1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
|
/* $Id: tstRTR0Timer.cpp $ */
/** @file
* IPRT R0 Testcase - Timers.
*/
/*
* Copyright (C) 2009-2020 Oracle Corporation
*
* This file is part of VirtualBox Open Source Edition (OSE), as
* available from http://www.virtualbox.org. This file is free software;
* you can redistribute it and/or modify it under the terms of the GNU
* General Public License (GPL) as published by the Free Software
* Foundation, in version 2 as it comes in the "COPYING" file of the
* VirtualBox OSE distribution. VirtualBox OSE is distributed in the
* hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
*
* The contents of this file may alternatively be used under the terms
* of the Common Development and Distribution License Version 1.0
* (CDDL) only, as it comes in the "COPYING.CDDL" file of the
* VirtualBox OSE distribution, in which case the provisions of the
* CDDL are applicable instead of those of the GPL.
*
* You may elect to license modified versions of this file under the
* terms and conditions of either the GPL or the CDDL or both.
*/
/*********************************************************************************************************************************
* Header Files *
*********************************************************************************************************************************/
#include <iprt/timer.h>
#include <iprt/asm.h>
#include <iprt/asm-amd64-x86.h>
#include <iprt/cpuset.h>
#include <iprt/err.h>
#include <iprt/mem.h>
#include <iprt/mp.h>
#include <iprt/param.h>
#include <iprt/string.h>
#include <iprt/thread.h>
#include <iprt/time.h>
#include <VBox/sup.h>
#include "tstRTR0Timer.h"
#include "tstRTR0Common.h"
/*********************************************************************************************************************************
* Structures and Typedefs *
*********************************************************************************************************************************/
typedef struct
{
/** Array of nano second timestamp of the first few shots. */
uint64_t volatile aShotNsTSes[10];
/** The number of shots. */
uint32_t volatile cShots;
/** The shot at which action is to be taken. */
uint32_t iActionShot;
/** The RC of whatever operation performed in the handler. */
int volatile rc;
/** Set if it's a periodic test. */
bool fPeriodic;
/** Test specific stuff. */
union
{
/** tstRTR0TimerCallbackU32ChangeInterval parameters. */
struct
{
/** The interval change step. */
uint32_t cNsChangeStep;
/** The current timer interval. */
uint32_t cNsCurInterval;
/** The minimum interval. */
uint32_t cNsMinInterval;
/** The maximum interval. */
uint32_t cNsMaxInterval;
/** Direction flag; false = decrement, true = increment. */
bool fDirection;
/** The number of steps between each change. */
uint8_t cStepsBetween;
} ChgInt;
/** tstRTR0TimerCallbackSpecific parameters. */
struct
{
/** The expected CPU. */
RTCPUID idCpu;
/** Set if this failed. */
bool fFailed;
} Specific;
} u;
} TSTRTR0TIMERS1;
typedef TSTRTR0TIMERS1 *PTSTRTR0TIMERS1;
/**
* Per cpu state for an omni timer test.
*/
typedef struct TSTRTR0TIMEROMNI1
{
/** When we started receiving timer callbacks on this CPU. */
uint64_t u64Start;
/** When we received the last tick on this timer. */
uint64_t u64Last;
/** The number of ticks received on this CPU. */
uint32_t volatile cTicks;
uint32_t u32Padding;
} TSTRTR0TIMEROMNI1;
typedef TSTRTR0TIMEROMNI1 *PTSTRTR0TIMEROMNI1;
/*********************************************************************************************************************************
* Global Variables *
*********************************************************************************************************************************/
/**
* Latency data.
*/
static struct TSTRTR0TIMEROMNILATENCY
{
/** The number of samples. */
volatile uint32_t cSamples;
uint32_t auPadding[3];
struct
{
uint64_t uTsc;
uint64_t uNanoTs;
} aSamples[4096];
} g_aOmniLatency[16];
/**
* Callback for the omni timer latency test, adds a sample to g_aOmniLatency.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackLatencyOmni(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
RTCPUID idCpu = RTMpCpuId();
uint32_t iCpu = RTMpCpuIdToSetIndex(idCpu);
NOREF(pTimer); NOREF(pvUser); NOREF(iTick);
RTR0TESTR0_CHECK_MSG(iCpu < RT_ELEMENTS(g_aOmniLatency), ("iCpu=%d idCpu=%u\n", iCpu, idCpu));
if (iCpu < RT_ELEMENTS(g_aOmniLatency))
{
uint32_t iSample = g_aOmniLatency[iCpu].cSamples;
if (iSample < RT_ELEMENTS(g_aOmniLatency[iCpu].aSamples))
{
g_aOmniLatency[iCpu].aSamples[iSample].uTsc = ASMReadTSC();
g_aOmniLatency[iCpu].aSamples[iSample].uNanoTs = RTTimeSystemNanoTS();
g_aOmniLatency[iCpu].cSamples = iSample + 1;
}
}
}
/**
* Callback which increments a 32-bit counter.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackOmni(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMEROMNI1 paStates = (PTSTRTR0TIMEROMNI1)pvUser;
RTCPUID idCpu = RTMpCpuId();
uint32_t iCpu = RTMpCpuIdToSetIndex(idCpu);
NOREF(pTimer);
RTR0TESTR0_CHECK_MSG(iCpu < RTCPUSET_MAX_CPUS, ("iCpu=%d idCpu=%u\n", iCpu, idCpu));
if (iCpu < RTCPUSET_MAX_CPUS)
{
uint32_t iCountedTick = ASMAtomicIncU32(&paStates[iCpu].cTicks);
RTR0TESTR0_CHECK_MSG(iCountedTick == iTick,
("iCountedTick=%u iTick=%u iCpu=%d idCpu=%u\n", iCountedTick, iTick, iCpu, idCpu));
paStates[iCpu].u64Last = RTTimeSystemNanoTS();
if (!paStates[iCpu].u64Start)
{
paStates[iCpu].u64Start = paStates[iCpu].u64Last;
RTR0TESTR0_CHECK_MSG(iCountedTick == 1, ("iCountedTick=%u iCpu=%d idCpu=%u\n", iCountedTick, iCpu, idCpu));
}
}
}
/**
* Callback which increments a 32-bit counter.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackSpecific(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMERS1 pState = (PTSTRTR0TIMERS1)pvUser;
uint32_t iShot = ASMAtomicIncU32(&pState->cShots);
NOREF(pTimer);
if (iShot <= RT_ELEMENTS(pState->aShotNsTSes))
pState->aShotNsTSes[iShot - 1] = RTTimeSystemNanoTS();
RTCPUID idCpu = RTMpCpuId();
if (pState->u.Specific.idCpu != idCpu)
pState->u.Specific.fFailed = true;
RTR0TESTR0_CHECK_MSG(pState->u.Specific.idCpu == idCpu, ("idCpu=%u, expected %u\n", idCpu, pState->u.Specific.idCpu));
if (pState->fPeriodic)
RTR0TESTR0_CHECK_MSG(iShot == iTick, ("iShot=%u iTick=%u\n", iShot, iTick));
else
RTR0TESTR0_CHECK_MSG(iTick == 1, ("iShot=%u iTick=%u\n", iShot, iTick));
}
/**
* Callback which changes the interval at each invocation.
*
* The changes are governed by TSTRTR0TIMERS1::ChangeInterval. The callback
* calls RTTimerStop at iActionShot.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackChangeInterval(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMERS1 pState = (PTSTRTR0TIMERS1)pvUser;
uint32_t iShot = ASMAtomicIncU32(&pState->cShots) - 1;
if (iShot < RT_ELEMENTS(pState->aShotNsTSes))
pState->aShotNsTSes[iShot] = RTTimeSystemNanoTS();
if (pState->fPeriodic)
RTR0TESTR0_CHECK_MSG(iShot + 1 == iTick, ("iShot=%u iTick=%u\n", iShot, iTick));
else
RTR0TESTR0_CHECK_MSG(iTick == 1, ("iShot=%u iTick=%u\n", iShot, iTick));
if (!(iShot % pState->u.ChgInt.cStepsBetween))
{
if (pState->u.ChgInt.fDirection)
{
pState->u.ChgInt.cNsCurInterval += pState->u.ChgInt.cNsChangeStep;
if ( pState->u.ChgInt.cNsCurInterval > pState->u.ChgInt.cNsMaxInterval
|| pState->u.ChgInt.cNsCurInterval < pState->u.ChgInt.cNsMinInterval
|| !pState->u.ChgInt.cNsCurInterval)
{
pState->u.ChgInt.cNsCurInterval = pState->u.ChgInt.cNsMaxInterval;
pState->u.ChgInt.fDirection = false;
}
}
else
{
pState->u.ChgInt.cNsCurInterval -= pState->u.ChgInt.cNsChangeStep;
if ( pState->u.ChgInt.cNsCurInterval < pState->u.ChgInt.cNsMinInterval
|| pState->u.ChgInt.cNsCurInterval > pState->u.ChgInt.cNsMaxInterval
|| pState->u.ChgInt.cNsCurInterval)
{
pState->u.ChgInt.cNsCurInterval = pState->u.ChgInt.cNsMinInterval;
pState->u.ChgInt.fDirection = true;
}
}
RTR0TESTR0_CHECK_RC(RTTimerChangeInterval(pTimer, pState->u.ChgInt.cNsCurInterval), VINF_SUCCESS);
}
if (iShot == pState->iActionShot)
RTR0TESTR0_CHECK_RC(pState->rc = RTTimerStop(pTimer), VINF_SUCCESS);
}
/**
* Callback which increments destroy the timer when it fires.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackDestroyOnce(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMERS1 pState = (PTSTRTR0TIMERS1)pvUser;
uint32_t iShot = ASMAtomicIncU32(&pState->cShots);
if (iShot <= RT_ELEMENTS(pState->aShotNsTSes))
pState->aShotNsTSes[iShot - 1] = RTTimeSystemNanoTS();
if (pState->fPeriodic)
RTR0TESTR0_CHECK_MSG(iShot == iTick, ("iShot=%u iTick=%u\n", iShot, iTick));
else
RTR0TESTR0_CHECK_MSG(iTick == 1, ("iShot=%u iTick=%u\n", iShot, iTick));
if (iShot == pState->iActionShot + 1)
RTR0TESTR0_CHECK_RC(pState->rc = RTTimerDestroy(pTimer), VINF_SUCCESS);
}
/**
* Callback which increments restarts a timer once.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackRestartOnce(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMERS1 pState = (PTSTRTR0TIMERS1)pvUser;
uint32_t iShot = ASMAtomicIncU32(&pState->cShots);
if (iShot <= RT_ELEMENTS(pState->aShotNsTSes))
pState->aShotNsTSes[iShot - 1] = RTTimeSystemNanoTS();
if (pState->fPeriodic)
RTR0TESTR0_CHECK_MSG(iShot == iTick, ("iShot=%u iTick=%u\n", iShot, iTick));
else
RTR0TESTR0_CHECK_MSG(iTick == 1, ("iShot=%u iTick=%u\n", iShot, iTick));
if (iShot == pState->iActionShot + 1)
RTR0TESTR0_CHECK_RC(pState->rc = RTTimerStart(pTimer, 10000000 /* 10ms */), VINF_SUCCESS);
}
/**
* Callback which increments a 32-bit counter.
*
* @param pTimer The timer.
* @param iTick The current tick.
* @param pvUser The user argument.
*/
static DECLCALLBACK(void) tstRTR0TimerCallbackU32Counter(PRTTIMER pTimer, void *pvUser, uint64_t iTick)
{
PTSTRTR0TIMERS1 pState = (PTSTRTR0TIMERS1)pvUser;
uint32_t iShot = ASMAtomicIncU32(&pState->cShots);
NOREF(pTimer);
if (iShot <= RT_ELEMENTS(pState->aShotNsTSes))
pState->aShotNsTSes[iShot - 1] = RTTimeSystemNanoTS();
if (pState->fPeriodic)
RTR0TESTR0_CHECK_MSG(iShot == iTick, ("iShot=%u iTick=%u\n", iShot, iTick));
else
RTR0TESTR0_CHECK_MSG(iTick == 1, ("iShot=%u iTick=%u\n", iShot, iTick));
}
#ifdef SOME_UNUSED_FUNCTION
/**
* Checks that the interval between two timer shots are within the specified
* range.
*
* @returns 0 if ok, 1 if bad.
* @param iShot The shot number (for bitching).
* @param uPrevTS The time stamp of the previous shot (ns).
* @param uThisTS The timer stamp of this shot (ns).
* @param uMin The minimum interval (ns).
* @param uMax The maximum interval (ns).
*/
static int tstRTR0TimerCheckShotInterval(uint32_t iShot, uint64_t uPrevTS, uint64_t uThisTS, uint32_t uMin, uint32_t uMax)
{
uint64_t uDelta = uThisTS - uPrevTS;
RTR0TESTR0_CHECK_MSG_RET(uDelta >= uMin, ("iShot=%u uDelta=%lld uMin=%u\n", iShot, uDelta, uMin), 1);
RTR0TESTR0_CHECK_MSG_RET(uDelta <= uMax, ("iShot=%u uDelta=%lld uMax=%u\n", iShot, uDelta, uMax), 1);
return 0;
}
#endif
/**
* Checks that the interval between timer shots are within a certain range.
*
* @returns Number of violations (i.e. 0 is ok).
* @param pState The state.
* @param uStartNsTS The start time stamp (ns).
* @param uMin The minimum interval (ns).
* @param uMax The maximum interval (ns).
*/
static int tstRTR0TimerCheckShotIntervals(PTSTRTR0TIMERS1 pState, uint64_t uStartNsTS, uint32_t uMin, uint32_t uMax)
{
uint64_t uMaxDelta = 0;
uint64_t uMinDelta = UINT64_MAX;
uint32_t cBadShots = 0;
uint32_t cShots = pState->cShots;
uint64_t uPrevTS = uStartNsTS;
for (uint32_t iShot = 0; iShot < cShots; iShot++)
{
uint64_t uThisTS = pState->aShotNsTSes[iShot];
uint64_t uDelta = uThisTS - uPrevTS;
if (uDelta > uMaxDelta)
uMaxDelta = uDelta;
if (uDelta < uMinDelta)
uMinDelta = uDelta;
cBadShots += !(uDelta >= uMin && uDelta <= uMax);
RTR0TESTR0_CHECK_MSG(uDelta >= uMin, ("iShot=%u uDelta=%lld uMin=%u\n", iShot, uDelta, uMin));
RTR0TESTR0_CHECK_MSG(uDelta <= uMax, ("iShot=%u uDelta=%lld uMax=%u\n", iShot, uDelta, uMax));
uPrevTS = uThisTS;
}
RTR0TestR0Info("uMaxDelta=%llu uMinDelta=%llu\n", uMaxDelta, uMinDelta);
return cBadShots;
}
/**
* Service request callback function.
*
* @returns VBox status code.
* @param pSession The caller's session.
* @param u64Arg 64-bit integer argument.
* @param pReqHdr The request header. Input / Output. Optional.
*/
DECLEXPORT(int) TSTRTR0TimerSrvReqHandler(PSUPDRVSESSION pSession, uint32_t uOperation,
uint64_t u64Arg, PSUPR0SERVICEREQHDR pReqHdr)
{
RTR0TESTR0_SRV_REQ_PROLOG_RET(pReqHdr);
NOREF(pSession);
/*
* Common parameter and state variables.
*/
uint32_t const cNsSysHz = RTTimerGetSystemGranularity();
uint32_t const cNsMaxHighResHz = 10000; /** @todo need API for this */
TSTRTR0TIMERS1 State;
if ( cNsSysHz < UINT32_C(1000)
|| cNsSysHz > UINT32_C(1000000000)
|| cNsMaxHighResHz < UINT32_C(1)
|| cNsMaxHighResHz > UINT32_C(1000000000))
{
RTR0TESTR0_CHECK_MSG(cNsSysHz > UINT32_C(1000) && cNsSysHz < UINT32_C(1000000000), ("%u", cNsSysHz));
RTR0TESTR0_CHECK_MSG(cNsMaxHighResHz > UINT32_C(1) && cNsMaxHighResHz < UINT32_C(1000000000), ("%u", cNsMaxHighResHz));
RTR0TESTR0_SRV_REQ_EPILOG(pReqHdr);
return VINF_SUCCESS;
}
/*
* The big switch.
*/
switch (uOperation)
{
RTR0TESTR0_IMPLEMENT_SANITY_CASES();
RTR0TESTR0_IMPLEMENT_DEFAULT_CASE(uOperation);
case TSTRTR0TIMER_ONE_SHOT_BASIC:
case TSTRTR0TIMER_ONE_SHOT_BASIC_HIRES:
{
/* Create a one-shot timer and take one shot. */
PRTTIMER pTimer;
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
int rc = RTTimerCreateEx(&pTimer, 0, fFlags, tstRTR0TimerCallbackU32Counter, &State);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("one-shot timer are not supported, skipping\n");
RTR0TESTR0_SKIP();
break;
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
do /* break loop */
{
RT_ZERO(State); ASMAtomicWriteU32(&State.cShots, State.cShots);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, 0), VINF_SUCCESS);
for (uint32_t i = 0; i < 1000 && !ASMAtomicUoReadU32(&State.cShots); i++)
RTThreadSleep(5);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 1, ("cShots=%u\n", State.cShots));
/* check that it is restartable. */
RT_ZERO(State); ASMAtomicWriteU32(&State.cShots, State.cShots);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, 0), VINF_SUCCESS);
for (uint32_t i = 0; i < 1000 && !ASMAtomicUoReadU32(&State.cShots); i++)
RTThreadSleep(5);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 1, ("cShots=%u\n", State.cShots));
/* check that it respects the timeout value and can be cancelled. */
RT_ZERO(State); ASMAtomicWriteU32(&State.cShots, State.cShots);
RTR0TESTR0_CHECK_RC(RTTimerStart(pTimer, 5*UINT64_C(1000000000)), VINF_SUCCESS);
RTR0TESTR0_CHECK_RC(RTTimerStop(pTimer), VINF_SUCCESS);
RTThreadSleep(1);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 0, ("cShots=%u\n", State.cShots));
/* Check some double starts and stops (shall not assert). */
RT_ZERO(State); ASMAtomicWriteU32(&State.cShots, State.cShots);
RTR0TESTR0_CHECK_RC(RTTimerStart(pTimer, 5*UINT64_C(1000000000)), VINF_SUCCESS);
RTR0TESTR0_CHECK_RC(RTTimerStart(pTimer, 0), VERR_TIMER_ACTIVE);
RTR0TESTR0_CHECK_RC(RTTimerStop(pTimer), VINF_SUCCESS);
RTR0TESTR0_CHECK_RC(RTTimerStop(pTimer), VERR_TIMER_SUSPENDED);
RTThreadSleep(1);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 0, ("cShots=%u\n", State.cShots));
} while (0);
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
RTR0TESTR0_CHECK_RC(RTTimerDestroy(NULL), VINF_SUCCESS);
break;
}
case TSTRTR0TIMER_ONE_SHOT_RESTART:
case TSTRTR0TIMER_ONE_SHOT_RESTART_HIRES:
{
#if !defined(RT_OS_SOLARIS) /* Not expected to work on all hosts. */
/* Create a one-shot timer and restart it in the callback handler. */
PRTTIMER pTimer;
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
for (uint32_t iTest = 0; iTest < 2; iTest++)
{
int rc = RTTimerCreateEx(&pTimer, 0, fFlags, tstRTR0TimerCallbackRestartOnce, &State);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("one-shot timer are not supported, skipping\n");
RTR0TESTR0_SKIP();
break;
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
RT_ZERO(State);
State.iActionShot = 0;
ASMAtomicWriteU32(&State.cShots, State.cShots);
do /* break loop */
{
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, cNsSysHz * iTest), VINF_SUCCESS);
for (uint32_t i = 0; i < 1000 && ASMAtomicUoReadU32(&State.cShots) < 2; i++)
RTThreadSleep(5);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 2, ("cShots=%u\n", State.cShots));
} while (0);
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
}
#else
RTR0TestR0Info("restarting from callback not supported on this platform\n");
RTR0TESTR0_SKIP();
#endif
break;
}
case TSTRTR0TIMER_ONE_SHOT_DESTROY:
case TSTRTR0TIMER_ONE_SHOT_DESTROY_HIRES:
{
#if !defined(RT_OS_SOLARIS) && !defined(RT_OS_WINDOWS) /* Not expected to work on all hosts. */
/* Create a one-shot timer and destroy it in the callback handler. */
PRTTIMER pTimer;
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
for (uint32_t iTest = 0; iTest < 2; iTest++)
{
int rc = RTTimerCreateEx(&pTimer, 0, fFlags, tstRTR0TimerCallbackDestroyOnce, &State);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("one-shot timer are not supported, skipping\n");
RTR0TESTR0_SKIP();
break;
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
RT_ZERO(State);
State.rc = VERR_IPE_UNINITIALIZED_STATUS;
State.iActionShot = 0;
ASMAtomicWriteU32(&State.cShots, State.cShots);
do /* break loop */
{
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, cNsSysHz * iTest), VINF_SUCCESS);
for (uint32_t i = 0; i < 1000 && (ASMAtomicUoReadU32(&State.cShots) < 1 || State.rc == VERR_IPE_UNINITIALIZED_STATUS); i++)
RTThreadSleep(5);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicReadU32(&State.cShots) == 1, ("cShots=%u\n", State.cShots));
RTR0TESTR0_CHECK_MSG_BREAK(State.rc == VINF_SUCCESS, ("rc=%Rrc\n", State.rc));
} while (0);
if (RT_FAILURE(State.rc))
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
}
#else
RTR0TestR0Info("destroying from callback not supported on this platform\n");
RTR0TESTR0_SKIP();
#endif
break;
}
case TSTRTR0TIMER_ONE_SHOT_SPECIFIC:
case TSTRTR0TIMER_ONE_SHOT_SPECIFIC_HIRES:
{
PRTTIMER pTimer = NULL;
RTCPUSET OnlineSet;
RTMpGetOnlineSet(&OnlineSet);
for (uint32_t iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if (RTCpuSetIsMemberByIndex(&OnlineSet, iCpu))
{
RT_ZERO(State);
State.iActionShot = 0;
State.rc = VINF_SUCCESS;
State.u.Specific.idCpu = RTMpCpuIdFromSetIndex(iCpu);
ASMAtomicWriteU32(&State.cShots, State.cShots);
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
fFlags |= RTTIMER_FLAGS_CPU(iCpu);
int rc = RTTimerCreateEx(&pTimer, 0, fFlags, tstRTR0TimerCallbackSpecific, &State);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("one-shot specific timer are not supported, skipping\n");
RTR0TESTR0_SKIP();
break;
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
for (uint32_t i = 0; i < 5 && !RTR0TestR0HaveErrors(); i++)
{
ASMAtomicWriteU32(&State.cShots, 0);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, (i & 2 ? cNsSysHz : cNsSysHz / 2) * (i & 1)), VINF_SUCCESS);
uint64_t cNsElapsed = RTTimeSystemNanoTS();
for (uint32_t j = 0; j < 1000 && ASMAtomicUoReadU32(&State.cShots) < 1; j++)
RTThreadSleep(5);
cNsElapsed = RTTimeSystemNanoTS() - cNsElapsed;
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicReadU32(&State.cShots) == 1,
("cShots=%u iCpu=%u i=%u iCurCpu=%u cNsElapsed=%'llu\n",
State.cShots, iCpu, i, RTMpCpuIdToSetIndex(RTMpCpuId()), cNsElapsed ));
RTR0TESTR0_CHECK_MSG_BREAK(State.rc == VINF_SUCCESS, ("rc=%Rrc\n", State.rc));
RTR0TESTR0_CHECK_MSG_BREAK(!State.u.Specific.fFailed, ("iCpu=%u i=%u\n", iCpu, i));
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
pTimer = NULL;
if (RTR0TestR0HaveErrors())
break;
RTMpGetOnlineSet(&OnlineSet);
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
break;
}
case TSTRTR0TIMER_PERIODIC_BASIC:
case TSTRTR0TIMER_PERIODIC_BASIC_HIRES:
{
/* Create a periodic timer running at 10 HZ. */
uint32_t const u10HzAsNs = 100000000;
uint32_t const u10HzAsNsMin = u10HzAsNs - u10HzAsNs / 2;
uint32_t const u10HzAsNsMax = u10HzAsNs + u10HzAsNs / 2;
PRTTIMER pTimer;
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
RTR0TESTR0_CHECK_RC_BREAK(RTTimerCreateEx(&pTimer, u10HzAsNs, fFlags, tstRTR0TimerCallbackU32Counter, &State),
VINF_SUCCESS);
for (uint32_t iTest = 0; iTest < 2; iTest++)
{
RT_ZERO(State);
State.fPeriodic = true;
ASMAtomicWriteU32(&State.cShots, State.cShots);
uint64_t uStartNsTS = RTTimeSystemNanoTS();
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, u10HzAsNs), VINF_SUCCESS);
for (uint32_t i = 0; i < 1000 && ASMAtomicUoReadU32(&State.cShots) < 10; i++)
RTThreadSleep(10);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStop(pTimer), VINF_SUCCESS);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicUoReadU32(&State.cShots) == 10, ("cShots=%u\n", State.cShots));
if (tstRTR0TimerCheckShotIntervals(&State, uStartNsTS, u10HzAsNsMin, u10HzAsNsMax))
break;
RTThreadSleep(1); /** @todo RTTimerStop doesn't currently make sure the timer callback not is running
* before returning on windows, linux (low res) and possible other plaforms. */
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
RTR0TESTR0_CHECK_RC(RTTimerDestroy(NULL), VINF_SUCCESS);
break;
}
case TSTRTR0TIMER_PERIODIC_CSSD_LOOPS:
case TSTRTR0TIMER_PERIODIC_CSSD_LOOPS_HIRES:
{
/* create, start, stop & destroy high res timers a number of times. */
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
for (uint32_t i = 0; i < 40; i++)
{
PRTTIMER pTimer;
RTR0TESTR0_CHECK_RC_BREAK(RTTimerCreateEx(&pTimer, cNsSysHz, fFlags, tstRTR0TimerCallbackU32Counter, &State),
VINF_SUCCESS);
for (uint32_t j = 0; j < 10; j++)
{
RT_ZERO(State);
State.fPeriodic = true;
ASMAtomicWriteU32(&State.cShots, State.cShots); /* ordered, necessary? */
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, i < 20 ? 0 : cNsSysHz), VINF_SUCCESS);
for (uint32_t k = 0; k < 1000 && ASMAtomicUoReadU32(&State.cShots) < 2; k++)
RTThreadSleep(1);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStop(pTimer), VINF_SUCCESS);
RTThreadSleep(1); /** @todo RTTimerStop doesn't currently make sure the timer callback not is running
* before returning on windows, linux (low res) and possible other plaforms. */
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
}
break;
}
case TSTRTR0TIMER_PERIODIC_CHANGE_INTERVAL:
case TSTRTR0TIMER_PERIODIC_CHANGE_INTERVAL_HIRES:
{
/* Initialize the test parameters, using the u64Arg value for selecting variations. */
RT_ZERO(State);
State.cShots = 0;
State.rc = VERR_IPE_UNINITIALIZED_STATUS;
State.iActionShot = 42;
State.fPeriodic = true;
State.u.ChgInt.fDirection = !!(u64Arg & 1);
if (uOperation == TSTRTR0TIMER_PERIODIC_CHANGE_INTERVAL_HIRES)
{
State.u.ChgInt.cNsMaxInterval = RT_MAX(cNsMaxHighResHz * 10, 20000000); /* 10x / 20 ms */
State.u.ChgInt.cNsMinInterval = RT_MAX(cNsMaxHighResHz, 10000); /* min / 10 us */
}
else
{
State.u.ChgInt.cNsMaxInterval = cNsSysHz * 4;
State.u.ChgInt.cNsMinInterval = cNsSysHz;
}
State.u.ChgInt.cNsChangeStep = (State.u.ChgInt.cNsMaxInterval - State.u.ChgInt.cNsMinInterval) / 10;
State.u.ChgInt.cNsCurInterval = State.u.ChgInt.fDirection
? State.u.ChgInt.cNsMaxInterval : State.u.ChgInt.cNsMinInterval;
State.u.ChgInt.cStepsBetween = u64Arg & 4 ? 1 : 3;
RTR0TESTR0_CHECK_MSG_BREAK(State.u.ChgInt.cNsMinInterval > 1000, ("%u\n", State.u.ChgInt.cNsMinInterval));
RTR0TESTR0_CHECK_MSG_BREAK(State.u.ChgInt.cNsMaxInterval > State.u.ChgInt.cNsMinInterval, ("max=%u min=%u\n", State.u.ChgInt.cNsMaxInterval, State.u.ChgInt.cNsMinInterval));
ASMAtomicWriteU32(&State.cShots, State.cShots);
/* create the timer and check if RTTimerChangeInterval is supported. */
PRTTIMER pTimer;
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
RTR0TESTR0_CHECK_RC_BREAK(RTTimerCreateEx(&pTimer, cNsSysHz, fFlags, tstRTR0TimerCallbackChangeInterval, &State),
VINF_SUCCESS);
int rc = RTTimerChangeInterval(pTimer, State.u.ChgInt.cNsMinInterval);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("RTTimerChangeInterval not supported, skipped");
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
RTR0TESTR0_SKIP();
break;
}
/* do the test. */
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, u64Arg & 2 ? State.u.ChgInt.cNsCurInterval : 0), VINF_SUCCESS);
for (uint32_t k = 0;
k < 1000
&& ASMAtomicReadU32(&State.cShots) <= State.iActionShot
&& State.rc == VERR_IPE_UNINITIALIZED_STATUS;
k++)
RTThreadSleep(10);
rc = RTTimerStop(pTimer);
RTR0TESTR0_CHECK_MSG_BREAK(rc == VERR_TIMER_SUSPENDED || rc == VINF_SUCCESS, ("rc = %Rrc (RTTimerStop)\n", rc));
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
break;
}
case TSTRTR0TIMER_PERIODIC_SPECIFIC:
case TSTRTR0TIMER_PERIODIC_SPECIFIC_HIRES:
{
PRTTIMER pTimer = NULL;
RTCPUSET OnlineSet;
RTMpGetOnlineSet(&OnlineSet);
for (uint32_t iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if (RTCpuSetIsMemberByIndex(&OnlineSet, iCpu))
{
RT_ZERO(State);
State.iActionShot = 0;
State.rc = VINF_SUCCESS;
State.fPeriodic = true;
State.u.Specific.idCpu = RTMpCpuIdFromSetIndex(iCpu);
ASMAtomicWriteU32(&State.cShots, State.cShots);
uint32_t fFlags = TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0;
fFlags |= RTTIMER_FLAGS_CPU(iCpu);
int rc = RTTimerCreateEx(&pTimer, cNsSysHz, fFlags, tstRTR0TimerCallbackSpecific, &State);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TestR0Info("specific timer are not supported, skipping\n");
RTR0TESTR0_SKIP();
break;
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
for (uint32_t i = 0; i < 3 && !RTR0TestR0HaveErrors(); i++)
{
ASMAtomicWriteU32(&State.cShots, 0);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, (i & 2 ? cNsSysHz : cNsSysHz / 2) * (i & 1)), VINF_SUCCESS);
uint64_t cNsElapsed = RTTimeSystemNanoTS();
for (uint32_t j = 0; j < 1000 && ASMAtomicUoReadU32(&State.cShots) < 8; j++)
RTThreadSleep(5);
cNsElapsed = RTTimeSystemNanoTS() - cNsElapsed;
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStop(pTimer), VINF_SUCCESS);
RTR0TESTR0_CHECK_MSG_BREAK(ASMAtomicReadU32(&State.cShots) > 5,
("cShots=%u iCpu=%u i=%u iCurCpu=%u cNsElapsed=%'llu\n",
State.cShots, iCpu, i, RTMpCpuIdToSetIndex(RTMpCpuId()), cNsElapsed));
RTThreadSleep(1); /** @todo RTTimerStop doesn't currently make sure the timer callback not is running
* before returning on windows, linux (low res) and possible other plaforms. */
RTR0TESTR0_CHECK_MSG_BREAK(State.rc == VINF_SUCCESS, ("rc=%Rrc\n", State.rc));
RTR0TESTR0_CHECK_MSG_BREAK(!State.u.Specific.fFailed, ("iCpu=%u i=%u\n", iCpu, i));
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
pTimer = NULL;
if (RTR0TestR0HaveErrors())
break;
RTMpGetOnlineSet(&OnlineSet);
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
break;
}
case TSTRTR0TIMER_PERIODIC_OMNI:
case TSTRTR0TIMER_PERIODIC_OMNI_HIRES:
{
/* Create a periodic timer running at max host frequency, but no more than 1000 Hz. */
uint32_t cNsInterval = cNsSysHz;
while (cNsInterval < UINT32_C(1000000))
cNsInterval *= 2;
PTSTRTR0TIMEROMNI1 paStates = (PTSTRTR0TIMEROMNI1)RTMemAllocZ(sizeof(paStates[0]) * RTCPUSET_MAX_CPUS);
RTR0TESTR0_CHECK_MSG_BREAK(paStates, ("%d\n", RTCPUSET_MAX_CPUS));
PRTTIMER pTimer;
uint32_t fFlags = (TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0)
| RTTIMER_FLAGS_CPU_ALL;
int rc = RTTimerCreateEx(&pTimer, cNsInterval, fFlags, tstRTR0TimerCallbackOmni, paStates);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TESTR0_SKIP_BREAK();
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
for (uint32_t iTest = 0; iTest < 3 && !RTR0TestR0HaveErrors(); iTest++)
{
/* reset the state */
for (uint32_t iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
{
paStates[iCpu].u64Start = 0;
paStates[iCpu].u64Last = 0;
ASMAtomicWriteU32(&paStates[iCpu].cTicks, 0);
}
/* run it for 5 seconds. */
RTCPUSET OnlineSet;
uint64_t uStartNsTS = RTTimeSystemNanoTS();
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, 0), VINF_SUCCESS);
RTMpGetOnlineSet(&OnlineSet);
for (uint32_t i = 0; i < 5000 && RTTimeSystemNanoTS() - uStartNsTS <= UINT64_C(5000000000); i++)
RTThreadSleep(2);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStop(pTimer), VINF_SUCCESS);
uint64_t cNsElapsedX = RTTimeNanoTS() - uStartNsTS;
/* Do a min/max on the start and stop times and calculate the test period. */
uint64_t u64MinStart = UINT64_MAX;
uint64_t u64MaxStop = 0;
for (uint32_t iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
{
if (paStates[iCpu].u64Start)
{
if (paStates[iCpu].u64Start < u64MinStart)
u64MinStart = paStates[iCpu].u64Start;
if (paStates[iCpu].u64Last > u64MaxStop)
u64MaxStop = paStates[iCpu].u64Last;
}
}
RTR0TESTR0_CHECK_MSG(u64MinStart < u64MaxStop, ("%llu, %llu", u64MinStart, u64MaxStop));
uint64_t cNsElapsed = u64MaxStop - u64MinStart;
RTR0TESTR0_CHECK_MSG(cNsElapsed <= cNsElapsedX + 100000, ("%llu, %llu", cNsElapsed, cNsElapsedX)); /* the fudge factor is time drift */
uint32_t cAvgTicks = cNsElapsed / cNsInterval + 1;
/* Check tick counts. ASSUMES no cpu on- or offlining.
This only catches really bad stuff. */
uint32_t cMargin = TSTRTR0TIMER_IS_HIRES(uOperation) ? 10 : 5; /* Allow a wider deviation for the non hires timers. */
uint32_t cMinTicks = cAvgTicks - cAvgTicks / cMargin;
uint32_t cMaxTicks = cAvgTicks + cAvgTicks / cMargin + 1;
for (uint32_t iCpu = 0; iCpu < RTCPUSET_MAX_CPUS; iCpu++)
if (paStates[iCpu].cTicks)
{
RTR0TESTR0_CHECK_MSG(RTCpuSetIsMemberByIndex(&OnlineSet, iCpu), ("%d\n", iCpu));
RTR0TESTR0_CHECK_MSG(paStates[iCpu].cTicks <= cMaxTicks && paStates[iCpu].cTicks >= cMinTicks,
("min=%u, ticks=%u, avg=%u max=%u, iCpu=%u, iCpuCurr=%u, interval=%'u, elapsed=%'llu/%'llu\n",
cMinTicks, paStates[iCpu].cTicks, cAvgTicks, cMaxTicks, iCpu,
RTMpCpuIdToSetIndex(RTMpCpuId()),
cNsInterval, cNsElapsed, cNsElapsedX));
}
else
RTR0TESTR0_CHECK_MSG(!RTCpuSetIsMemberByIndex(&OnlineSet, iCpu), ("%d\n", iCpu));
}
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
RTMemFree(paStates);
break;
}
case TSTRTR0TIMER_LATENCY_OMNI:
case TSTRTR0TIMER_LATENCY_OMNI_HIRES:
{
/*
* Create a periodic timer running at max host frequency, but no more than 1000 Hz.
*/
PRTTIMER pTimer;
uint32_t fFlags = (TSTRTR0TIMER_IS_HIRES(uOperation) ? RTTIMER_FLAGS_HIGH_RES : 0)
| RTTIMER_FLAGS_CPU_ALL;
uint32_t cNsInterval = cNsSysHz;
while (cNsInterval < UINT32_C(1000000))
cNsInterval *= 2;
int rc = RTTimerCreateEx(&pTimer, cNsInterval, fFlags, tstRTR0TimerCallbackLatencyOmni, NULL);
if (rc == VERR_NOT_SUPPORTED)
{
RTR0TESTR0_SKIP_BREAK();
}
RTR0TESTR0_CHECK_RC_BREAK(rc, VINF_SUCCESS);
/*
* Reset the state and run the test for 4 seconds.
*/
RT_ZERO(g_aOmniLatency);
RTCPUSET OnlineSet;
uint64_t uStartNsTS = RTTimeSystemNanoTS();
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStart(pTimer, 0), VINF_SUCCESS);
RTMpGetOnlineSet(&OnlineSet);
for (uint32_t i = 0; i < 5000 && RTTimeSystemNanoTS() - uStartNsTS <= UINT64_C(4000000000); i++)
RTThreadSleep(2);
RTR0TESTR0_CHECK_RC_BREAK(RTTimerStop(pTimer), VINF_SUCCESS);
/*
* Process the result.
*/
int32_t cNsLow = cNsInterval / 4 * 3; /* 75% */
int32_t cNsHigh = cNsInterval / 4 * 5; /* 125% */
uint32_t cTotal = 0;
uint32_t cLow = 0;
uint32_t cHigh = 0;
for (uint32_t iCpu = 0; iCpu < RT_ELEMENTS(g_aOmniLatency); iCpu++)
{
uint32_t cSamples = g_aOmniLatency[iCpu].cSamples;
if (cSamples > 1)
{
cTotal += cSamples - 1;
for (uint32_t iSample = 1; iSample < cSamples; iSample++)
{
int64_t cNsDelta = g_aOmniLatency[iCpu].aSamples[iSample - 1].uNanoTs
- g_aOmniLatency[iCpu].aSamples[iSample].uNanoTs;
if (cNsDelta < cNsLow)
cLow++;
else if (cNsDelta > cNsHigh)
cHigh++;
}
}
}
RTR0TestR0Info("125%%: %u; 75%%: %u; total: %u", cHigh, cLow, cTotal);
RTR0TESTR0_CHECK_RC(RTTimerDestroy(pTimer), VINF_SUCCESS);
break;
}
}
RTR0TESTR0_SRV_REQ_EPILOG(pReqHdr);
/* The error indicator is the '!' in the message buffer. */
return VINF_SUCCESS;
}
|