diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
commit | e6918187568dbd01842d8d1d2c808ce16a894239 (patch) | |
tree | 64f88b554b444a49f656b6c656111a145cbbaa28 /src/s3select/rapidjson/doc/sax.zh-cn.md | |
parent | Initial commit. (diff) | |
download | ceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip |
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/s3select/rapidjson/doc/sax.zh-cn.md')
-rw-r--r-- | src/s3select/rapidjson/doc/sax.zh-cn.md | 487 |
1 files changed, 487 insertions, 0 deletions
diff --git a/src/s3select/rapidjson/doc/sax.zh-cn.md b/src/s3select/rapidjson/doc/sax.zh-cn.md new file mode 100644 index 000000000..9b11e7683 --- /dev/null +++ b/src/s3select/rapidjson/doc/sax.zh-cn.md @@ -0,0 +1,487 @@ +# SAX + +"SAX" 此术语源于 [Simple API for XML](http://en.wikipedia.org/wiki/Simple_API_for_XML)。我们借了此术语去套用在 JSON 的解析及生成。 + +在 RapidJSON 中,`Reader`(`GenericReader<...>` 的 typedef)是 JSON 的 SAX 风格解析器,而 `Writer`(`GenericWriter<...>` 的 typedef)则是 JSON 的 SAX 风格生成器。 + +[TOC] + +# Reader {#Reader} + +`Reader` 从输入流解析一个 JSON。当它从流中读取字符时,它会基于 JSON 的语法去分析字符,并向处理器发送事件。 + +例如,以下是一个 JSON。 + +~~~~~~~~~~js +{ + "hello": "world", + "t": true , + "f": false, + "n": null, + "i": 123, + "pi": 3.1416, + "a": [1, 2, 3, 4] +} +~~~~~~~~~~ + +当一个 `Reader` 解析此 JSON 时,它会顺序地向处理器发送以下的事件: + +~~~~~~~~~~ +StartObject() +Key("hello", 5, true) +String("world", 5, true) +Key("t", 1, true) +Bool(true) +Key("f", 1, true) +Bool(false) +Key("n", 1, true) +Null() +Key("i") +Uint(123) +Key("pi") +Double(3.1416) +Key("a") +StartArray() +Uint(1) +Uint(2) +Uint(3) +Uint(4) +EndArray(4) +EndObject(7) +~~~~~~~~~~ + +除了一些事件参数需要再作解释,这些事件可以轻松地与 JSON 对上。我们可以看看 `simplereader` 例子怎样产生和以上完全相同的结果: + +~~~~~~~~~~cpp +#include "rapidjson/reader.h" +#include <iostream> + +using namespace rapidjson; +using namespace std; + +struct MyHandler : public BaseReaderHandler<UTF8<>, MyHandler> { + bool Null() { cout << "Null()" << endl; return true; } + bool Bool(bool b) { cout << "Bool(" << boolalpha << b << ")" << endl; return true; } + bool Int(int i) { cout << "Int(" << i << ")" << endl; return true; } + bool Uint(unsigned u) { cout << "Uint(" << u << ")" << endl; return true; } + bool Int64(int64_t i) { cout << "Int64(" << i << ")" << endl; return true; } + bool Uint64(uint64_t u) { cout << "Uint64(" << u << ")" << endl; return true; } + bool Double(double d) { cout << "Double(" << d << ")" << endl; return true; } + bool String(const char* str, SizeType length, bool copy) { + cout << "String(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; + return true; + } + bool StartObject() { cout << "StartObject()" << endl; return true; } + bool Key(const char* str, SizeType length, bool copy) { + cout << "Key(" << str << ", " << length << ", " << boolalpha << copy << ")" << endl; + return true; + } + bool EndObject(SizeType memberCount) { cout << "EndObject(" << memberCount << ")" << endl; return true; } + bool StartArray() { cout << "StartArray()" << endl; return true; } + bool EndArray(SizeType elementCount) { cout << "EndArray(" << elementCount << ")" << endl; return true; } +}; + +void main() { + const char json[] = " { \"hello\" : \"world\", \"t\" : true , \"f\" : false, \"n\": null, \"i\":123, \"pi\": 3.1416, \"a\":[1, 2, 3, 4] } "; + + MyHandler handler; + Reader reader; + StringStream ss(json); + reader.Parse(ss, handler); +} +~~~~~~~~~~ + +注意 RapidJSON 使用模板去静态挷定 `Reader` 类型及处理器的类型,而不是使用含虚函数的类。这个范式可以通过把函数内联而改善性能。 + +## 处理器 {#Handler} + +如前例所示,使用者需要实现一个处理器(handler),用于处理来自 `Reader` 的事件(函数调用)。处理器必须包含以下的成员函数。 + +~~~~~~~~~~cpp +class Handler { + bool Null(); + bool Bool(bool b); + bool Int(int i); + bool Uint(unsigned i); + bool Int64(int64_t i); + bool Uint64(uint64_t i); + bool Double(double d); + bool RawNumber(const Ch* str, SizeType length, bool copy); + bool String(const Ch* str, SizeType length, bool copy); + bool StartObject(); + bool Key(const Ch* str, SizeType length, bool copy); + bool EndObject(SizeType memberCount); + bool StartArray(); + bool EndArray(SizeType elementCount); +}; +~~~~~~~~~~ + +当 `Reader` 遇到 JSON null 值时会调用 `Null()`。 + +当 `Reader` 遇到 JSON true 或 false 值时会调用 `Bool(bool)`。 + +当 `Reader` 遇到 JSON number,它会选择一个合适的 C++ 类型映射,然后调用 `Int(int)`、`Uint(unsigned)`、`Int64(int64_t)`、`Uint64(uint64_t)` 及 `Double(double)` 的 * 其中之一个 *。 若开启了 `kParseNumbersAsStrings` 选项,`Reader` 便会改为调用 `RawNumber()`。 + +当 `Reader` 遇到 JSON string,它会调用 `String(const char* str, SizeType length, bool copy)`。第一个参数是字符串的指针。第二个参数是字符串的长度(不包含空终止符号)。注意 RapidJSON 支持字串中含有空字符 `\0`。若出现这种情况,便会有 `strlen(str) < length`。最后的 `copy` 参数表示处理器是否需要复制该字符串。在正常解析时,`copy = true`。仅当使用原位解析时,`copy = false`。此外,还要注意字符的类型与目标编码相关,我们稍后会再谈这一点。 + +当 `Reader` 遇到 JSON object 的开始之时,它会调用 `StartObject()`。JSON 的 object 是一个键值对(成员)的集合。若 object 包含成员,它会先为成员的名字调用 `Key()`,然后再按值的类型调用函数。它不断调用这些键值对,直至最终调用 `EndObject(SizeType memberCount)`。注意 `memberCount` 参数对处理器来说只是协助性质,使用者可能不需要此参数。 + +JSON array 与 object 相似,但更简单。在 array 开始时,`Reader` 会调用 `BeginArary()`。若 array 含有元素,它会按元素的类型来读用函数。相似地,最后它会调用 `EndArray(SizeType elementCount)`,其中 `elementCount` 参数对处理器来说只是协助性质。 + +每个处理器函数都返回一个 `bool`。正常它们应返回 `true`。若处理器遇到错误,它可以返回 `false` 去通知事件发送方停止继续处理。 + +例如,当我们用 `Reader` 解析一个 JSON 时,处理器检测到该 JSON 并不符合所需的 schema,那么处理器可以返回 `false`,令 `Reader` 停止之后的解析工作。而 `Reader` 会进入一个错误状态,并以 `kParseErrorTermination` 错误码标识。 + +## GenericReader {#GenericReader} + +前面提及,`Reader` 是 `GenericReader` 模板类的 typedef: + +~~~~~~~~~~cpp +namespace rapidjson { + +template <typename SourceEncoding, typename TargetEncoding, typename Allocator = MemoryPoolAllocator<> > +class GenericReader { + // ... +}; + +typedef GenericReader<UTF8<>, UTF8<> > Reader; + +} // namespace rapidjson +~~~~~~~~~~ + +`Reader` 使用 UTF-8 作为来源及目标编码。来源编码是指 JSON 流的编码。目标编码是指 `String()` 的 `str` 参数所用的编码。例如,要解析一个 UTF-8 流并输出至 UTF-16 string 事件,你需要这么定义一个 reader: + +~~~~~~~~~~cpp +GenericReader<UTF8<>, UTF16<> > reader; +~~~~~~~~~~ + +注意到 `UTF16` 的缺省类型是 `wchar_t`。因此这个 `reader` 需要调用处理器的 `String(const wchar_t*, SizeType, bool)`。 + +第三个模板参数 `Allocator` 是内部数据结构(实际上是一个堆栈)的分配器类型。 + +## 解析 {#SaxParsing} + +`Reader` 的唯一功能就是解析 JSON。 + +~~~~~~~~~~cpp +template <unsigned parseFlags, typename InputStream, typename Handler> +bool Parse(InputStream& is, Handler& handler); + +// 使用 parseFlags = kDefaultParseFlags +template <typename InputStream, typename Handler> +bool Parse(InputStream& is, Handler& handler); +~~~~~~~~~~ + +若在解析中出现错误,它会返回 `false`。使用者可调用 `bool HasParseEror()`, `ParseErrorCode GetParseErrorCode()` 及 `size_t GetErrorOffset()` 获取错误状态。实际上 `Document` 使用这些 `Reader` 函数去获取解析错误。请参考 [DOM](doc/dom.zh-cn.md) 去了解有关解析错误的细节。 + +# Writer {#Writer} + +`Reader` 把 JSON 转换(解析)成为事件。`Writer` 做完全相反的事情。它把事件转换成 JSON。 + +`Writer` 是非常容易使用的。若你的应用程序只需把一些数据转换成 JSON,可能直接使用 `Writer`,会比建立一个 `Document` 然后用 `Writer` 把它转换成 JSON 更加方便。 + +在 `simplewriter` 例子里,我们做 `simplereader` 完全相反的事情。 + +~~~~~~~~~~cpp +#include "rapidjson/writer.h" +#include "rapidjson/stringbuffer.h" +#include <iostream> + +using namespace rapidjson; +using namespace std; + +void main() { + StringBuffer s; + Writer<StringBuffer> writer(s); + + writer.StartObject(); + writer.Key("hello"); + writer.String("world"); + writer.Key("t"); + writer.Bool(true); + writer.Key("f"); + writer.Bool(false); + writer.Key("n"); + writer.Null(); + writer.Key("i"); + writer.Uint(123); + writer.Key("pi"); + writer.Double(3.1416); + writer.Key("a"); + writer.StartArray(); + for (unsigned i = 0; i < 4; i++) + writer.Uint(i); + writer.EndArray(); + writer.EndObject(); + + cout << s.GetString() << endl; +} +~~~~~~~~~~ + +~~~~~~~~~~ +{"hello":"world","t":true,"f":false,"n":null,"i":123,"pi":3.1416,"a":[0,1,2,3]} +~~~~~~~~~~ + +`String()` 及 `Key()` 各有两个重载。一个是如处理器 concept 般,有 3 个参数。它能处理含空字符的字符串。另一个是如上中使用的较简单版本。 + +注意到,例子代码中的 `EndArray()` 及 `EndObject()` 并没有参数。可以传递一个 `SizeType` 的参数,但它会被 `Writer` 忽略。 + +你可能会怀疑,为什么不使用 `sprintf()` 或 `std::stringstream` 去建立一个 JSON? + +这有几个原因: +1. `Writer` 必然会输出一个结构良好(well-formed)的 JSON。若然有错误的事件次序(如 `Int()` 紧随 `StartObject()` 出现),它会在调试模式中产生断言失败。 +2. `Writer::String()` 可处理字符串转义(如把码点 `U+000A` 转换成 `\n`)及进行 Unicode 转码。 +3. `Writer` 一致地处理 number 的输出。 +4. `Writer` 实现了事件处理器 concept。可用于处理来自 `Reader`、`Document` 或其他事件发生器。 +5. `Writer` 可对不同平台进行优化。 + +无论如何,使用 `Writer` API 去生成 JSON 甚至乎比这些临时方法更简单。 + +## 模板 {#WriterTemplate} + +`Writer` 与 `Reader` 有少许设计区别。`Writer` 是一个模板类,而不是一个 typedef。 并没有 `GenericWriter`。以下是 `Writer` 的声明。 + +~~~~~~~~~~cpp +namespace rapidjson { + +template<typename OutputStream, typename SourceEncoding = UTF8<>, typename TargetEncoding = UTF8<>, typename Allocator = CrtAllocator<> > +class Writer { +public: + Writer(OutputStream& os, Allocator* allocator = 0, size_t levelDepth = kDefaultLevelDepth) +// ... +}; + +} // namespace rapidjson +~~~~~~~~~~ + +`OutputStream` 模板参数是输出流的类型。它的类型不可以被自动推断,必须由使用者提供。 + +`SourceEncoding` 模板参数指定了 `String(const Ch*, ...)` 的编码。 + +`TargetEncoding` 模板参数指定输出流的编码。 + +`Allocator` 是分配器的类型,用于分配内部数据结构(一个堆栈)。 + +`writeFlags` 是以下位标志的组合: + +写入位标志 | 意义 +------------------------------|----------------------------------- +`kWriteNoFlags` | 没有任何标志。 +`kWriteDefaultFlags` | 缺省的解析选项。它等于 `RAPIDJSON_WRITE_DEFAULT_FLAGS` 宏,此宏定义为 `kWriteNoFlags`。 +`kWriteValidateEncodingFlag` | 校验 JSON 字符串的编码。 +`kWriteNanAndInfFlag` | 容许写入 `Infinity`, `-Infinity` 及 `NaN`。 + +此外,`Writer` 的构造函数有一 `levelDepth` 参数。存储每层阶信息的初始内存分配量受此参数影响。 + +## PrettyWriter {#PrettyWriter} + +`Writer` 所输出的是没有空格字符的最紧凑 JSON,适合网络传输或储存,但不适合人类阅读。 + +因此,RapidJSON 提供了一个 `PrettyWriter`,它在输出中加入缩进及换行。 + +`PrettyWriter` 的用法与 `Writer` 几乎一样,不同之处是 `PrettyWriter` 提供了一个 `SetIndent(Ch indentChar, unsigned indentCharCount)` 函数。缺省的缩进是 4 个空格。 + +## 完整性及重置 {#CompletenessReset} + +一个 `Writer` 只可输出单个 JSON,其根节点可以是任何 JSON 类型。当处理完单个根节点事件(如 `String()`),或匹配的最后 `EndObject()` 或 `EndArray()` 事件,输出的 JSON 是结构完整(well-formed)及完整的。使用者可调用 `Writer::IsComplete()` 去检测完整性。 + +当 JSON 完整时,`Writer` 不能再接受新的事件。不然其输出便会是不合法的(例如有超过一个根节点)。为了重新利用 `Writer` 对象,使用者可调用 `Writer::Reset(OutputStream& os)` 去重置其所有内部状态及设置新的输出流。 + +# 技巧 {#SaxTechniques} + +## 解析 JSON 至自定义结构 {#CustomDataStructure} + +`Document` 的解析功能完全依靠 `Reader`。实际上 `Document` 是一个处理器,在解析 JSON 时接收事件去建立一个 DOM。 + +使用者可以直接使用 `Reader` 去建立其他数据结构。这消除了建立 DOM 的步骤,从而减少了内存开销并改善性能。 + +在以下的 `messagereader` 例子中,`ParseMessages()` 解析一个 JSON,该 JSON 应该是一个含键值对的 object。 + +~~~~~~~~~~cpp +#include "rapidjson/reader.h" +#include "rapidjson/error/en.h" +#include <iostream> +#include <string> +#include <map> + +using namespace std; +using namespace rapidjson; + +typedef map<string, string> MessageMap; + +struct MessageHandler + : public BaseReaderHandler<UTF8<>, MessageHandler> { + MessageHandler() : state_(kExpectObjectStart) { + } + + bool StartObject() { + switch (state_) { + case kExpectObjectStart: + state_ = kExpectNameOrObjectEnd; + return true; + default: + return false; + } + } + + bool String(const char* str, SizeType length, bool) { + switch (state_) { + case kExpectNameOrObjectEnd: + name_ = string(str, length); + state_ = kExpectValue; + return true; + case kExpectValue: + messages_.insert(MessageMap::value_type(name_, string(str, length))); + state_ = kExpectNameOrObjectEnd; + return true; + default: + return false; + } + } + + bool EndObject(SizeType) { return state_ == kExpectNameOrObjectEnd; } + + bool Default() { return false; } // All other events are invalid. + + MessageMap messages_; + enum State { + kExpectObjectStart, + kExpectNameOrObjectEnd, + kExpectValue, + }state_; + std::string name_; +}; + +void ParseMessages(const char* json, MessageMap& messages) { + Reader reader; + MessageHandler handler; + StringStream ss(json); + if (reader.Parse(ss, handler)) + messages.swap(handler.messages_); // Only change it if success. + else { + ParseErrorCode e = reader.GetParseErrorCode(); + size_t o = reader.GetErrorOffset(); + cout << "Error: " << GetParseError_En(e) << endl;; + cout << " at offset " << o << " near '" << string(json).substr(o, 10) << "...'" << endl; + } +} + +int main() { + MessageMap messages; + + const char* json1 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\" }"; + cout << json1 << endl; + ParseMessages(json1, messages); + + for (MessageMap::const_iterator itr = messages.begin(); itr != messages.end(); ++itr) + cout << itr->first << ": " << itr->second << endl; + + cout << endl << "Parse a JSON with invalid schema." << endl; + const char* json2 = "{ \"greeting\" : \"Hello!\", \"farewell\" : \"bye-bye!\", \"foo\" : {} }"; + cout << json2 << endl; + ParseMessages(json2, messages); + + return 0; +} +~~~~~~~~~~ + +~~~~~~~~~~ +{ "greeting" : "Hello!", "farewell" : "bye-bye!" } +farewell: bye-bye! +greeting: Hello! + +Parse a JSON with invalid schema. +{ "greeting" : "Hello!", "farewell" : "bye-bye!", "foo" : {} } +Error: Terminate parsing due to Handler error. + at offset 59 near '} }...' +~~~~~~~~~~ + +第一个 JSON(`json1`)被成功地解析至 `MessageMap`。由于 `MessageMap` 是一个 `std::map`,打印次序按键值排序。此次序与 JSON 中的次序不同。 + +在第二个 JSON(`json2`)中,`foo` 的值是一个空 object。由于它是一个 object,`MessageHandler::StartObject()` 会被调用。然而,在 `state_ = kExpectValue` 的情况下,该函数会返回 `false`,并导致解析过程终止。错误代码是 `kParseErrorTermination`。 + +## 过滤 JSON {#Filtering} + +如前面提及过,`Writer` 可处理 `Reader` 发出的事件。`example/condense/condense.cpp` 例子简单地设置 `Writer` 作为一个 `Reader` 的处理器,因此它能移除 JSON 中的所有空白字符。`example/pretty/pretty.cpp` 例子使用同样的关系,只是以 `PrettyWriter` 取代 `Writer`。因此 `pretty` 能够重新格式化 JSON,加入缩进及换行。 + +实际上,我们可以使用 SAX 风格 API 去加入(多个)中间层去过滤 JSON 的内容。例如 `capitalize` 例子可以把所有 JSON string 改为大写。 + +~~~~~~~~~~cpp +#include "rapidjson/reader.h" +#include "rapidjson/writer.h" +#include "rapidjson/filereadstream.h" +#include "rapidjson/filewritestream.h" +#include "rapidjson/error/en.h" +#include <vector> +#include <cctype> + +using namespace rapidjson; + +template<typename OutputHandler> +struct CapitalizeFilter { + CapitalizeFilter(OutputHandler& out) : out_(out), buffer_() { + } + + bool Null() { return out_.Null(); } + bool Bool(bool b) { return out_.Bool(b); } + bool Int(int i) { return out_.Int(i); } + bool Uint(unsigned u) { return out_.Uint(u); } + bool Int64(int64_t i) { return out_.Int64(i); } + bool Uint64(uint64_t u) { return out_.Uint64(u); } + bool Double(double d) { return out_.Double(d); } + bool RawNumber(const char* str, SizeType length, bool copy) { return out_.RawNumber(str, length, copy); } + bool String(const char* str, SizeType length, bool) { + buffer_.clear(); + for (SizeType i = 0; i < length; i++) + buffer_.push_back(std::toupper(str[i])); + return out_.String(&buffer_.front(), length, true); // true = output handler need to copy the string + } + bool StartObject() { return out_.StartObject(); } + bool Key(const char* str, SizeType length, bool copy) { return String(str, length, copy); } + bool EndObject(SizeType memberCount) { return out_.EndObject(memberCount); } + bool StartArray() { return out_.StartArray(); } + bool EndArray(SizeType elementCount) { return out_.EndArray(elementCount); } + + OutputHandler& out_; + std::vector<char> buffer_; +}; + +int main(int, char*[]) { + // Prepare JSON reader and input stream. + Reader reader; + char readBuffer[65536]; + FileReadStream is(stdin, readBuffer, sizeof(readBuffer)); + + // Prepare JSON writer and output stream. + char writeBuffer[65536]; + FileWriteStream os(stdout, writeBuffer, sizeof(writeBuffer)); + Writer<FileWriteStream> writer(os); + + // JSON reader parse from the input stream and let writer generate the output. + CapitalizeFilter<Writer<FileWriteStream> > filter(writer); + if (!reader.Parse(is, filter)) { + fprintf(stderr, "\nError(%u): %s\n", (unsigned)reader.GetErrorOffset(), GetParseError_En(reader.GetParseErrorCode())); + return 1; + } + + return 0; +} +~~~~~~~~~~ + +注意到,不可简单地把 JSON 当作字符串去改为大写。例如: +~~~~~~~~~~ +["Hello\nWorld"] +~~~~~~~~~~ + +简单地把整个 JSON 转为大写的话会产生错误的转义符: +~~~~~~~~~~ +["HELLO\NWORLD"] +~~~~~~~~~~ + +而 `capitalize` 就会产生正确的结果: +~~~~~~~~~~ +["HELLO\nWORLD"] +~~~~~~~~~~ + +我们还可以开发更复杂的过滤器。然而,由于 SAX 风格 API 在某一时间点只能提供单一事件的信息,使用者需要自行记录一些上下文信息(例如从根节点起的路径、储存其他相关值)。对于处理某些情况,用 DOM 会比 SAX 更容易实现。 + |