diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
commit | e6918187568dbd01842d8d1d2c808ce16a894239 (patch) | |
tree | 64f88b554b444a49f656b6c656111a145cbbaa28 /src/arrow/python/pyarrow/tests/test_scalars.py | |
parent | Initial commit. (diff) | |
download | ceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip |
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/arrow/python/pyarrow/tests/test_scalars.py')
-rw-r--r-- | src/arrow/python/pyarrow/tests/test_scalars.py | 687 |
1 files changed, 687 insertions, 0 deletions
diff --git a/src/arrow/python/pyarrow/tests/test_scalars.py b/src/arrow/python/pyarrow/tests/test_scalars.py new file mode 100644 index 000000000..778ce1066 --- /dev/null +++ b/src/arrow/python/pyarrow/tests/test_scalars.py @@ -0,0 +1,687 @@ +# Licensed to the Apache Software Foundation (ASF) under one +# or more contributor license agreements. See the NOTICE file +# distributed with this work for additional information +# regarding copyright ownership. The ASF licenses this file +# to you under the Apache License, Version 2.0 (the +# "License"); you may not use this file except in compliance +# with the License. You may obtain a copy of the License at +# +# http://www.apache.org/licenses/LICENSE-2.0 +# +# Unless required by applicable law or agreed to in writing, +# software distributed under the License is distributed on an +# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY +# KIND, either express or implied. See the License for the +# specific language governing permissions and limitations +# under the License. + +import datetime +import decimal +import pickle +import pytest +import weakref + +import numpy as np + +import pyarrow as pa + + +@pytest.mark.parametrize(['value', 'ty', 'klass', 'deprecated'], [ + (False, None, pa.BooleanScalar, pa.BooleanValue), + (True, None, pa.BooleanScalar, pa.BooleanValue), + (1, None, pa.Int64Scalar, pa.Int64Value), + (-1, None, pa.Int64Scalar, pa.Int64Value), + (1, pa.int8(), pa.Int8Scalar, pa.Int8Value), + (1, pa.uint8(), pa.UInt8Scalar, pa.UInt8Value), + (1, pa.int16(), pa.Int16Scalar, pa.Int16Value), + (1, pa.uint16(), pa.UInt16Scalar, pa.UInt16Value), + (1, pa.int32(), pa.Int32Scalar, pa.Int32Value), + (1, pa.uint32(), pa.UInt32Scalar, pa.UInt32Value), + (1, pa.int64(), pa.Int64Scalar, pa.Int64Value), + (1, pa.uint64(), pa.UInt64Scalar, pa.UInt64Value), + (1.0, None, pa.DoubleScalar, pa.DoubleValue), + (np.float16(1.0), pa.float16(), pa.HalfFloatScalar, pa.HalfFloatValue), + (1.0, pa.float32(), pa.FloatScalar, pa.FloatValue), + (decimal.Decimal("1.123"), None, pa.Decimal128Scalar, pa.Decimal128Value), + (decimal.Decimal("1.1234567890123456789012345678901234567890"), + None, pa.Decimal256Scalar, pa.Decimal256Value), + ("string", None, pa.StringScalar, pa.StringValue), + (b"bytes", None, pa.BinaryScalar, pa.BinaryValue), + ("largestring", pa.large_string(), pa.LargeStringScalar, + pa.LargeStringValue), + (b"largebytes", pa.large_binary(), pa.LargeBinaryScalar, + pa.LargeBinaryValue), + (b"abc", pa.binary(3), pa.FixedSizeBinaryScalar, pa.FixedSizeBinaryValue), + ([1, 2, 3], None, pa.ListScalar, pa.ListValue), + ([1, 2, 3, 4], pa.large_list(pa.int8()), pa.LargeListScalar, + pa.LargeListValue), + ([1, 2, 3, 4, 5], pa.list_(pa.int8(), 5), pa.FixedSizeListScalar, + pa.FixedSizeListValue), + (datetime.date.today(), None, pa.Date32Scalar, pa.Date32Value), + (datetime.date.today(), pa.date64(), pa.Date64Scalar, pa.Date64Value), + (datetime.datetime.now(), None, pa.TimestampScalar, pa.TimestampValue), + (datetime.datetime.now().time().replace(microsecond=0), pa.time32('s'), + pa.Time32Scalar, pa.Time32Value), + (datetime.datetime.now().time(), None, pa.Time64Scalar, pa.Time64Value), + (datetime.timedelta(days=1), None, pa.DurationScalar, pa.DurationValue), + (pa.MonthDayNano([1, -1, -10100]), None, + pa.MonthDayNanoIntervalScalar, None), + ({'a': 1, 'b': [1, 2]}, None, pa.StructScalar, pa.StructValue), + ([('a', 1), ('b', 2)], pa.map_(pa.string(), pa.int8()), pa.MapScalar, + pa.MapValue), +]) +def test_basics(value, ty, klass, deprecated): + s = pa.scalar(value, type=ty) + assert isinstance(s, klass) + assert s.as_py() == value + assert s == pa.scalar(value, type=ty) + assert s != value + assert s != "else" + assert hash(s) == hash(s) + assert s.is_valid is True + assert s != None # noqa: E711 + if deprecated is not None: + with pytest.warns(FutureWarning): + assert isinstance(s, deprecated) + + s = pa.scalar(None, type=s.type) + assert s.is_valid is False + assert s.as_py() is None + assert s != pa.scalar(value, type=ty) + + # test pickle roundtrip + restored = pickle.loads(pickle.dumps(s)) + assert s.equals(restored) + + # test that scalars are weak-referenceable + wr = weakref.ref(s) + assert wr() is not None + del s + assert wr() is None + + +def test_null_singleton(): + with pytest.raises(RuntimeError): + pa.NullScalar() + + +def test_nulls(): + null = pa.scalar(None) + assert null is pa.NA + assert null.as_py() is None + assert null != "something" + assert (null == pa.scalar(None)) is True + assert (null == 0) is False + assert pa.NA == pa.NA + assert pa.NA not in [5] + + arr = pa.array([None, None]) + for v in arr: + assert v is pa.NA + assert v.as_py() is None + + # test pickle roundtrip + restored = pickle.loads(pickle.dumps(null)) + assert restored.equals(null) + + # test that scalars are weak-referenceable + wr = weakref.ref(null) + assert wr() is not None + del null + assert wr() is not None # singleton + + +def test_hashing(): + # ARROW-640 + values = list(range(500)) + arr = pa.array(values + values) + set_from_array = set(arr) + assert isinstance(set_from_array, set) + assert len(set_from_array) == 500 + + +def test_bool(): + false = pa.scalar(False) + true = pa.scalar(True) + + assert isinstance(false, pa.BooleanScalar) + assert isinstance(true, pa.BooleanScalar) + + assert repr(true) == "<pyarrow.BooleanScalar: True>" + assert str(true) == "True" + assert repr(false) == "<pyarrow.BooleanScalar: False>" + assert str(false) == "False" + + assert true.as_py() is True + assert false.as_py() is False + + +def test_numerics(): + # int64 + s = pa.scalar(1) + assert isinstance(s, pa.Int64Scalar) + assert repr(s) == "<pyarrow.Int64Scalar: 1>" + assert str(s) == "1" + assert s.as_py() == 1 + + with pytest.raises(OverflowError): + pa.scalar(-1, type='uint8') + + # float64 + s = pa.scalar(1.5) + assert isinstance(s, pa.DoubleScalar) + assert repr(s) == "<pyarrow.DoubleScalar: 1.5>" + assert str(s) == "1.5" + assert s.as_py() == 1.5 + + # float16 + s = pa.scalar(np.float16(0.5), type='float16') + assert isinstance(s, pa.HalfFloatScalar) + assert repr(s) == "<pyarrow.HalfFloatScalar: 0.5>" + assert str(s) == "0.5" + assert s.as_py() == 0.5 + + +def test_decimal128(): + v = decimal.Decimal("1.123") + s = pa.scalar(v) + assert isinstance(s, pa.Decimal128Scalar) + assert s.as_py() == v + assert s.type == pa.decimal128(4, 3) + + v = decimal.Decimal("1.1234") + with pytest.raises(pa.ArrowInvalid): + pa.scalar(v, type=pa.decimal128(4, scale=3)) + with pytest.raises(pa.ArrowInvalid): + pa.scalar(v, type=pa.decimal128(5, scale=3)) + + s = pa.scalar(v, type=pa.decimal128(5, scale=4)) + assert isinstance(s, pa.Decimal128Scalar) + assert s.as_py() == v + + +def test_decimal256(): + v = decimal.Decimal("1234567890123456789012345678901234567890.123") + s = pa.scalar(v) + assert isinstance(s, pa.Decimal256Scalar) + assert s.as_py() == v + assert s.type == pa.decimal256(43, 3) + + v = decimal.Decimal("1.1234") + with pytest.raises(pa.ArrowInvalid): + pa.scalar(v, type=pa.decimal256(4, scale=3)) + with pytest.raises(pa.ArrowInvalid): + pa.scalar(v, type=pa.decimal256(5, scale=3)) + + s = pa.scalar(v, type=pa.decimal256(5, scale=4)) + assert isinstance(s, pa.Decimal256Scalar) + assert s.as_py() == v + + +def test_date(): + # ARROW-5125 + d1 = datetime.date(3200, 1, 1) + d2 = datetime.date(1960, 1, 1) + + for ty in [pa.date32(), pa.date64()]: + for d in [d1, d2]: + s = pa.scalar(d, type=ty) + assert s.as_py() == d + + +def test_date_cast(): + # ARROW-10472 - casting fo scalars doesn't segfault + scalar = pa.scalar(datetime.datetime(2012, 1, 1), type=pa.timestamp("us")) + expected = datetime.date(2012, 1, 1) + for ty in [pa.date32(), pa.date64()]: + result = scalar.cast(ty) + assert result.as_py() == expected + + +def test_time(): + t1 = datetime.time(18, 0) + t2 = datetime.time(21, 0) + + types = [pa.time32('s'), pa.time32('ms'), pa.time64('us'), pa.time64('ns')] + for ty in types: + for t in [t1, t2]: + s = pa.scalar(t, type=ty) + assert s.as_py() == t + + +def test_cast(): + val = pa.scalar(5, type='int8') + assert val.cast('int64') == pa.scalar(5, type='int64') + assert val.cast('uint32') == pa.scalar(5, type='uint32') + assert val.cast('string') == pa.scalar('5', type='string') + with pytest.raises(ValueError): + pa.scalar('foo').cast('int32') + + +@pytest.mark.pandas +def test_timestamp(): + import pandas as pd + arr = pd.date_range('2000-01-01 12:34:56', periods=10).values + + units = ['ns', 'us', 'ms', 's'] + + for i, unit in enumerate(units): + dtype = 'datetime64[{}]'.format(unit) + arrow_arr = pa.Array.from_pandas(arr.astype(dtype)) + expected = pd.Timestamp('2000-01-01 12:34:56') + + assert arrow_arr[0].as_py() == expected + assert arrow_arr[0].value * 1000**i == expected.value + + tz = 'America/New_York' + arrow_type = pa.timestamp(unit, tz=tz) + + dtype = 'datetime64[{}]'.format(unit) + arrow_arr = pa.Array.from_pandas(arr.astype(dtype), type=arrow_type) + expected = (pd.Timestamp('2000-01-01 12:34:56') + .tz_localize('utc') + .tz_convert(tz)) + + assert arrow_arr[0].as_py() == expected + assert arrow_arr[0].value * 1000**i == expected.value + + +@pytest.mark.nopandas +def test_timestamp_nanos_nopandas(): + # ARROW-5450 + import pytz + tz = 'America/New_York' + ty = pa.timestamp('ns', tz=tz) + + # 2000-01-01 00:00:00 + 1 microsecond + s = pa.scalar(946684800000000000 + 1000, type=ty) + + tzinfo = pytz.timezone(tz) + expected = datetime.datetime(2000, 1, 1, microsecond=1, tzinfo=tzinfo) + expected = tzinfo.fromutc(expected) + result = s.as_py() + assert result == expected + assert result.year == 1999 + assert result.hour == 19 + + # Non-zero nanos yields ValueError + s = pa.scalar(946684800000000001, type=ty) + with pytest.raises(ValueError): + s.as_py() + + +def test_timestamp_no_overflow(): + # ARROW-5450 + import pytz + + timestamps = [ + datetime.datetime(1, 1, 1, 0, 0, 0, tzinfo=pytz.utc), + datetime.datetime(9999, 12, 31, 23, 59, 59, 999999, tzinfo=pytz.utc), + datetime.datetime(1970, 1, 1, 0, 0, 0, tzinfo=pytz.utc), + ] + for ts in timestamps: + s = pa.scalar(ts, type=pa.timestamp("us", tz="UTC")) + assert s.as_py() == ts + + +def test_duration(): + arr = np.array([0, 3600000000000], dtype='timedelta64[ns]') + + units = ['us', 'ms', 's'] + + for i, unit in enumerate(units): + dtype = 'timedelta64[{}]'.format(unit) + arrow_arr = pa.array(arr.astype(dtype)) + expected = datetime.timedelta(seconds=60*60) + assert isinstance(arrow_arr[1].as_py(), datetime.timedelta) + assert arrow_arr[1].as_py() == expected + assert (arrow_arr[1].value * 1000**(i+1) == + expected.total_seconds() * 1e9) + + +@pytest.mark.pandas +def test_duration_nanos_pandas(): + import pandas as pd + arr = pa.array([0, 3600000000000], type=pa.duration('ns')) + expected = pd.Timedelta('1 hour') + assert isinstance(arr[1].as_py(), pd.Timedelta) + assert arr[1].as_py() == expected + assert arr[1].value == expected.value + + # Non-zero nanos work fine + arr = pa.array([946684800000000001], type=pa.duration('ns')) + assert arr[0].as_py() == pd.Timedelta(946684800000000001, unit='ns') + + +@pytest.mark.nopandas +def test_duration_nanos_nopandas(): + arr = pa.array([0, 3600000000000], pa.duration('ns')) + expected = datetime.timedelta(seconds=60*60) + assert isinstance(arr[1].as_py(), datetime.timedelta) + assert arr[1].as_py() == expected + assert arr[1].value == expected.total_seconds() * 1e9 + + # Non-zero nanos yields ValueError + arr = pa.array([946684800000000001], type=pa.duration('ns')) + with pytest.raises(ValueError): + arr[0].as_py() + + +def test_month_day_nano_interval(): + triple = pa.MonthDayNano([-3600, 1800, -50]) + arr = pa.array([triple]) + assert isinstance(arr[0].as_py(), pa.MonthDayNano) + assert arr[0].as_py() == triple + assert arr[0].value == triple + + +@pytest.mark.parametrize('value', ['foo', 'maƱana']) +@pytest.mark.parametrize(('ty', 'scalar_typ'), [ + (pa.string(), pa.StringScalar), + (pa.large_string(), pa.LargeStringScalar) +]) +def test_string(value, ty, scalar_typ): + s = pa.scalar(value, type=ty) + assert isinstance(s, scalar_typ) + assert s.as_py() == value + assert s.as_py() != 'something' + assert repr(value) in repr(s) + assert str(s) == str(value) + + buf = s.as_buffer() + assert isinstance(buf, pa.Buffer) + assert buf.to_pybytes() == value.encode() + + +@pytest.mark.parametrize('value', [b'foo', b'bar']) +@pytest.mark.parametrize(('ty', 'scalar_typ'), [ + (pa.binary(), pa.BinaryScalar), + (pa.large_binary(), pa.LargeBinaryScalar) +]) +def test_binary(value, ty, scalar_typ): + s = pa.scalar(value, type=ty) + assert isinstance(s, scalar_typ) + assert s.as_py() == value + assert str(s) == str(value) + assert repr(value) in repr(s) + assert s.as_py() == value + assert s != b'xxxxx' + + buf = s.as_buffer() + assert isinstance(buf, pa.Buffer) + assert buf.to_pybytes() == value + + +def test_fixed_size_binary(): + s = pa.scalar(b'foof', type=pa.binary(4)) + assert isinstance(s, pa.FixedSizeBinaryScalar) + assert s.as_py() == b'foof' + + with pytest.raises(pa.ArrowInvalid): + pa.scalar(b'foof5', type=pa.binary(4)) + + +@pytest.mark.parametrize(('ty', 'klass'), [ + (pa.list_(pa.string()), pa.ListScalar), + (pa.large_list(pa.string()), pa.LargeListScalar) +]) +def test_list(ty, klass): + v = ['foo', None] + s = pa.scalar(v, type=ty) + assert s.type == ty + assert len(s) == 2 + assert isinstance(s.values, pa.Array) + assert s.values.to_pylist() == v + assert isinstance(s, klass) + assert repr(v) in repr(s) + assert s.as_py() == v + assert s[0].as_py() == 'foo' + assert s[1].as_py() is None + assert s[-1] == s[1] + assert s[-2] == s[0] + with pytest.raises(IndexError): + s[-3] + with pytest.raises(IndexError): + s[2] + + +def test_list_from_numpy(): + s = pa.scalar(np.array([1, 2, 3], dtype=np.int64())) + assert s.type == pa.list_(pa.int64()) + assert s.as_py() == [1, 2, 3] + + +@pytest.mark.pandas +def test_list_from_pandas(): + import pandas as pd + + s = pa.scalar(pd.Series([1, 2, 3])) + assert s.as_py() == [1, 2, 3] + + cases = [ + (np.nan, 'null'), + (['string', np.nan], pa.list_(pa.binary())), + (['string', np.nan], pa.list_(pa.utf8())), + ([b'string', np.nan], pa.list_(pa.binary(6))), + ([True, np.nan], pa.list_(pa.bool_())), + ([decimal.Decimal('0'), np.nan], pa.list_(pa.decimal128(12, 2))), + ] + for case, ty in cases: + # Both types of exceptions are raised. May want to clean that up + with pytest.raises((ValueError, TypeError)): + pa.scalar(case, type=ty) + + # from_pandas option suppresses failure + s = pa.scalar(case, type=ty, from_pandas=True) + + +def test_fixed_size_list(): + s = pa.scalar([1, None, 3], type=pa.list_(pa.int64(), 3)) + + assert len(s) == 3 + assert isinstance(s, pa.FixedSizeListScalar) + assert repr(s) == "<pyarrow.FixedSizeListScalar: [1, None, 3]>" + assert s.as_py() == [1, None, 3] + assert s[0].as_py() == 1 + assert s[1].as_py() is None + assert s[-1] == s[2] + with pytest.raises(IndexError): + s[-4] + with pytest.raises(IndexError): + s[3] + + +def test_struct(): + ty = pa.struct([ + pa.field('x', pa.int16()), + pa.field('y', pa.float32()) + ]) + + v = {'x': 2, 'y': 3.5} + s = pa.scalar(v, type=ty) + assert list(s) == list(s.keys()) == ['x', 'y'] + assert list(s.values()) == [ + pa.scalar(2, type=pa.int16()), + pa.scalar(3.5, type=pa.float32()) + ] + assert list(s.items()) == [ + ('x', pa.scalar(2, type=pa.int16())), + ('y', pa.scalar(3.5, type=pa.float32())) + ] + assert 'x' in s + assert 'y' in s + assert 'z' not in s + assert 0 not in s + + assert s.as_py() == v + assert repr(s) != repr(v) + assert repr(s.as_py()) == repr(v) + assert len(s) == 2 + assert isinstance(s['x'], pa.Int16Scalar) + assert isinstance(s['y'], pa.FloatScalar) + assert s['x'].as_py() == 2 + assert s['y'].as_py() == 3.5 + + with pytest.raises(KeyError): + s['non-existent'] + + s = pa.scalar(None, type=ty) + assert list(s) == list(s.keys()) == ['x', 'y'] + assert s.as_py() is None + assert 'x' in s + assert 'y' in s + assert isinstance(s['x'], pa.Int16Scalar) + assert isinstance(s['y'], pa.FloatScalar) + assert s['x'].is_valid is False + assert s['y'].is_valid is False + assert s['x'].as_py() is None + assert s['y'].as_py() is None + + +def test_struct_duplicate_fields(): + ty = pa.struct([ + pa.field('x', pa.int16()), + pa.field('y', pa.float32()), + pa.field('x', pa.int64()), + ]) + s = pa.scalar([('x', 1), ('y', 2.0), ('x', 3)], type=ty) + + assert list(s) == list(s.keys()) == ['x', 'y', 'x'] + assert len(s) == 3 + assert s == s + assert list(s.items()) == [ + ('x', pa.scalar(1, pa.int16())), + ('y', pa.scalar(2.0, pa.float32())), + ('x', pa.scalar(3, pa.int64())) + ] + + assert 'x' in s + assert 'y' in s + assert 'z' not in s + assert 0 not in s + + # getitem with field names fails for duplicate fields, works for others + with pytest.raises(KeyError): + s['x'] + + assert isinstance(s['y'], pa.FloatScalar) + assert s['y'].as_py() == 2.0 + + # getitem with integer index works for all fields + assert isinstance(s[0], pa.Int16Scalar) + assert s[0].as_py() == 1 + assert isinstance(s[1], pa.FloatScalar) + assert s[1].as_py() == 2.0 + assert isinstance(s[2], pa.Int64Scalar) + assert s[2].as_py() == 3 + + assert "pyarrow.StructScalar" in repr(s) + + with pytest.raises(ValueError, match="duplicate field names"): + s.as_py() + + +def test_map(): + ty = pa.map_(pa.string(), pa.int8()) + v = [('a', 1), ('b', 2)] + s = pa.scalar(v, type=ty) + + assert len(s) == 2 + assert isinstance(s, pa.MapScalar) + assert isinstance(s.values, pa.Array) + assert repr(s) == "<pyarrow.MapScalar: [('a', 1), ('b', 2)]>" + assert s.values.to_pylist() == [ + {'key': 'a', 'value': 1}, + {'key': 'b', 'value': 2} + ] + + # test iteration + for i, j in zip(s, v): + assert i == j + + assert s.as_py() == v + assert s[1] == ( + pa.scalar('b', type=pa.string()), + pa.scalar(2, type=pa.int8()) + ) + assert s[-1] == s[1] + assert s[-2] == s[0] + with pytest.raises(IndexError): + s[-3] + with pytest.raises(IndexError): + s[2] + + restored = pickle.loads(pickle.dumps(s)) + assert restored.equals(s) + + +def test_dictionary(): + indices = pa.array([2, None, 1, 2, 0, None]) + dictionary = pa.array(['foo', 'bar', 'baz']) + + arr = pa.DictionaryArray.from_arrays(indices, dictionary) + expected = ['baz', None, 'bar', 'baz', 'foo', None] + assert arr.to_pylist() == expected + + for j, (i, v) in enumerate(zip(indices, expected)): + s = arr[j] + + assert s.as_py() == v + assert s.value.as_py() == v + assert s.index.equals(i) + assert s.dictionary.equals(dictionary) + + with pytest.warns(FutureWarning): + assert s.index_value.equals(i) + with pytest.warns(FutureWarning): + assert s.dictionary_value.as_py() == v + + restored = pickle.loads(pickle.dumps(s)) + assert restored.equals(s) + + +def test_union(): + # sparse + arr = pa.UnionArray.from_sparse( + pa.array([0, 0, 1, 1], type=pa.int8()), + [ + pa.array(["a", "b", "c", "d"]), + pa.array([1, 2, 3, 4]) + ] + ) + for s in arr: + assert isinstance(s, pa.UnionScalar) + assert s.type.equals(arr.type) + assert s.is_valid is True + with pytest.raises(pa.ArrowNotImplementedError): + pickle.loads(pickle.dumps(s)) + + assert arr[0].type_code == 0 + assert arr[0].as_py() == "a" + assert arr[1].type_code == 0 + assert arr[1].as_py() == "b" + assert arr[2].type_code == 1 + assert arr[2].as_py() == 3 + assert arr[3].type_code == 1 + assert arr[3].as_py() == 4 + + # dense + arr = pa.UnionArray.from_dense( + types=pa.array([0, 1, 0, 0, 1, 1, 0], type='int8'), + value_offsets=pa.array([0, 0, 2, 1, 1, 2, 3], type='int32'), + children=[ + pa.array([b'a', b'b', b'c', b'd'], type='binary'), + pa.array([1, 2, 3], type='int64') + ] + ) + for s in arr: + assert isinstance(s, pa.UnionScalar) + assert s.type.equals(arr.type) + assert s.is_valid is True + with pytest.raises(pa.ArrowNotImplementedError): + pickle.loads(pickle.dumps(s)) + + assert arr[0].type_code == 0 + assert arr[0].as_py() == b'a' + assert arr[5].type_code == 1 + assert arr[5].as_py() == 3 |