summaryrefslogtreecommitdiffstats
path: root/src/bezier.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/bezier.c')
-rw-r--r--src/bezier.c177
1 files changed, 177 insertions, 0 deletions
diff --git a/src/bezier.c b/src/bezier.c
new file mode 100644
index 0000000..95af16a
--- /dev/null
+++ b/src/bezier.c
@@ -0,0 +1,177 @@
+/*
+ * Copyright © 2016 Red Hat, Inc.
+ *
+ * Permission to use, copy, modify, distribute, and sell this software
+ * and its documentation for any purpose is hereby granted without
+ * fee, provided that the above copyright notice appear in all copies
+ * and that both that copyright notice and this permission notice
+ * appear in supporting documentation, and that the name of Red Hat
+ * not be used in advertising or publicity pertaining to distribution
+ * of the software without specific, written prior permission. Red
+ * Hat makes no representations about the suitability of this software
+ * for any purpose. It is provided "as is" without express or implied
+ * warranty.
+ *
+ * THE AUTHORS DISCLAIM ALL WARRANTIES WITH REGARD TO THIS SOFTWARE,
+ * INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS, IN
+ * NO EVENT SHALL THE AUTHORS BE LIABLE FOR ANY SPECIAL, INDIRECT OR
+ * CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS
+ * OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
+ * NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF OR IN
+ * CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
+ */
+
+#ifdef HAVE_CONFIG_H
+#include "config.h"
+#endif
+
+#include <assert.h>
+#include <math.h>
+#include <stdio.h>
+
+#include "bezier.h"
+
+const struct bezier_control_point bezier_defaults[4] = {
+ { 0.0, 0.0 },
+ { 0.0, 0.0 },
+ { 1.0, 1.0 },
+ { 1.0, 1.0 },
+};
+
+struct point {
+ int x, y;
+};
+
+/**
+ * de Casteljau's algorithm. See this page here
+ * https://pomax.github.io/bezierinfo/#extended
+ *
+ * To play with bezier curve shapes, I used
+ * http://cubic-bezier.com/
+ */
+static struct point
+decasteljau(const struct point *controls,
+ size_t ncontrols,
+ double t)
+{
+ struct point new_controls[ncontrols];
+
+ if (ncontrols == 1)
+ return controls[0];
+
+ for (int i = 0; i < ncontrols - 1; i++) {
+ new_controls[i].x = (1.0 - t) * controls[i].x + t * controls[i + 1].x;
+ new_controls[i].y = (1.0 - t) * controls[i].y + t * controls[i + 1].y;
+ }
+
+ return decasteljau(new_controls, ncontrols - 1, t);
+}
+
+/**
+ * Given a Bézier curve defined by the control points, reduce the curve to
+ * one with ncurve_points.
+ */
+static void
+flatten_curve(const struct point *controls,
+ size_t ncontrols,
+ struct point *curve,
+ size_t ncurve_points)
+{
+ ncurve_points--; /* make sure we end up with 100/100 as last point */
+
+ for (int i = 0; i <= ncurve_points; i++) {
+ double t = 1.0 * i/ncurve_points;
+ struct point p;
+
+ p = decasteljau(controls, ncontrols, t);
+ curve[i] = p;
+ }
+}
+
+/**
+ * Calculate line through a and b, set curve[x] for each x between
+ * [a.x, b.x].
+ *
+ * Note: pcurve must be at least b.x size.
+ */
+static void
+line_between(struct point a, struct point b,
+ struct point *curve, size_t curve_sz)
+{
+ double slope;
+ double offset;
+
+ assert(b.x < curve_sz);
+
+ if (a.x == b.x) {
+ curve[a.x].x = a.x;
+ curve[a.x].y = a.y;
+ return;
+ }
+
+ slope = (double)(b.y - a.y)/(b.x - a.x);
+ offset = a.y - slope * a.x;
+
+ for (int x = a.x; x <= b.x; x++) {
+ struct point p;
+ p.x = x;
+ p.y = slope * x + offset;
+ curve[x] = p;
+ }
+}
+
+bool
+cubic_bezier(const struct bezier_control_point controls[4],
+ int *bezier_out,
+ size_t bezier_sz)
+{
+ const int nsegments = 50;
+ const int range = bezier_sz - 1;
+ struct point curve[nsegments];
+ struct point bezier[bezier_sz];
+ struct point zero = { 0, 0 },
+ max = { range, range};
+
+ /* Scale control points into the [0, bezier_sz) range */
+ struct point ctrls[4];
+
+ for (int i = 0; i < 4; i++) {
+ if (controls[i].x < 0.0 || controls[i].x > 1.0 ||
+ controls[i].y < 0.0 || controls[i].y > 1.0)
+ return false;
+
+ ctrls[i].x = controls[i].x * range;
+ ctrls[i].y = controls[i].y * range;
+ }
+
+ for (int i = 0; i < 3; i++) {
+ if (ctrls[i].x > ctrls[i+1].x)
+ return false;
+ }
+
+ /* Reduce curve to nsegments, because this isn't a drawing program */
+ flatten_curve(ctrls, 4, curve, nsegments);
+
+ /* we now have nsegments points in curve that represent the bezier
+ curve (already in the [0, bezier_sz) range). Run through the
+ points and draw a straight line between each point and voila, we
+ have our curve.
+
+ If the first control points (x0/y0) is not at x == 0 or the last
+ control point (x3/y3) is not at the max value, draw a line
+ between from 0/0 to x0/y0 and from x3/y3 to xmax/y3.
+ */
+
+ line_between(zero, curve[0], bezier, bezier_sz);
+
+ for (int i = 0; i < nsegments - 1; i++)
+ line_between(curve[i], curve[i+1], bezier, bezier_sz);
+
+ if (curve[nsegments - 1].x < max.x)
+ line_between(curve[nsegments - 1], max, bezier, bezier_sz);
+
+ for (int i = 0; i < bezier_sz; i++)
+ bezier_out[i] = bezier[i].y;
+
+ return true;
+}