summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/schema.R
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/arrow/r/R/schema.R
parentInitial commit. (diff)
downloadceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz
ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/arrow/r/R/schema.R')
-rw-r--r--src/arrow/r/R/schema.R330
1 files changed, 330 insertions, 0 deletions
diff --git a/src/arrow/r/R/schema.R b/src/arrow/r/R/schema.R
new file mode 100644
index 000000000..c3dfee5f9
--- /dev/null
+++ b/src/arrow/r/R/schema.R
@@ -0,0 +1,330 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+#' @include arrow-package.R
+#' @title Schema class
+#'
+#' @description A `Schema` is a list of [Field]s, which map names to
+#' Arrow [data types][data-type]. Create a `Schema` when you
+#' want to convert an R `data.frame` to Arrow but don't want to rely on the
+#' default mapping of R types to Arrow types, such as when you want to choose a
+#' specific numeric precision, or when creating a [Dataset] and you want to
+#' ensure a specific schema rather than inferring it from the various files.
+#'
+#' Many Arrow objects, including [Table] and [Dataset], have a `$schema` method
+#' (active binding) that lets you access their schema.
+#'
+#' @usage NULL
+#' @format NULL
+#' @docType class
+#' @section Methods:
+#'
+#' - `$ToString()`: convert to a string
+#' - `$field(i)`: returns the field at index `i` (0-based)
+#' - `$GetFieldByName(x)`: returns the field with name `x`
+#' - `$WithMetadata(metadata)`: returns a new `Schema` with the key-value
+#' `metadata` set. Note that all list elements in `metadata` will be coerced
+#' to `character`.
+#'
+#' @section Active bindings:
+#'
+#' - `$names`: returns the field names (called in `names(Schema)`)
+#' - `$num_fields`: returns the number of fields (called in `length(Schema)`)
+#' - `$fields`: returns the list of `Field`s in the `Schema`, suitable for
+#' iterating over
+#' - `$HasMetadata`: logical: does this `Schema` have extra metadata?
+#' - `$metadata`: returns the key-value metadata as a named list.
+#' Modify or replace by assigning in (`sch$metadata <- new_metadata`).
+#' All list elements are coerced to string.
+#'
+#' @section R Metadata:
+#'
+#' When converting a data.frame to an Arrow Table or RecordBatch, attributes
+#' from the `data.frame` are saved alongside tables so that the object can be
+#' reconstructed faithfully in R (e.g. with `as.data.frame()`). This metadata
+#' can be both at the top-level of the `data.frame` (e.g. `attributes(df)`) or
+#' at the column (e.g. `attributes(df$col_a)`) or for list columns only:
+#' element level (e.g. `attributes(df[1, "col_a"])`). For example, this allows
+#' for storing `haven` columns in a table and being able to faithfully
+#' re-create them when pulled back into R. This metadata is separate from the
+#' schema (column names and types) which is compatible with other Arrow
+#' clients. The R metadata is only read by R and is ignored by other clients
+#' (e.g. Pandas has its own custom metadata). This metadata is stored in
+#' `$metadata$r`.
+#'
+#' Since Schema metadata keys and values must be strings, this metadata is
+#' saved by serializing R's attribute list structure to a string. If the
+#' serialized metadata exceeds 100Kb in size, by default it is compressed
+#' starting in version 3.0.0. To disable this compression (e.g. for tables
+#' that are compatible with Arrow versions before 3.0.0 and include large
+#' amounts of metadata), set the option `arrow.compress_metadata` to `FALSE`.
+#' Files with compressed metadata are readable by older versions of arrow, but
+#' the metadata is dropped.
+#'
+#' @rdname Schema
+#' @name Schema
+#' @examplesIf arrow_available()
+#' df <- data.frame(col1 = 2:4, col2 = c(0.1, 0.3, 0.5))
+#' tab1 <- arrow_table(df)
+#' tab1$schema
+#' tab2 <- arrow_table(df, schema = schema(col1 = int8(), col2 = float32()))
+#' tab2$schema
+#' @export
+Schema <- R6Class("Schema",
+ inherit = ArrowObject,
+ public = list(
+ ToString = function() {
+ fields <- print_schema_fields(self)
+ if (self$HasMetadata) {
+ fields <- paste0(fields, "\n\nSee $metadata for additional Schema metadata")
+ }
+ fields
+ },
+ field = function(i) Schema__field(self, i),
+ GetFieldByName = function(x) Schema__GetFieldByName(self, x),
+ AddField = function(i, field) {
+ assert_is(field, "Field")
+ Schema__AddField(self, i, field)
+ },
+ SetField = function(i, field) {
+ assert_is(field, "Field")
+ Schema__SetField(self, i, field)
+ },
+ RemoveField = function(i) Schema__RemoveField(self, i),
+ serialize = function() Schema__serialize(self),
+ WithMetadata = function(metadata = NULL) {
+ metadata <- prepare_key_value_metadata(metadata)
+ Schema__WithMetadata(self, metadata)
+ },
+ Equals = function(other, check_metadata = FALSE, ...) {
+ inherits(other, "Schema") && Schema__Equals(self, other, isTRUE(check_metadata))
+ },
+ export_to_c = function(ptr) ExportSchema(self, ptr)
+ ),
+ active = list(
+ names = function() {
+ Schema__field_names(self)
+ },
+ num_fields = function() Schema__num_fields(self),
+ fields = function() Schema__fields(self),
+ HasMetadata = function() Schema__HasMetadata(self),
+ metadata = function(new_metadata) {
+ if (missing(new_metadata)) {
+ Schema__metadata(self)
+ } else {
+ # Set the metadata
+ out <- self$WithMetadata(new_metadata)
+ # $WithMetadata returns a new object but we're modifying in place,
+ # so swap in that new C++ object pointer into our R6 object
+ self$set_pointer(out$pointer())
+ self
+ }
+ },
+ r_metadata = function(new) {
+ # Helper for the R metadata that handles the serialization
+ # See also method on ArrowTabular
+ if (missing(new)) {
+ out <- self$metadata$r
+ if (!is.null(out)) {
+ # Can't unserialize NULL
+ out <- .unserialize_arrow_r_metadata(out)
+ }
+ # Returns either NULL or a named list
+ out
+ } else {
+ # Set the R metadata
+ self$metadata$r <- .serialize_arrow_r_metadata(new)
+ self
+ }
+ }
+ )
+)
+Schema$create <- function(...) {
+ .list <- list2(...)
+ if (all(map_lgl(.list, ~ inherits(., "Field")))) {
+ schema_(.list)
+ } else {
+ schema_(.fields(.list))
+ }
+}
+#' @include arrowExports.R
+Schema$import_from_c <- ImportSchema
+
+prepare_key_value_metadata <- function(metadata) {
+ # key-value-metadata must be a named character vector;
+ # this function validates and coerces
+ if (is.null(metadata)) {
+ # NULL to remove metadata, so equivalent to setting an empty list
+ metadata <- empty_named_list()
+ }
+ if (is.null(names(metadata))) {
+ stop(
+ "Key-value metadata must be a named list or character vector",
+ call. = FALSE
+ )
+ }
+ map_chr(metadata, as.character)
+}
+
+print_schema_fields <- function(s) {
+ # Alternative to Schema__ToString that doesn't print metadata
+ paste(map_chr(s$fields, ~ .$ToString()), collapse = "\n")
+}
+
+#' @param ... named list containing [data types][data-type] or
+#' a list of [fields][field] containing the fields for the schema
+#' @export
+#' @rdname Schema
+schema <- Schema$create
+
+#' @export
+names.Schema <- function(x) x$names
+
+#' @export
+length.Schema <- function(x) x$num_fields
+
+#' @export
+`[[.Schema` <- function(x, i, ...) {
+ if (is.character(i)) {
+ x$GetFieldByName(i)
+ } else if (is.numeric(i)) {
+ x$field(i - 1)
+ } else {
+ stop("'i' must be character or numeric, not ", class(i), call. = FALSE)
+ }
+}
+
+#' @export
+`[[<-.Schema` <- function(x, i, value) {
+ assert_that(length(i) == 1)
+ if (is.character(i)) {
+ field_names <- names(x)
+ if (anyDuplicated(field_names)) {
+ stop("Cannot update field by name with duplicates", call. = FALSE)
+ }
+
+ # If i is character, it's the field name
+ if (!is.null(value) && !inherits(value, "Field")) {
+ value <- field(i, as_type(value, "value"))
+ }
+
+ # No match means we're adding to the end
+ i <- match(i, field_names, nomatch = length(field_names) + 1L)
+ } else {
+ assert_that(is.numeric(i), !is.na(i), i > 0)
+ # If i is numeric and we have a type,
+ # we need to grab the existing field name for the new one
+ if (!is.null(value) && !inherits(value, "Field")) {
+ value <- field(names(x)[i], as_type(value, "value"))
+ }
+ }
+
+ i <- as.integer(i - 1L)
+ if (i >= length(x)) {
+ if (!is.null(value)) {
+ x <- x$AddField(i, value)
+ }
+ } else if (is.null(value)) {
+ x <- x$RemoveField(i)
+ } else {
+ x <- x$SetField(i, value)
+ }
+ x
+}
+
+#' @export
+`$<-.Schema` <- `$<-.ArrowTabular`
+
+#' @export
+`[.Schema` <- function(x, i, ...) {
+ if (is.logical(i)) {
+ i <- rep_len(i, length(x)) # For R recycling behavior
+ i <- which(i)
+ }
+ if (is.numeric(i)) {
+ if (all(i < 0)) {
+ # in R, negative i means "everything but i"
+ i <- setdiff(seq_len(length(x)), -1 * i)
+ }
+ }
+ fields <- map(i, ~ x[[.]])
+ invalid <- map_lgl(fields, is.null)
+ if (any(invalid)) {
+ stop(
+ "Invalid field name", ifelse(sum(invalid) > 1, "s: ", ": "),
+ oxford_paste(i[invalid]),
+ call. = FALSE
+ )
+ }
+ schema_(fields)
+}
+
+#' @export
+`$.Schema` <- function(x, name, ...) {
+ assert_that(is.string(name))
+ if (name %in% ls(x)) {
+ get(name, x)
+ } else {
+ x$GetFieldByName(name)
+ }
+}
+
+#' @export
+as.list.Schema <- function(x, ...) x$fields
+
+#' read a Schema from a stream
+#'
+#' @param stream a `Message`, `InputStream`, or `Buffer`
+#' @param ... currently ignored
+#' @return A [Schema]
+#' @export
+read_schema <- function(stream, ...) {
+ if (inherits(stream, "Message")) {
+ return(ipc___ReadSchema_Message(stream))
+ } else {
+ if (!inherits(stream, "InputStream")) {
+ stream <- BufferReader$create(stream)
+ on.exit(stream$close())
+ }
+ return(ipc___ReadSchema_InputStream(stream))
+ }
+}
+
+#' Combine and harmonize schemas
+#'
+#' @param ... [Schema]s to unify
+#' @param schemas Alternatively, a list of schemas
+#' @return A `Schema` with the union of fields contained in the inputs, or
+#' `NULL` if any of `schemas` is `NULL`
+#' @export
+#' @examplesIf arrow_available()
+#' a <- schema(b = double(), c = bool())
+#' z <- schema(b = double(), k = utf8())
+#' unify_schemas(a, z)
+unify_schemas <- function(..., schemas = list(...)) {
+ if (any(vapply(schemas, is.null, TRUE))) {
+ return(NULL)
+ }
+ arrow__UnifySchemas(schemas)
+}
+
+#' @export
+print.arrow_r_metadata <- function(x, ...) {
+ utils::str(x)
+ utils::str(.unserialize_arrow_r_metadata(x))
+ invisible(x)
+}