summaryrefslogtreecommitdiffstats
path: root/src/arrow/js/test/data
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/arrow/js/test/data
parentInitial commit. (diff)
downloadceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz
ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/arrow/js/test/data')
-rw-r--r--src/arrow/js/test/data/tables.ts84
1 files changed, 84 insertions, 0 deletions
diff --git a/src/arrow/js/test/data/tables.ts b/src/arrow/js/test/data/tables.ts
new file mode 100644
index 000000000..6ce2c861d
--- /dev/null
+++ b/src/arrow/js/test/data/tables.ts
@@ -0,0 +1,84 @@
+// Licensed to the Apache Software Foundation (ASF) under one
+// or more contributor license agreements. See the NOTICE file
+// distributed with this work for additional information
+// regarding copyright ownership. The ASF licenses this file
+// to you under the Apache License, Version 2.0 (the
+// "License"); you may not use this file except in compliance
+// with the License. You may obtain a copy of the License at
+//
+// http://www.apache.org/licenses/LICENSE-2.0
+//
+// Unless required by applicable law or agreed to in writing,
+// software distributed under the License is distributed on an
+// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+// KIND, either express or implied. See the License for the
+// specific language governing permissions and limitations
+// under the License.
+
+import { vecs } from '../generate-test-data';
+import * as generate from '../generate-test-data';
+import { Schema, Field, Dictionary } from '../Arrow';
+
+const listVectorGeneratorNames = ['list', 'fixedSizeList'];
+const nestedVectorGeneratorNames = [ 'struct', 'denseUnion', 'sparseUnion', 'map' ];
+const dictionaryKeyGeneratorNames = ['int8' ,'int16' ,'int32' ,'uint8' ,'uint16' ,'uint32'];
+const valueVectorGeneratorNames = [
+ 'null_', 'bool', 'int8', 'int16', 'int32', 'int64', 'uint8', 'uint16', 'uint32', 'uint64',
+ 'float16', 'float32', 'float64', 'utf8', 'binary', 'fixedSizeBinary', 'dateDay', 'dateMillisecond',
+ 'timestampSecond', 'timestampMillisecond', 'timestampMicrosecond', 'timestampNanosecond',
+ 'timeSecond', 'timeMillisecond', 'timeMicrosecond', 'timeNanosecond', 'decimal',
+ 'dictionary', 'intervalDayTime', 'intervalYearMonth'
+];
+
+const vectorGeneratorNames = [...valueVectorGeneratorNames, ...listVectorGeneratorNames, ...nestedVectorGeneratorNames];
+
+export function* generateRandomTables(batchLengths = [1000, 2000, 3000], minCols = 1, maxCols = 5) {
+
+ let numCols = 0;
+ let allNames = shuffle(vectorGeneratorNames);
+
+ do {
+ numCols = Math.max(Math.min(
+ Math.random() * maxCols | 0, allNames.length), minCols);
+
+ let names = allNames.slice(0, numCols);
+ let types = names.map((fn) => vecs[fn](0).vector.type);
+ let schema = new Schema(names.map((name, i) => new Field(name, types[i])));
+
+ yield generate.table(batchLengths, schema).table;
+
+ } while ((allNames = allNames.slice(numCols)).length > 0);
+}
+
+/**
+ * Yields a series of tables containing a single Dictionary-encoded column.
+ * Each yielded table will be a unique combination of dictionary and indexType,
+ * such that consuming all tables ensures all Arrow types dictionary-encode.
+ *
+ * @param batchLengths number[] Number and length of recordbatches to generate
+ */
+export function* generateDictionaryTables(batchLengths = [100, 200, 300]) {
+ for (const dictName of valueVectorGeneratorNames) {
+ if (dictName === 'dictionary') { continue; }
+ const dictionary = vecs[dictName](100).vector;
+ for (const keys of dictionaryKeyGeneratorNames) {
+ const valsType = dictionary.type;
+ const keysType = vecs[keys](0).vector.type;
+ const dictType = new Dictionary(valsType, keysType);
+ const schema = new Schema([new Field(`dict[${keys}]`, dictType, true)]);
+ yield generate.table(batchLengths, schema).table;
+ }
+ }
+}
+
+function shuffle(input: any[]) {
+ const result = input.slice();
+ let j, tmp, i = result.length;
+ while (--i > 0) {
+ j = (Math.random() * (i + 1)) | 0;
+ tmp = result[i];
+ result[i] = result[j];
+ result[j] = tmp;
+ }
+ return result;
+}