler! bar" in another buffer, Vim
will keep on using "foo" in "file.foo".
{not available when compiled without the
|+eval| feature}
The Vim plugins in the "compiler" directory will set options to use the
selected compiler. For `:compiler` local options are set, for `:compiler!`
global options.
*current_compiler*
To support older Vim versions, the plugins always use "current_compiler" and
not "b:current_compiler". What the command actually does is the following:
- Delete the "current_compiler" and "b:current_compiler" variables.
- Define the "CompilerSet" user command. With "!" it does ":set", without "!"
it does ":setlocal".
- Execute ":runtime! compiler/{name}.vim". The plugins are expected to set
options with "CompilerSet" and set the "current_compiler" variable to the
name of the compiler.
- Delete the "CompilerSet" user command.
- Set "b:current_compiler" to the value of "current_compiler".
- Without "!" the old value of "current_compiler" is restored.
For writing a compiler plugin, see |write-compiler-plugin|.
GCC *quickfix-gcc* *compiler-gcc*
There's one variable you can set for the GCC compiler:
g:compiler_gcc_ignore_unmatched_lines
Ignore lines that don't match any patterns
defined for GCC. Useful if output from
commands run from make are generating false
positives.
MANX AZTEC C *quickfix-manx* *compiler-manx*
To use Vim with Manx's Aztec C compiler on the Amiga you should do the
following:
- Set the CCEDIT environment variable with the command: >
mset "CCEDIT=vim -q"
- Compile with the -qf option. If the compiler finds any errors, Vim is
started and the cursor is positioned on the first error. The error message
will be displayed on the last line. You can go to other errors with the
commands mentioned above. You can fix the errors and write the file(s).
- If you exit Vim normally the compiler will re-compile the same file. If you
exit with the :cq command, the compiler will terminate. Do this if you
cannot fix the error, or if another file needs to be compiled first.
There are some restrictions to the Quickfix mode on the Amiga. The
compiler only writes the first 25 errors to the errorfile (Manx's
documentation does not say how to get more). If you want to find the others,
you will have to fix a few errors and exit the editor. After recompiling,
up to 25 remaining errors will be found.
If Vim was started from the compiler, the :sh and some :! commands will not
work, because Vim is then running in the same process as the compiler and
stdin (standard input) will not be interactive.
PERL *quickfix-perl* *compiler-perl*
The Perl compiler plugin doesn't actually compile, but invokes Perl's internal
syntax checking feature and parses the output for possible errors so you can
correct them in quick-fix mode.
Warnings are forced regardless of "no warnings" or "$^W = 0" within the file
being checked. To disable this set g:perl_compiler_force_warnings to a zero
value. For example: >
let g:perl_compiler_force_warnings = 0
PYUNIT COMPILER *compiler-pyunit*
This is not actually a compiler, but a unit testing framework for the
Python language. It is included into standard Python distribution
starting from version 2.0. For older versions, you can get it from
http://pyunit.sourceforge.net.
When you run your tests with the help of the framework, possible errors
are parsed by Vim and presented for you in quick-fix mode.
Unfortunately, there is no standard way to run the tests.
The alltests.py script seems to be used quite often, that's all.
Useful values for the 'makeprg' options therefore are:
setlocal makeprg=./alltests.py " Run a testsuite
setlocal makeprg=python\ %:S " Run a single testcase
Also see http://vim.sourceforge.net/tip_view.php?tip_id=280.
TEX COMPILER *compiler-tex*
Included in the distribution compiler for TeX ($VIMRUNTIME/compiler/tex.vim)
uses make command if possible. If the compiler finds a file named "Makefile"
or "makefile" in the current directory, it supposes that you want to process
your *TeX files with make, and the makefile does the right work. In this case
compiler sets 'errorformat' for *TeX output and leaves 'makeprg' untouched. If
neither "Makefile" nor "makefile" is found, the compiler will not use make.
You can force the compiler to ignore makefiles by defining
b:tex_ignore_makefile or g:tex_ignore_makefile variable (they are checked for
existence only).
If the compiler chose not to use make, it needs to choose a right program for
processing your input. If b:tex_flavor or g:tex_flavor (in this precedence)
variable exists, it defines TeX flavor for :make (actually, this is the name
of executed command), and if both variables do not exist, it defaults to
"latex". For example, while editing chapter2.tex \input-ed from mypaper.tex
written in AMS-TeX: >
:let b:tex_flavor = 'amstex'
:compiler tex
< [editing...] >
:make mypaper
Note that you must specify a name of the file to process as an argument (to
process the right file when editing \input-ed or \include-ed file; portable
solution for substituting % for no arguments is welcome). This is not in the
semantics of make, where you specify a target, not source, but you may specify
filename without extension ".tex" and mean this as "make filename.dvi or
filename.pdf or filename.some_result_extension according to compiler".
Note: tex command line syntax is set to usable both for MikTeX (suggestion
by Srinath Avadhanula) and teTeX (checked by Artem Chuprina). Suggestion
from |errorformat-LaTeX| is too complex to keep it working for different
shells and OSes and also does not allow to use other available TeX options,
if any. If your TeX doesn't support "-interaction=nonstopmode", please
report it with different means to express \nonstopmode from the command line.
=============================================================================
7. The error format *error-file-format*
*errorformat* *E372* *E373* *E374*
*E375* *E376* *E377* *E378*
The 'errorformat' option specifies a list of formats that are recognized. The
first format that matches with an error message is used. You can add several
formats for different messages your compiler produces, or even entries for
multiple compilers. See |efm-entries|.
Each entry in 'errorformat' is a scanf-like string that describes the format.
First, you need to know how scanf works. Look in the documentation of your
C compiler. Below you find the % items that Vim understands. Others are
invalid.
Special characters in 'errorformat' are comma and backslash. See
|efm-entries| for how to deal with them. Note that a literal "%" is matched
by "%%", thus it is not escaped with a backslash.
Keep in mind that in the `:make` and `:grep` output all NUL characters are
replaced with SOH (0x01).
Note: By default the difference between upper and lowercase is ignored. If
you want to match case, add "\C" to the pattern |/\C|.
Vim will read lines of any length, but only the first 4095 bytes are used, the
rest is ignored. Items can only be 1023 bytes long.
Basic items
%f file name (finds a string)
%o module name (finds a string)
%l line number (finds a number)
%c column number (finds a number representing character
column of the error, (1 <tab> == 1 character column))
%v virtual column number (finds a number representing
screen column of the error (1 <tab> == 8 screen
columns))
%t error type (finds a single character):
e - error message
w - warning message
i - info message
n - note message
%n error number (finds a number)
%m error message (finds a string)
%r matches the "rest" of a single-line file message %O/P/Q
%p pointer line (finds a sequence of '-', '.', ' ' or
tabs and uses the length for the column number)
%*{conv} any scanf non-assignable conversion
%% the single '%' character
%s search text (finds a string)
The "%f" conversion may depend on the current 'isfname' setting. "~/" is
expanded to the home directory and environment variables are expanded.
The "%f" and "%m" conversions have to detect the end of the string. This
normally happens by matching following characters and items. When nothing is
following the rest of the line is matched. If "%f" is followed by a '%' or a
backslash, it will look for a sequence of 'isfname' characters.
On MS-Windows a leading "C:" will be included in "%f", even when using "%f:".
This means that a file name which is a single alphabetical letter will not be
detected.
The "%p" conversion is normally followed by a "^". It's used for compilers
that output a line like: >
^
or >
---------^
to indicate the column of the error. This is to be used in a multi-line error
message. See |errorformat-javac| for a useful example.
The "%s" conversion specifies the text to search for, to locate the error line.
The text is used as a literal string. The anchors "^" and "$" are added to
the text to locate the error line exactly matching the search text and the
text is prefixed with the "\V" atom to make it "very nomagic". The "%s"
conversion can be used to locate lines without a line number in the error
output. Like the output of the "grep" shell command.
When the pattern is present the line number will not be used.
The "%o" conversion specifies the module name in quickfix entry. If present
it will be used in quickfix error window instead of the filename. The module
name is used only for displaying purposes, the file name is used when jumping
to the file.
Changing directory
The following uppercase conversion characters specify the type of special
format strings. At most one of them may be given as a prefix at the beginning
of a single comma-separated format pattern.
Some compilers produce messages that consist of directory names that have to
be prepended to each file name read by %f (example: GNU make). The following
codes can be used to scan these directory names; they will be stored in an
internal directory stack. *E379*
%D "enter directory" format string; expects a following
%f that finds the directory name
%X "leave directory" format string; expects following %f
When defining an "enter directory" or "leave directory" format, the "%D" or
"%X" has to be given at the start of that substring. Vim tracks the directory
changes and prepends the current directory to each erroneous file found with a
relative path. See |quickfix-directory-stack| for details, tips and
limitations.
Multi-line messages *errorformat-multi-line*
It is possible to read the output of programs that produce multi-line
messages, i.e. error strings that consume more than one line. Possible
prefixes are:
%E start of a multi-line error message
%W start of a multi-line warning message
%I start of a multi-line informational message
%N start of a multi-line note message
%A start of a multi-line message (unspecified type)
%> for next line start with current pattern again |efm-%>|
%C continuation of a multi-line message
%Z end of a multi-line message
These can be used with '+' and '-', see |efm-ignore| below.
Using "\n" in the pattern won't work to match multi-line messages.
Example: Your compiler happens to write out errors in the following format
(leading line numbers not being part of the actual output):
1 Error 275 ~
2 line 42 ~
3 column 3 ~
4 ' ' expected after '--' ~
The appropriate error format string has to look like this: >
:set efm=%EError\ %n,%Cline\ %l,%Ccolumn\ %c,%Z%m
And the |:clist| error message generated for this error is:
1:42 col 3 error 275: ' ' expected after '--'
Another example: Think of a Python interpreter that produces the following
error message (line numbers are not part of the actual output):
1 ==============================================================
2 FAIL: testGetTypeIdCachesResult (dbfacadeTest.DjsDBFacadeTest)
3 --------------------------------------------------------------
4 Traceback (most recent call last):
5 File "unittests/dbfacadeTest.py", line 89, in testFoo
6 self.assertEquals(34, dtid)
7 File "/usr/lib/python2.2/unittest.py", line 286, in
8 failUnlessEqual
9 raise self.failureException, \
10 AssertionError: 34 != 33
11
12 --------------------------------------------------------------
13 Ran 27 tests in 0.063s
Say you want |:clist| write the relevant information of this message only,
namely:
5 unittests/dbfacadeTest.py:89: AssertionError: 34 != 33
Then the error format string could be defined as follows: >
:set efm=%C\ %.%#,%A\ \ File\ \"%f\"\\,\ line\ %l%.%#,%Z%[%^\ ]%\\@=%m
Note that the %C string is given before the %A here: since the expression
' %.%#' (which stands for the regular expression ' .*') matches every line
starting with a space, followed by any characters to the end of the line,
it also hides line 7 which would trigger a separate error message otherwise.
Error format strings are always parsed pattern by pattern until the first
match occurs.
*efm-%>*
The %> item can be used to avoid trying patterns that appear earlier in
'errorformat'. This is useful for patterns that match just about anything.
For example, if the error looks like this:
Error in line 123 of foo.c: ~
unknown variable "i" ~
This can be found with: >
:set efm=xxx,%E%>Error in line %l of %f:,%Z%m
Where "xxx" has a pattern that would also match the second line.
Important: There is no memory of what part of the errorformat matched before;
every line in the error file gets a complete new run through the error format
lines. For example, if one has: >
setlocal efm=aa,bb,cc,dd,ee
Where aa, bb, etc. are error format strings. Each line of the error file will
be matched to the pattern aa, then bb, then cc, etc. Just because cc matched
the previous error line does _not_ mean that dd will be tried first on the
current line, even if cc and dd are multi-line errorformat strings.
Separate file name *errorformat-separate-filename*
These prefixes are useful if the file name is given once and multiple messages
follow that refer to this file name.
%O single-line file message: overread the matched part
%P single-line file message: push file %f onto the stack
%Q single-line file message: pop the last file from stack
Example: Given a compiler that produces the following error logfile (without
leading line numbers):
1 [a1.tt]
2 (1,17) error: ';' missing
3 (21,2) warning: variable 'z' not defined
4 (67,3) error: end of file found before string ended
5
6 [a2.tt]
7
8 [a3.tt]
9 NEW compiler v1.1
10 (2,2) warning: variable 'x' not defined
11 (67,3) warning: 's' already defined
This logfile lists several messages for each file enclosed in [...] which are
properly parsed by an error format like this: >
:set efm=%+P[%f],(%l\\,%c)%*[\ ]%t%*[^:]:\ %m,%-Q
A call of |:clist| writes them accordingly with their correct filenames:
2 a1.tt:1 col 17 error: ';' missing
3 a1.tt:21 col 2 warning: variable 'z' not defined
4 a1.tt:67 col 3 error: end of file found before string ended
8 a3.tt:2 col 2 warning: variable 'x' not defined
9 a3.tt:67 col 3 warning: 's' already defined
Unlike the other prefixes that all match against whole lines, %P, %Q and %O
can be used to match several patterns in the same line. Thus it is possible
to parse even nested files like in the following line:
{"file1" {"file2" error1} error2 {"file3" error3 {"file4" error4 error5}}}
The %O then parses over strings that do not contain any push/pop file name
information. See |errorformat-LaTeX| for an extended example.
Ignoring and using whole messages *efm-ignore*
The codes '+' or '-' can be combined with the uppercase codes above; in that
case they have to precede the letter, e.g. '%+A' or '%-G':
%- do not include the matching multi-line in any output
%+ include the whole matching line in the %m error string
One prefix is only useful in combination with '+' or '-', namely %G. It parses
over lines containing general information like compiler version strings or
other headers that can be skipped.
%-G ignore this message
%+G general message
Pattern matching
The scanf()-like "%*[]" notation is supported for backward-compatibility
with previous versions of Vim. However, it is also possible to specify
(nearly) any Vim supported regular expression in format strings.
Since meta characters of the regular expression language can be part of
ordinary matching strings or file names (and therefore internally have to
be escaped), meta symbols have to be written with leading '%':
%\ The single '\' character. Note that this has to be
escaped ("%\\") in ":set errorformat=" definitions.
%. The single '.' character.
%# The single '*'(!) character.
%^ The single '^' character. Note that this is not
useful, the pattern already matches start of line.
%$ The single '$' character. Note that this is not
useful, the pattern already matches end of line.
%[ The single '[' character for a [] character range.
%~ The single '~' character.
When using character classes in expressions (see |/\i| for an overview),
terms containing the "\+" quantifier can be written in the scanf() "%*"
notation. Example: "%\\d%\\+" ("\d\+", "any number") is equivalent to "%*\\d".
Important note: The \(...\) grouping of sub-matches can not be used in format
specifications because it is reserved for internal conversions.
Multiple entries in 'errorformat' *efm-entries*
To be able to detect output from several compilers, several format patterns
may be put in 'errorformat', separated by commas (note: blanks after the comma
are ignored). The first pattern that has a complete match is used. If no
match is found, matching parts from the last one will be used, although the
file name is removed and the error message is set to the whole message. If
there is a pattern that may match output from several compilers (but not in a
right way), put it after one that is more restrictive.
To include a comma in a pattern precede it with a backslash (you have to type
two in a ":set" command). To include a backslash itself give two backslashes
(you have to type four in a ":set" command). You also need to put a backslash
before a space for ":set".
Valid matches *quickfix-valid*
If a line does not completely match one of the entries in 'errorformat', the
whole line is put in the error message and the entry is marked "not valid"
These lines are skipped with the ":cn" and ":cp" commands (unless there is
no valid line at all). You can use ":cl!" to display all the error messages.
If the error format does not contain a file name Vim cannot switch to the
correct file. You will have to do this by hand.
Examples
The format of the file from the Amiga Aztec compiler is:
filename>linenumber:columnnumber:errortype:errornumber:errormessage
filename name of the file in which the error was detected
linenumber line number where the error was detected
columnnumber column number where the error was detected
errortype type of the error, normally a single 'E' or 'W'
errornumber number of the error (for lookup in the manual)
errormessage description of the error
This can be matched with this 'errorformat' entry:
%f>%l:%c:%t:%n:%m
Some examples for C compilers that produce single-line error outputs:
%f:%l:\ %t%*[^0123456789]%n:\ %m for Manx/Aztec C error messages
(scanf() doesn't understand [0-9])
%f\ %l\ %t%*[^0-9]%n:\ %m for SAS C
\"%f\"\\,%*[^0-9]%l:\ %m for generic C compilers
%f:%l:\ %m for GCC
%f:%l:\ %m,%Dgmake[%*\\d]:\ Entering\ directory\ `%f',
%Dgmake[%*\\d]:\ Leaving\ directory\ `%f'
for GCC with gmake (concat the lines!)
%f(%l)\ :\ %*[^:]:\ %m old SCO C compiler (pre-OS5)
%f(%l)\ :\ %t%*[^0-9]%n:\ %m idem, with error type and number
%f:%l:\ %m,In\ file\ included\ from\ %f:%l:,\^I\^Ifrom\ %f:%l%m
for GCC, with some extras
Extended examples for the handling of multi-line messages are given below,
see |errorformat-Jikes| and |errorformat-LaTeX|.
Note the backslash in front of a space and double quote. It is required for
the :set command. There are two backslashes in front of a comma, one for the
:set command and one to avoid recognizing the comma as a separator of error
formats.
Filtering messages
If you have a compiler that produces error messages that do not fit in the
format string, you could write a program that translates the error messages
into this format. You can use this program with the ":make" command by
changing the 'makeprg' option. For example: >
:set mp=make\ \\\|&\ error_filter
The backslashes before the pipe character are required to avoid it to be
recognized as a command separator. The backslash before each space is
required for the set command.
=============================================================================
8. The directory stack *quickfix-directory-stack*
Quickfix maintains a stack for saving all used directories parsed from the
make output. For GNU-make this is rather simple, as it always prints the
absolute path of all directories it enters and leaves. Regardless if this is
done via a 'cd' command in the makefile or with the parameter "-C dir" (change
to directory before reading the makefile). It may be useful to use the switch
"-w" to force GNU-make to print out the working directory before and after
processing.
Maintaining the correct directory is more complicated if you don't use
GNU-make. AIX-make for example doesn't print any information about its
working directory. Then you need to enhance the makefile. In the makefile of
LessTif there is a command which echoes "Making {target} in {dir}". The
special problem here is that it doesn't print information on leaving the
directory and that it doesn't print the absolute path.
To solve the problem with relative paths and missing "leave directory"
messages Vim uses the following algorithm:
1) Check if the given directory is a subdirectory of the current directory.
If this is true, store it as the current directory.
2) If it is not a subdir of the current directory, try if this is a
subdirectory of one of the upper directories.
3) If the directory still isn't found, it is assumed to be a subdirectory
of Vim's current directory.
Additionally it is checked for every file, if it really exists in the
identified directory. If not, it is searched in all other directories of the
directory stack (NOT the directory subtree!). If it is still not found, it is
assumed that it is in Vim's current directory.
There are limitations in this algorithm. These examples assume that make just
prints information about entering a directory in the form "Making all in dir".
1) Assume you have following directories and files:
./dir1
./dir1/file1.c
./file1.c
If make processes the directory "./dir1" before the current directory and
there is an error in the file "./file1.c", you will end up with the file
"./dir1/file.c" loaded by Vim.
This can only be solved with a "leave directory" message.
2) Assume you have following directories and files:
./dir1
./dir1/dir2
./dir2
You get the following:
Make output Directory interpreted by Vim
------------------------ ----------------------------
Making all in dir1 ./dir1
Making all in dir2 ./dir1/dir2
Making all in dir2 ./dir1/dir2
This can be solved by printing absolute directories in the "enter directory"
message or by printing "leave directory" messages.
To avoid this problem, ensure to print absolute directory names and "leave
directory" messages.
Examples for Makefiles:
Unix:
libs:
for dn in $(LIBDIRS); do \
(cd $$dn; echo "Entering dir '$$(pwd)'"; make); \
echo "Leaving dir"; \
done
Add
%DEntering\ dir\ '%f',%XLeaving\ dir
to your 'errorformat' to handle the above output.
Note that Vim doesn't check if the directory name in a "leave directory"
messages is the current directory. This is why you could just use the message
"Leaving dir".
=============================================================================
9. Specific error file formats *errorformats*
*errorformat-Jikes*
Jikes(TM), a source-to-bytecode Java compiler published by IBM Research,
produces simple multi-line error messages.
An 'errorformat' string matching the produced messages is shown below.
The following lines can be placed in the user's |vimrc| to overwrite Vim's
recognized default formats, or see |:set+=| how to install this format
additionally to the default. >
:set efm=%A%f:%l:%c:%*\\d:%*\\d:,
\%C%*\\s%trror:%m,
\%+C%*[^:]%trror:%m,
\%C%*\\s%tarning:%m,
\%C%m
<
Jikes(TM) produces a single-line error message when invoked with the option
"+E", and can be matched with the following: >
:setl efm=%f:%l:%v:%*\\d:%*\\d:%*\\s%m
<
*errorformat-javac*
This 'errorformat' has been reported to work well for javac, which outputs a
line with "^" to indicate the column of the error: >
:setl efm=%A%f:%l:\ %m,%-Z%p^,%-C%.%#
or: >
:setl efm=%A%f:%l:\ %m,%+Z%p^,%+C%.%#,%-G%.%#
<
Here is an alternative from Michael F. Lamb for Unix that filters the errors
first: >
:setl errorformat=%Z%f:%l:\ %m,%A%p^,%-G%*[^sl]%.%#
:setl makeprg=javac\ %:S\ 2>&1\ \\\|\ vim-javac-filter
You need to put the following in "vim-javac-filter" somewhere in your path
(e.g., in ~/bin) and make it executable: >
#!/bin/sed -f
/\^$/s/\t/\ /g;/:[0-9]\+:/{h;d};/^[ \t]*\^/G;
In English, that sed script:
- Changes single tabs to single spaces and
- Moves the line with the filename, line number, error message to just after
the pointer line. That way, the unused error text between doesn't break
vim's notion of a "multi-line message" and also doesn't force us to include
it as a "continuation of a multi-line message."
*errorformat-ant*
For ant (http://jakarta.apache.org/) the above errorformat has to be modified
to honour the leading [javac] in front of each javac output line: >
:set efm=%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#
The 'errorformat' can also be configured to handle ant together with either
javac or jikes. If you're using jikes, you should tell ant to use jikes' +E
command line switch which forces jikes to generate one-line error messages.
This is what the second line (of a build.xml file) below does: >
<property name = "build.compiler" value = "jikes"/>
<property name = "build.compiler.emacs" value = "true"/>
The 'errorformat' which handles ant with both javac and jikes is: >
:set efm=\ %#[javac]\ %#%f:%l:%c:%*\\d:%*\\d:\ %t%[%^:]%#:%m,
\%A\ %#[javac]\ %f:%l:\ %m,%-Z\ %#[javac]\ %p^,%-C%.%#
<
*errorformat-jade*
parsing jade (see http://www.jclark.com/) errors is simple: >
:set efm=jade:%f:%l:%c:%t:%m
<
*errorformat-LaTeX*
The following is an example how an 'errorformat' string can be specified
for the (La)TeX typesetting system which displays error messages over
multiple lines. The output of ":clist" and ":cc" etc. commands displays
multi-lines in a single line, leading white space is removed.
It should be easy to adopt the above LaTeX errorformat to any compiler output
consisting of multi-line errors.
The commands can be placed in a |vimrc| file or some other Vim script file,
e.g. a script containing LaTeX related stuff which is loaded only when editing
LaTeX sources.
Make sure to copy all lines of the example (in the given order), afterwards
remove the comment lines. For the '\' notation at the start of some lines see
|line-continuation|.
First prepare 'makeprg' such that LaTeX will report multiple
errors; do not stop when the first error has occurred: >
:set makeprg=latex\ \\\\nonstopmode\ \\\\input\\{$*}
<
Start of multi-line error messages: >
:set efm=%E!\ LaTeX\ %trror:\ %m,
\%E!\ %m,
< Start of multi-line warning messages; the first two also
include the line number. Meaning of some regular expressions:
- "%.%#" (".*") matches a (possibly empty) string
- "%*\\d" ("\d\+") matches a number >
\%+WLaTeX\ %.%#Warning:\ %.%#line\ %l%.%#,
\%+W%.%#\ at\ lines\ %l--%*\\d,
\%WLaTeX\ %.%#Warning:\ %m,
< Possible continuations of error/warning messages; the first
one also includes the line number: >
\%Cl.%l\ %m,
\%+C\ \ %m.,
\%+C%.%#-%.%#,
\%+C%.%#[]%.%#,
\%+C[]%.%#,
\%+C%.%#%[{}\\]%.%#,
\%+C<%.%#>%.%#,
\%C\ \ %m,
< Lines that match the following patterns do not contain any
important information; do not include them in messages: >
\%-GSee\ the\ LaTeX%m,
\%-GType\ \ H\ <return>%m,
\%-G\ ...%.%#,
\%-G%.%#\ (C)\ %.%#,
\%-G(see\ the\ transcript%.%#),
< Generally exclude any empty or whitespace-only line from
being displayed: >
\%-G\\s%#,
< The LaTeX output log does not specify the names of erroneous
source files per line; rather they are given globally,
enclosed in parentheses.
The following patterns try to match these names and store
them in an internal stack. The patterns possibly scan over
the same input line (one after another), the trailing "%r"
conversion indicates the "rest" of the line that will be
parsed in the next go until the end of line is reached.
Overread a file name enclosed in '('...')'; do not push it
on a stack since the file apparently does not contain any
error: >
\%+O(%f)%r,
< Push a file name onto the stack. The name is given after '(': >
\%+P(%f%r,
\%+P\ %\\=(%f%r,
\%+P%*[^()](%f%r,
\%+P[%\\d%[^()]%#(%f%r,
< Pop the last stored file name when a ')' is scanned: >
\%+Q)%r,
\%+Q%*[^()])%r,
\%+Q[%\\d%*[^()])%r
Note that in some cases file names in the LaTeX output log cannot be parsed
properly. The parser might have been messed up by unbalanced parentheses
then. The above example tries to catch the most relevant cases only.
You can customize the given setting to suit your own purposes, for example,
all the annoying "Overfull ..." warnings could be excluded from being
recognized as an error.
Alternatively to filtering the LaTeX compiler output, it is also possible
to directly read the *.log file that is produced by the [La]TeX compiler.
This contains even more useful information about possible error causes.
However, to properly parse such a complex file, an external filter should
be used. See the description further above how to make such a filter known
by Vim.
*errorformat-Perl*
In $VIMRUNTIME/tools you can find the efm_perl.pl script, which filters Perl
error messages into a format that quickfix mode will understand. See the
start of the file about how to use it. (This script is deprecated, see
|compiler-perl|.)
=============================================================================
10. Customizing the quickfix window *quickfix-window-function*
The default format for the lines displayed in the quickfix window and location
list window is:
<filename>|<lnum> col <col>|<text>
The values displayed in each line correspond to the "bufnr", "lnum", "col" and
"text" fields returned by the |getqflist()| function.
For some quickfix/location lists, the displayed text needs to be customized.
For example, if only the filename is present for a quickfix entry, then the
two "|" field separator characters after the filename are not needed. Another
use case is to customize the path displayed for a filename. By default, the
complete path (which may be too long) is displayed for files which are not
under the current directory tree. The file path may need to be simplified to a
common parent directory.
The displayed text can be customized by setting the 'quickfixtextfunc' option
to a Vim function. This function will be called with a dict argument and
should return a List of strings to be displayed in the quickfix or location
list window. The dict argument will have the following fields:
quickfix set to 1 when called for a quickfix list and 0 when called for
a location list.
winid for a location list, set to the id of the window with the
location list. For a quickfix list, set to 0. Can be used in
getloclist() to get the location list entry.
id quickfix or location list identifier
start_idx index of the first entry for which text should be returned
end_idx index of the last entry for which text should be returned
The function should return a single line of text to display in the quickfix
window for each entry from start_idx to end_idx. The function can obtain
information about the entries using the |getqflist()| function and specifying
the quickfix list identifier "id". For a location list, getloclist() function
can be used with the 'winid' argument. If an empty list is returned, then the
default format is used to display all the entries. If an item in the returned
list is an empty string, then the default format is used to display the
corresponding entry.
If a quickfix or location list specific customization is needed, then the
'quickfixtextfunc' attribute of the list can be set using the |setqflist()| or
|setloclist()| function. This overrides the global 'quickfixtextfunc' option.
The example below displays the list of old files (|v:oldfiles|) in a quickfix
window. As there is no line, column number and error text information
associated with each entry, the 'quickfixtextfunc' function returns only the
filename.
Example: >
" create a quickfix list from v:oldfiles
call setqflist([], ' ', {'lines' : v:oldfiles, 'efm' : '%f',
\ 'quickfixtextfunc' : 'QfOldFiles'})
func QfOldFiles(info)
" get information about a range of quickfix entries
let items = getqflist({'id' : a:info.id, 'items' : 1}).items
let l = []
for idx in range(a:info.start_idx - 1, a:info.end_idx - 1)
" use the simplified file name
call add(l, fnamemodify(bufname(items[idx].bufnr), ':p:.'))
endfor
return l
endfunc
<
vim:tw=78:ts=8:noet:ft=help:norl:
|