diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
commit | e6918187568dbd01842d8d1d2c808ce16a894239 (patch) | |
tree | 64f88b554b444a49f656b6c656111a145cbbaa28 /src/seastar/dpdk/drivers/net/cxgbe/sge.c | |
parent | Initial commit. (diff) | |
download | ceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip |
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/seastar/dpdk/drivers/net/cxgbe/sge.c')
-rw-r--r-- | src/seastar/dpdk/drivers/net/cxgbe/sge.c | 2662 |
1 files changed, 2662 insertions, 0 deletions
diff --git a/src/seastar/dpdk/drivers/net/cxgbe/sge.c b/src/seastar/dpdk/drivers/net/cxgbe/sge.c new file mode 100644 index 000000000..3a0eba5df --- /dev/null +++ b/src/seastar/dpdk/drivers/net/cxgbe/sge.c @@ -0,0 +1,2662 @@ +/* SPDX-License-Identifier: BSD-3-Clause + * Copyright(c) 2014-2018 Chelsio Communications. + * All rights reserved. + */ + +#include <sys/queue.h> +#include <stdio.h> +#include <errno.h> +#include <stdint.h> +#include <string.h> +#include <unistd.h> +#include <stdarg.h> +#include <inttypes.h> +#include <netinet/in.h> + +#include <rte_byteorder.h> +#include <rte_common.h> +#include <rte_cycles.h> +#include <rte_interrupts.h> +#include <rte_log.h> +#include <rte_debug.h> +#include <rte_pci.h> +#include <rte_atomic.h> +#include <rte_branch_prediction.h> +#include <rte_memory.h> +#include <rte_memzone.h> +#include <rte_tailq.h> +#include <rte_eal.h> +#include <rte_alarm.h> +#include <rte_ether.h> +#include <rte_ethdev_driver.h> +#include <rte_malloc.h> +#include <rte_random.h> +#include <rte_dev.h> + +#include "base/common.h" +#include "base/t4_regs.h" +#include "base/t4_msg.h" +#include "cxgbe.h" + +static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, + struct sge_eth_txq *txq); + +/* + * Max number of Rx buffers we replenish at a time. + */ +#define MAX_RX_REFILL 64U + +#define NOMEM_TMR_IDX (SGE_NTIMERS - 1) + +/* + * Max Tx descriptor space we allow for an Ethernet packet to be inlined + * into a WR. + */ +#define MAX_IMM_TX_PKT_LEN 256 + +/* + * Max size of a WR sent through a control Tx queue. + */ +#define MAX_CTRL_WR_LEN SGE_MAX_WR_LEN + +/* + * Rx buffer sizes for "usembufs" Free List buffers (one ingress packet + * per mbuf buffer). We currently only support two sizes for 1500- and + * 9000-byte MTUs. We could easily support more but there doesn't seem to be + * much need for that ... + */ +#define FL_MTU_SMALL 1500 +#define FL_MTU_LARGE 9000 + +static inline unsigned int fl_mtu_bufsize(struct adapter *adapter, + unsigned int mtu) +{ + struct sge *s = &adapter->sge; + + return CXGBE_ALIGN(s->pktshift + ETHER_HDR_LEN + VLAN_HLEN + mtu, + s->fl_align); +} + +#define FL_MTU_SMALL_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_SMALL) +#define FL_MTU_LARGE_BUFSIZE(adapter) fl_mtu_bufsize(adapter, FL_MTU_LARGE) + +/* + * Bits 0..3 of rx_sw_desc.dma_addr have special meaning. The hardware uses + * these to specify the buffer size as an index into the SGE Free List Buffer + * Size register array. We also use bit 4, when the buffer has been unmapped + * for DMA, but this is of course never sent to the hardware and is only used + * to prevent double unmappings. All of the above requires that the Free List + * Buffers which we allocate have the bottom 5 bits free (0) -- i.e. are + * 32-byte or or a power of 2 greater in alignment. Since the SGE's minimal + * Free List Buffer alignment is 32 bytes, this works out for us ... + */ +enum { + RX_BUF_FLAGS = 0x1f, /* bottom five bits are special */ + RX_BUF_SIZE = 0x0f, /* bottom three bits are for buf sizes */ + RX_UNMAPPED_BUF = 0x10, /* buffer is not mapped */ + + /* + * XXX We shouldn't depend on being able to use these indices. + * XXX Especially when some other Master PF has initialized the + * XXX adapter or we use the Firmware Configuration File. We + * XXX should really search through the Host Buffer Size register + * XXX array for the appropriately sized buffer indices. + */ + RX_SMALL_PG_BUF = 0x0, /* small (PAGE_SIZE) page buffer */ + RX_LARGE_PG_BUF = 0x1, /* buffer large page buffer */ + + RX_SMALL_MTU_BUF = 0x2, /* small MTU buffer */ + RX_LARGE_MTU_BUF = 0x3, /* large MTU buffer */ +}; + +/** + * txq_avail - return the number of available slots in a Tx queue + * @q: the Tx queue + * + * Returns the number of descriptors in a Tx queue available to write new + * packets. + */ +static inline unsigned int txq_avail(const struct sge_txq *q) +{ + return q->size - 1 - q->in_use; +} + +static int map_mbuf(struct rte_mbuf *mbuf, dma_addr_t *addr) +{ + struct rte_mbuf *m = mbuf; + + for (; m; m = m->next, addr++) { + *addr = m->buf_iova + rte_pktmbuf_headroom(m); + if (*addr == 0) + goto out_err; + } + return 0; + +out_err: + return -ENOMEM; +} + +/** + * free_tx_desc - reclaims Tx descriptors and their buffers + * @q: the Tx queue to reclaim descriptors from + * @n: the number of descriptors to reclaim + * + * Reclaims Tx descriptors from an SGE Tx queue and frees the associated + * Tx buffers. Called with the Tx queue lock held. + */ +static void free_tx_desc(struct sge_txq *q, unsigned int n) +{ + struct tx_sw_desc *d; + unsigned int cidx = 0; + + d = &q->sdesc[cidx]; + while (n--) { + if (d->mbuf) { /* an SGL is present */ + rte_pktmbuf_free(d->mbuf); + d->mbuf = NULL; + } + if (d->coalesce.idx) { + int i; + + for (i = 0; i < d->coalesce.idx; i++) { + rte_pktmbuf_free(d->coalesce.mbuf[i]); + d->coalesce.mbuf[i] = NULL; + } + d->coalesce.idx = 0; + } + ++d; + if (++cidx == q->size) { + cidx = 0; + d = q->sdesc; + } + RTE_MBUF_PREFETCH_TO_FREE(&q->sdesc->mbuf->pool); + } +} + +static void reclaim_tx_desc(struct sge_txq *q, unsigned int n) +{ + struct tx_sw_desc *d; + unsigned int cidx = q->cidx; + + d = &q->sdesc[cidx]; + while (n--) { + if (d->mbuf) { /* an SGL is present */ + rte_pktmbuf_free(d->mbuf); + d->mbuf = NULL; + } + ++d; + if (++cidx == q->size) { + cidx = 0; + d = q->sdesc; + } + } + q->cidx = cidx; +} + +/** + * fl_cap - return the capacity of a free-buffer list + * @fl: the FL + * + * Returns the capacity of a free-buffer list. The capacity is less than + * the size because one descriptor needs to be left unpopulated, otherwise + * HW will think the FL is empty. + */ +static inline unsigned int fl_cap(const struct sge_fl *fl) +{ + return fl->size - 8; /* 1 descriptor = 8 buffers */ +} + +/** + * fl_starving - return whether a Free List is starving. + * @adapter: pointer to the adapter + * @fl: the Free List + * + * Tests specified Free List to see whether the number of buffers + * available to the hardware has falled below our "starvation" + * threshold. + */ +static inline bool fl_starving(const struct adapter *adapter, + const struct sge_fl *fl) +{ + const struct sge *s = &adapter->sge; + + return fl->avail - fl->pend_cred <= s->fl_starve_thres; +} + +static inline unsigned int get_buf_size(struct adapter *adapter, + const struct rx_sw_desc *d) +{ + unsigned int rx_buf_size_idx = d->dma_addr & RX_BUF_SIZE; + unsigned int buf_size = 0; + + switch (rx_buf_size_idx) { + case RX_SMALL_MTU_BUF: + buf_size = FL_MTU_SMALL_BUFSIZE(adapter); + break; + + case RX_LARGE_MTU_BUF: + buf_size = FL_MTU_LARGE_BUFSIZE(adapter); + break; + + default: + BUG_ON(1); + /* NOT REACHED */ + } + + return buf_size; +} + +/** + * free_rx_bufs - free the Rx buffers on an SGE free list + * @q: the SGE free list to free buffers from + * @n: how many buffers to free + * + * Release the next @n buffers on an SGE free-buffer Rx queue. The + * buffers must be made inaccessible to HW before calling this function. + */ +static void free_rx_bufs(struct sge_fl *q, int n) +{ + unsigned int cidx = q->cidx; + struct rx_sw_desc *d; + + d = &q->sdesc[cidx]; + while (n--) { + if (d->buf) { + rte_pktmbuf_free(d->buf); + d->buf = NULL; + } + ++d; + if (++cidx == q->size) { + cidx = 0; + d = q->sdesc; + } + q->avail--; + } + q->cidx = cidx; +} + +/** + * unmap_rx_buf - unmap the current Rx buffer on an SGE free list + * @q: the SGE free list + * + * Unmap the current buffer on an SGE free-buffer Rx queue. The + * buffer must be made inaccessible to HW before calling this function. + * + * This is similar to @free_rx_bufs above but does not free the buffer. + * Do note that the FL still loses any further access to the buffer. + */ +static void unmap_rx_buf(struct sge_fl *q) +{ + if (++q->cidx == q->size) + q->cidx = 0; + q->avail--; +} + +static inline void ring_fl_db(struct adapter *adap, struct sge_fl *q) +{ + if (q->pend_cred >= 64) { + u32 val = adap->params.arch.sge_fl_db; + + if (is_t4(adap->params.chip)) + val |= V_PIDX(q->pend_cred / 8); + else + val |= V_PIDX_T5(q->pend_cred / 8); + + /* + * Make sure all memory writes to the Free List queue are + * committed before we tell the hardware about them. + */ + wmb(); + + /* + * If we don't have access to the new User Doorbell (T5+), use + * the old doorbell mechanism; otherwise use the new BAR2 + * mechanism. + */ + if (unlikely(!q->bar2_addr)) { + u32 reg = is_pf4(adap) ? MYPF_REG(A_SGE_PF_KDOORBELL) : + T4VF_SGE_BASE_ADDR + + A_SGE_VF_KDOORBELL; + + t4_write_reg_relaxed(adap, reg, + val | V_QID(q->cntxt_id)); + } else { + writel_relaxed(val | V_QID(q->bar2_qid), + (void *)((uintptr_t)q->bar2_addr + + SGE_UDB_KDOORBELL)); + + /* + * This Write memory Barrier will force the write to + * the User Doorbell area to be flushed. + */ + wmb(); + } + q->pend_cred &= 7; + } +} + +static inline void set_rx_sw_desc(struct rx_sw_desc *sd, void *buf, + dma_addr_t mapping) +{ + sd->buf = buf; + sd->dma_addr = mapping; /* includes size low bits */ +} + +/** + * refill_fl_usembufs - refill an SGE Rx buffer ring with mbufs + * @adap: the adapter + * @q: the ring to refill + * @n: the number of new buffers to allocate + * + * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, + * allocated with the supplied gfp flags. The caller must assure that + * @n does not exceed the queue's capacity. If afterwards the queue is + * found critically low mark it as starving in the bitmap of starving FLs. + * + * Returns the number of buffers allocated. + */ +static unsigned int refill_fl_usembufs(struct adapter *adap, struct sge_fl *q, + int n) +{ + struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, fl); + unsigned int cred = q->avail; + __be64 *d = &q->desc[q->pidx]; + struct rx_sw_desc *sd = &q->sdesc[q->pidx]; + unsigned int buf_size_idx = RX_SMALL_MTU_BUF; + struct rte_mbuf *buf_bulk[n]; + int ret, i; + struct rte_pktmbuf_pool_private *mbp_priv; + u8 jumbo_en = rxq->rspq.eth_dev->data->dev_conf.rxmode.offloads & + DEV_RX_OFFLOAD_JUMBO_FRAME; + + /* Use jumbo mtu buffers if mbuf data room size can fit jumbo data. */ + mbp_priv = rte_mempool_get_priv(rxq->rspq.mb_pool); + if (jumbo_en && + ((mbp_priv->mbuf_data_room_size - RTE_PKTMBUF_HEADROOM) >= 9000)) + buf_size_idx = RX_LARGE_MTU_BUF; + + ret = rte_mempool_get_bulk(rxq->rspq.mb_pool, (void *)buf_bulk, n); + if (unlikely(ret != 0)) { + dev_debug(adap, "%s: failed to allocated fl entries in bulk ..\n", + __func__); + q->alloc_failed++; + rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; + goto out; + } + + for (i = 0; i < n; i++) { + struct rte_mbuf *mbuf = buf_bulk[i]; + dma_addr_t mapping; + + if (!mbuf) { + dev_debug(adap, "%s: mbuf alloc failed\n", __func__); + q->alloc_failed++; + rxq->rspq.eth_dev->data->rx_mbuf_alloc_failed++; + goto out; + } + + rte_mbuf_refcnt_set(mbuf, 1); + mbuf->data_off = + (uint16_t)((char *) + RTE_PTR_ALIGN((char *)mbuf->buf_addr + + RTE_PKTMBUF_HEADROOM, + adap->sge.fl_align) - + (char *)mbuf->buf_addr); + mbuf->next = NULL; + mbuf->nb_segs = 1; + mbuf->port = rxq->rspq.port_id; + + mapping = (dma_addr_t)RTE_ALIGN(mbuf->buf_iova + + mbuf->data_off, + adap->sge.fl_align); + mapping |= buf_size_idx; + *d++ = cpu_to_be64(mapping); + set_rx_sw_desc(sd, mbuf, mapping); + sd++; + + q->avail++; + if (++q->pidx == q->size) { + q->pidx = 0; + sd = q->sdesc; + d = q->desc; + } + } + +out: cred = q->avail - cred; + q->pend_cred += cred; + ring_fl_db(adap, q); + + if (unlikely(fl_starving(adap, q))) { + /* + * Make sure data has been written to free list + */ + wmb(); + q->low++; + } + + return cred; +} + +/** + * refill_fl - refill an SGE Rx buffer ring with mbufs + * @adap: the adapter + * @q: the ring to refill + * @n: the number of new buffers to allocate + * + * (Re)populate an SGE free-buffer queue with up to @n new packet buffers, + * allocated with the supplied gfp flags. The caller must assure that + * @n does not exceed the queue's capacity. Returns the number of buffers + * allocated. + */ +static unsigned int refill_fl(struct adapter *adap, struct sge_fl *q, int n) +{ + return refill_fl_usembufs(adap, q, n); +} + +static inline void __refill_fl(struct adapter *adap, struct sge_fl *fl) +{ + refill_fl(adap, fl, min(MAX_RX_REFILL, fl_cap(fl) - fl->avail)); +} + +/* + * Return the number of reclaimable descriptors in a Tx queue. + */ +static inline int reclaimable(const struct sge_txq *q) +{ + int hw_cidx = ntohs(q->stat->cidx); + + hw_cidx -= q->cidx; + if (hw_cidx < 0) + return hw_cidx + q->size; + return hw_cidx; +} + +/** + * reclaim_completed_tx - reclaims completed Tx descriptors + * @q: the Tx queue to reclaim completed descriptors from + * + * Reclaims Tx descriptors that the SGE has indicated it has processed. + */ +void reclaim_completed_tx(struct sge_txq *q) +{ + unsigned int avail = reclaimable(q); + + do { + /* reclaim as much as possible */ + reclaim_tx_desc(q, avail); + q->in_use -= avail; + avail = reclaimable(q); + } while (avail); +} + +/** + * sgl_len - calculates the size of an SGL of the given capacity + * @n: the number of SGL entries + * + * Calculates the number of flits needed for a scatter/gather list that + * can hold the given number of entries. + */ +static inline unsigned int sgl_len(unsigned int n) +{ + /* + * A Direct Scatter Gather List uses 32-bit lengths and 64-bit PCI DMA + * addresses. The DSGL Work Request starts off with a 32-bit DSGL + * ULPTX header, then Length0, then Address0, then, for 1 <= i <= N, + * repeated sequences of { Length[i], Length[i+1], Address[i], + * Address[i+1] } (this ensures that all addresses are on 64-bit + * boundaries). If N is even, then Length[N+1] should be set to 0 and + * Address[N+1] is omitted. + * + * The following calculation incorporates all of the above. It's + * somewhat hard to follow but, briefly: the "+2" accounts for the + * first two flits which include the DSGL header, Length0 and + * Address0; the "(3*(n-1))/2" covers the main body of list entries (3 + * flits for every pair of the remaining N) +1 if (n-1) is odd; and + * finally the "+((n-1)&1)" adds the one remaining flit needed if + * (n-1) is odd ... + */ + n--; + return (3 * n) / 2 + (n & 1) + 2; +} + +/** + * flits_to_desc - returns the num of Tx descriptors for the given flits + * @n: the number of flits + * + * Returns the number of Tx descriptors needed for the supplied number + * of flits. + */ +static inline unsigned int flits_to_desc(unsigned int n) +{ + return DIV_ROUND_UP(n, 8); +} + +/** + * is_eth_imm - can an Ethernet packet be sent as immediate data? + * @m: the packet + * + * Returns whether an Ethernet packet is small enough to fit as + * immediate data. Return value corresponds to the headroom required. + */ +static inline int is_eth_imm(const struct rte_mbuf *m) +{ + unsigned int hdrlen = (m->ol_flags & PKT_TX_TCP_SEG) ? + sizeof(struct cpl_tx_pkt_lso_core) : 0; + + hdrlen += sizeof(struct cpl_tx_pkt); + if (m->pkt_len <= MAX_IMM_TX_PKT_LEN - hdrlen) + return hdrlen; + + return 0; +} + +/** + * calc_tx_flits - calculate the number of flits for a packet Tx WR + * @m: the packet + * @adap: adapter structure pointer + * + * Returns the number of flits needed for a Tx WR for the given Ethernet + * packet, including the needed WR and CPL headers. + */ +static inline unsigned int calc_tx_flits(const struct rte_mbuf *m, + struct adapter *adap) +{ + size_t wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkt_wr) : + sizeof(struct fw_eth_tx_pkt_vm_wr); + unsigned int flits; + int hdrlen; + + /* + * If the mbuf is small enough, we can pump it out as a work request + * with only immediate data. In that case we just have to have the + * TX Packet header plus the mbuf data in the Work Request. + */ + + hdrlen = is_eth_imm(m); + if (hdrlen) + return DIV_ROUND_UP(m->pkt_len + hdrlen, sizeof(__be64)); + + /* + * Otherwise, we're going to have to construct a Scatter gather list + * of the mbuf body and fragments. We also include the flits necessary + * for the TX Packet Work Request and CPL. We always have a firmware + * Write Header (incorporated as part of the cpl_tx_pkt_lso and + * cpl_tx_pkt structures), followed by either a TX Packet Write CPL + * message or, if we're doing a Large Send Offload, an LSO CPL message + * with an embedded TX Packet Write CPL message. + */ + flits = sgl_len(m->nb_segs); + if (m->tso_segsz) + flits += (wr_size + sizeof(struct cpl_tx_pkt_lso_core) + + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); + else + flits += (wr_size + + sizeof(struct cpl_tx_pkt_core)) / sizeof(__be64); + return flits; +} + +/** + * write_sgl - populate a scatter/gather list for a packet + * @mbuf: the packet + * @q: the Tx queue we are writing into + * @sgl: starting location for writing the SGL + * @end: points right after the end of the SGL + * @start: start offset into mbuf main-body data to include in the SGL + * @addr: address of mapped region + * + * Generates a scatter/gather list for the buffers that make up a packet. + * The caller must provide adequate space for the SGL that will be written. + * The SGL includes all of the packet's page fragments and the data in its + * main body except for the first @start bytes. @sgl must be 16-byte + * aligned and within a Tx descriptor with available space. @end points + * write after the end of the SGL but does not account for any potential + * wrap around, i.e., @end > @sgl. + */ +static void write_sgl(struct rte_mbuf *mbuf, struct sge_txq *q, + struct ulptx_sgl *sgl, u64 *end, unsigned int start, + const dma_addr_t *addr) +{ + unsigned int i, len; + struct ulptx_sge_pair *to; + struct rte_mbuf *m = mbuf; + unsigned int nfrags = m->nb_segs; + struct ulptx_sge_pair buf[nfrags / 2]; + + len = m->data_len - start; + sgl->len0 = htonl(len); + sgl->addr0 = rte_cpu_to_be_64(addr[0]); + + sgl->cmd_nsge = htonl(V_ULPTX_CMD(ULP_TX_SC_DSGL) | + V_ULPTX_NSGE(nfrags)); + if (likely(--nfrags == 0)) + return; + /* + * Most of the complexity below deals with the possibility we hit the + * end of the queue in the middle of writing the SGL. For this case + * only we create the SGL in a temporary buffer and then copy it. + */ + to = (u8 *)end > (u8 *)q->stat ? buf : sgl->sge; + + for (i = 0; nfrags >= 2; nfrags -= 2, to++) { + m = m->next; + to->len[0] = rte_cpu_to_be_32(m->data_len); + to->addr[0] = rte_cpu_to_be_64(addr[++i]); + m = m->next; + to->len[1] = rte_cpu_to_be_32(m->data_len); + to->addr[1] = rte_cpu_to_be_64(addr[++i]); + } + if (nfrags) { + m = m->next; + to->len[0] = rte_cpu_to_be_32(m->data_len); + to->len[1] = rte_cpu_to_be_32(0); + to->addr[0] = rte_cpu_to_be_64(addr[i + 1]); + } + if (unlikely((u8 *)end > (u8 *)q->stat)) { + unsigned int part0 = RTE_PTR_DIFF((u8 *)q->stat, + (u8 *)sgl->sge); + unsigned int part1; + + if (likely(part0)) + memcpy(sgl->sge, buf, part0); + part1 = RTE_PTR_DIFF((u8 *)end, (u8 *)q->stat); + rte_memcpy(q->desc, RTE_PTR_ADD((u8 *)buf, part0), part1); + end = RTE_PTR_ADD((void *)q->desc, part1); + } + if ((uintptr_t)end & 8) /* 0-pad to multiple of 16 */ + *(u64 *)end = 0; +} + +#define IDXDIFF(head, tail, wrap) \ + ((head) >= (tail) ? (head) - (tail) : (wrap) - (tail) + (head)) + +#define Q_IDXDIFF(q, idx) IDXDIFF((q)->pidx, (q)->idx, (q)->size) +#define R_IDXDIFF(q, idx) IDXDIFF((q)->cidx, (q)->idx, (q)->size) + +#define PIDXDIFF(head, tail, wrap) \ + ((tail) >= (head) ? (tail) - (head) : (wrap) - (head) + (tail)) +#define P_IDXDIFF(q, idx) PIDXDIFF((q)->cidx, idx, (q)->size) + +/** + * ring_tx_db - ring a Tx queue's doorbell + * @adap: the adapter + * @q: the Tx queue + * @n: number of new descriptors to give to HW + * + * Ring the doorbel for a Tx queue. + */ +static inline void ring_tx_db(struct adapter *adap, struct sge_txq *q) +{ + int n = Q_IDXDIFF(q, dbidx); + + /* + * Make sure that all writes to the TX Descriptors are committed + * before we tell the hardware about them. + */ + rte_wmb(); + + /* + * If we don't have access to the new User Doorbell (T5+), use the old + * doorbell mechanism; otherwise use the new BAR2 mechanism. + */ + if (unlikely(!q->bar2_addr)) { + u32 val = V_PIDX(n); + + /* + * For T4 we need to participate in the Doorbell Recovery + * mechanism. + */ + if (!q->db_disabled) + t4_write_reg(adap, MYPF_REG(A_SGE_PF_KDOORBELL), + V_QID(q->cntxt_id) | val); + else + q->db_pidx_inc += n; + q->db_pidx = q->pidx; + } else { + u32 val = V_PIDX_T5(n); + + /* + * T4 and later chips share the same PIDX field offset within + * the doorbell, but T5 and later shrank the field in order to + * gain a bit for Doorbell Priority. The field was absurdly + * large in the first place (14 bits) so we just use the T5 + * and later limits and warn if a Queue ID is too large. + */ + WARN_ON(val & F_DBPRIO); + + writel(val | V_QID(q->bar2_qid), + (void *)((uintptr_t)q->bar2_addr + SGE_UDB_KDOORBELL)); + + /* + * This Write Memory Barrier will force the write to the User + * Doorbell area to be flushed. This is needed to prevent + * writes on different CPUs for the same queue from hitting + * the adapter out of order. This is required when some Work + * Requests take the Write Combine Gather Buffer path (user + * doorbell area offset [SGE_UDB_WCDOORBELL..+63]) and some + * take the traditional path where we simply increment the + * PIDX (User Doorbell area SGE_UDB_KDOORBELL) and have the + * hardware DMA read the actual Work Request. + */ + rte_wmb(); + } + q->dbidx = q->pidx; +} + +/* + * Figure out what HW csum a packet wants and return the appropriate control + * bits. + */ +static u64 hwcsum(enum chip_type chip, const struct rte_mbuf *m) +{ + int csum_type; + + if (m->ol_flags & PKT_TX_IP_CKSUM) { + switch (m->ol_flags & PKT_TX_L4_MASK) { + case PKT_TX_TCP_CKSUM: + csum_type = TX_CSUM_TCPIP; + break; + case PKT_TX_UDP_CKSUM: + csum_type = TX_CSUM_UDPIP; + break; + default: + goto nocsum; + } + } else { + goto nocsum; + } + + if (likely(csum_type >= TX_CSUM_TCPIP)) { + u64 hdr_len = V_TXPKT_IPHDR_LEN(m->l3_len); + int eth_hdr_len = m->l2_len; + + if (CHELSIO_CHIP_VERSION(chip) <= CHELSIO_T5) + hdr_len |= V_TXPKT_ETHHDR_LEN(eth_hdr_len); + else + hdr_len |= V_T6_TXPKT_ETHHDR_LEN(eth_hdr_len); + return V_TXPKT_CSUM_TYPE(csum_type) | hdr_len; + } +nocsum: + /* + * unknown protocol, disable HW csum + * and hope a bad packet is detected + */ + return F_TXPKT_L4CSUM_DIS; +} + +static inline void txq_advance(struct sge_txq *q, unsigned int n) +{ + q->in_use += n; + q->pidx += n; + if (q->pidx >= q->size) + q->pidx -= q->size; +} + +#define MAX_COALESCE_LEN 64000 + +static inline int wraps_around(struct sge_txq *q, int ndesc) +{ + return (q->pidx + ndesc) > q->size ? 1 : 0; +} + +static void tx_timer_cb(void *data) +{ + struct adapter *adap = (struct adapter *)data; + struct sge_eth_txq *txq = &adap->sge.ethtxq[0]; + int i; + unsigned int coal_idx; + + /* monitor any pending tx */ + for (i = 0; i < adap->sge.max_ethqsets; i++, txq++) { + if (t4_os_trylock(&txq->txq_lock)) { + coal_idx = txq->q.coalesce.idx; + if (coal_idx) { + if (coal_idx == txq->q.last_coal_idx && + txq->q.pidx == txq->q.last_pidx) { + ship_tx_pkt_coalesce_wr(adap, txq); + } else { + txq->q.last_coal_idx = coal_idx; + txq->q.last_pidx = txq->q.pidx; + } + } + t4_os_unlock(&txq->txq_lock); + } + } + rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); +} + +/** + * ship_tx_pkt_coalesce_wr - finalizes and ships a coalesce WR + * @ adap: adapter structure + * @txq: tx queue + * + * writes the different fields of the pkts WR and sends it. + */ +static inline void ship_tx_pkt_coalesce_wr(struct adapter *adap, + struct sge_eth_txq *txq) +{ + struct fw_eth_tx_pkts_vm_wr *vmwr; + const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) + + sizeof(vmwr->ethmacsrc) + + sizeof(vmwr->ethtype) + + sizeof(vmwr->vlantci)); + struct fw_eth_tx_pkts_wr *wr; + struct sge_txq *q = &txq->q; + unsigned int ndesc; + u32 wr_mid; + + /* fill the pkts WR header */ + wr = (void *)&q->desc[q->pidx]; + wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR)); + vmwr = (void *)&q->desc[q->pidx]; + + wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(q->coalesce.flits, 2)); + ndesc = flits_to_desc(q->coalesce.flits); + wr->equiq_to_len16 = htonl(wr_mid); + wr->plen = cpu_to_be16(q->coalesce.len); + wr->npkt = q->coalesce.idx; + wr->r3 = 0; + if (is_pf4(adap)) { + wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS2_WR)); + wr->type = q->coalesce.type; + } else { + wr->op_pkd = htonl(V_FW_WR_OP(FW_ETH_TX_PKTS_VM_WR)); + vmwr->r4 = 0; + memcpy((void *)vmwr->ethmacdst, (void *)q->coalesce.ethmacdst, + fw_hdr_copy_len); + } + + /* zero out coalesce structure members */ + memset((void *)&q->coalesce, 0, sizeof(struct eth_coalesce)); + + txq_advance(q, ndesc); + txq->stats.coal_wr++; + txq->stats.coal_pkts += wr->npkt; + + if (Q_IDXDIFF(q, equeidx) >= q->size / 2) { + q->equeidx = q->pidx; + wr_mid |= F_FW_WR_EQUEQ; + wr->equiq_to_len16 = htonl(wr_mid); + } + ring_tx_db(adap, q); +} + +/** + * should_tx_packet_coalesce - decides wether to coalesce an mbuf or not + * @txq: tx queue where the mbuf is sent + * @mbuf: mbuf to be sent + * @nflits: return value for number of flits needed + * @adap: adapter structure + * + * This function decides if a packet should be coalesced or not. + */ +static inline int should_tx_packet_coalesce(struct sge_eth_txq *txq, + struct rte_mbuf *mbuf, + unsigned int *nflits, + struct adapter *adap) +{ + struct fw_eth_tx_pkts_vm_wr *wr; + const size_t fw_hdr_copy_len = (sizeof(wr->ethmacdst) + + sizeof(wr->ethmacsrc) + + sizeof(wr->ethtype) + + sizeof(wr->vlantci)); + struct sge_txq *q = &txq->q; + unsigned int flits, ndesc; + unsigned char type = 0; + int credits, wr_size; + + /* use coal WR type 1 when no frags are present */ + type = (mbuf->nb_segs == 1) ? 1 : 0; + if (!is_pf4(adap)) { + if (!type) + return 0; + + if (q->coalesce.idx && memcmp((void *)q->coalesce.ethmacdst, + rte_pktmbuf_mtod(mbuf, void *), + fw_hdr_copy_len)) + ship_tx_pkt_coalesce_wr(adap, txq); + } + + if (unlikely(type != q->coalesce.type && q->coalesce.idx)) + ship_tx_pkt_coalesce_wr(adap, txq); + + /* calculate the number of flits required for coalescing this packet + * without the 2 flits of the WR header. These are added further down + * if we are just starting in new PKTS WR. sgl_len doesn't account for + * the possible 16 bytes alignment ULP TX commands so we do it here. + */ + flits = (sgl_len(mbuf->nb_segs) + 1) & ~1U; + if (type == 0) + flits += (sizeof(struct ulp_txpkt) + + sizeof(struct ulptx_idata)) / sizeof(__be64); + flits += sizeof(struct cpl_tx_pkt_core) / sizeof(__be64); + *nflits = flits; + + /* If coalescing is on, the mbuf is added to a pkts WR */ + if (q->coalesce.idx) { + ndesc = DIV_ROUND_UP(q->coalesce.flits + flits, 8); + credits = txq_avail(q) - ndesc; + + /* If we are wrapping or this is last mbuf then, send the + * already coalesced mbufs and let the non-coalesce pass + * handle the mbuf. + */ + if (unlikely(credits < 0 || wraps_around(q, ndesc))) { + ship_tx_pkt_coalesce_wr(adap, txq); + return 0; + } + + /* If the max coalesce len or the max WR len is reached + * ship the WR and keep coalescing on. + */ + if (unlikely((q->coalesce.len + mbuf->pkt_len > + MAX_COALESCE_LEN) || + (q->coalesce.flits + flits > + q->coalesce.max))) { + ship_tx_pkt_coalesce_wr(adap, txq); + goto new; + } + return 1; + } + +new: + /* start a new pkts WR, the WR header is not filled below */ + wr_size = is_pf4(adap) ? sizeof(struct fw_eth_tx_pkts_wr) : + sizeof(struct fw_eth_tx_pkts_vm_wr); + flits += wr_size / sizeof(__be64); + ndesc = flits_to_desc(q->coalesce.flits + flits); + credits = txq_avail(q) - ndesc; + + if (unlikely(credits < 0 || wraps_around(q, ndesc))) + return 0; + q->coalesce.flits += wr_size / sizeof(__be64); + q->coalesce.type = type; + q->coalesce.ptr = (unsigned char *)&q->desc[q->pidx] + + q->coalesce.flits * sizeof(__be64); + if (!is_pf4(adap)) + memcpy((void *)q->coalesce.ethmacdst, + rte_pktmbuf_mtod(mbuf, void *), fw_hdr_copy_len); + return 1; +} + +/** + * tx_do_packet_coalesce - add an mbuf to a coalesce WR + * @txq: sge_eth_txq used send the mbuf + * @mbuf: mbuf to be sent + * @flits: flits needed for this mbuf + * @adap: adapter structure + * @pi: port_info structure + * @addr: mapped address of the mbuf + * + * Adds an mbuf to be sent as part of a coalesce WR by filling a + * ulp_tx_pkt command, ulp_tx_sc_imm command, cpl message and + * ulp_tx_sc_dsgl command. + */ +static inline int tx_do_packet_coalesce(struct sge_eth_txq *txq, + struct rte_mbuf *mbuf, + int flits, struct adapter *adap, + const struct port_info *pi, + dma_addr_t *addr, uint16_t nb_pkts) +{ + u64 cntrl, *end; + struct sge_txq *q = &txq->q; + struct ulp_txpkt *mc; + struct ulptx_idata *sc_imm; + struct cpl_tx_pkt_core *cpl; + struct tx_sw_desc *sd; + unsigned int idx = q->coalesce.idx, len = mbuf->pkt_len; + unsigned int max_coal_pkt_num = is_pf4(adap) ? ETH_COALESCE_PKT_NUM : + ETH_COALESCE_VF_PKT_NUM; + +#ifdef RTE_LIBRTE_CXGBE_TPUT + RTE_SET_USED(nb_pkts); +#endif + + if (q->coalesce.type == 0) { + mc = (struct ulp_txpkt *)q->coalesce.ptr; + mc->cmd_dest = htonl(V_ULPTX_CMD(4) | V_ULP_TXPKT_DEST(0) | + V_ULP_TXPKT_FID(adap->sge.fw_evtq.cntxt_id) | + F_ULP_TXPKT_RO); + mc->len = htonl(DIV_ROUND_UP(flits, 2)); + sc_imm = (struct ulptx_idata *)(mc + 1); + sc_imm->cmd_more = htonl(V_ULPTX_CMD(ULP_TX_SC_IMM) | + F_ULP_TX_SC_MORE); + sc_imm->len = htonl(sizeof(*cpl)); + end = (u64 *)mc + flits; + cpl = (struct cpl_tx_pkt_core *)(sc_imm + 1); + } else { + end = (u64 *)q->coalesce.ptr + flits; + cpl = (struct cpl_tx_pkt_core *)q->coalesce.ptr; + } + + /* update coalesce structure for this txq */ + q->coalesce.flits += flits; + q->coalesce.ptr += flits * sizeof(__be64); + q->coalesce.len += mbuf->pkt_len; + + /* fill the cpl message, same as in t4_eth_xmit, this should be kept + * similar to t4_eth_xmit + */ + if (mbuf->ol_flags & PKT_TX_IP_CKSUM) { + cntrl = hwcsum(adap->params.chip, mbuf) | + F_TXPKT_IPCSUM_DIS; + txq->stats.tx_cso++; + } else { + cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; + } + + if (mbuf->ol_flags & PKT_TX_VLAN_PKT) { + txq->stats.vlan_ins++; + cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(mbuf->vlan_tci); + } + + cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT)); + if (is_pf4(adap)) + cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) | + V_TXPKT_PF(adap->pf)); + else + cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id)); + cpl->pack = htons(0); + cpl->len = htons(len); + cpl->ctrl1 = cpu_to_be64(cntrl); + write_sgl(mbuf, q, (struct ulptx_sgl *)(cpl + 1), end, 0, addr); + txq->stats.pkts++; + txq->stats.tx_bytes += len; + + sd = &q->sdesc[q->pidx + (idx >> 1)]; + if (!(idx & 1)) { + if (sd->coalesce.idx) { + int i; + + for (i = 0; i < sd->coalesce.idx; i++) { + rte_pktmbuf_free(sd->coalesce.mbuf[i]); + sd->coalesce.mbuf[i] = NULL; + } + } + } + + /* store pointers to the mbuf and the sgl used in free_tx_desc. + * each tx desc can hold two pointers corresponding to the value + * of ETH_COALESCE_PKT_PER_DESC + */ + sd->coalesce.mbuf[idx & 1] = mbuf; + sd->coalesce.sgl[idx & 1] = (struct ulptx_sgl *)(cpl + 1); + sd->coalesce.idx = (idx & 1) + 1; + + /* send the coaelsced work request if max reached */ + if (++q->coalesce.idx == max_coal_pkt_num +#ifndef RTE_LIBRTE_CXGBE_TPUT + || q->coalesce.idx >= nb_pkts +#endif + ) + ship_tx_pkt_coalesce_wr(adap, txq); + return 0; +} + +/** + * t4_eth_xmit - add a packet to an Ethernet Tx queue + * @txq: the egress queue + * @mbuf: the packet + * + * Add a packet to an SGE Ethernet Tx queue. Runs with softirqs disabled. + */ +int t4_eth_xmit(struct sge_eth_txq *txq, struct rte_mbuf *mbuf, + uint16_t nb_pkts) +{ + const struct port_info *pi; + struct cpl_tx_pkt_lso_core *lso; + struct adapter *adap; + struct rte_mbuf *m = mbuf; + struct fw_eth_tx_pkt_wr *wr; + struct fw_eth_tx_pkt_vm_wr *vmwr; + struct cpl_tx_pkt_core *cpl; + struct tx_sw_desc *d; + dma_addr_t addr[m->nb_segs]; + unsigned int flits, ndesc, cflits; + int l3hdr_len, l4hdr_len, eth_xtra_len; + int len, last_desc; + int credits; + u32 wr_mid; + u64 cntrl, *end; + bool v6; + u32 max_pkt_len = txq->data->dev_conf.rxmode.max_rx_pkt_len; + + /* Reject xmit if queue is stopped */ + if (unlikely(txq->flags & EQ_STOPPED)) + return -(EBUSY); + + /* + * The chip min packet length is 10 octets but play safe and reject + * anything shorter than an Ethernet header. + */ + if (unlikely(m->pkt_len < ETHER_HDR_LEN)) { +out_free: + rte_pktmbuf_free(m); + return 0; + } + + if ((!(m->ol_flags & PKT_TX_TCP_SEG)) && + (unlikely(m->pkt_len > max_pkt_len))) + goto out_free; + + pi = (struct port_info *)txq->data->dev_private; + adap = pi->adapter; + + cntrl = F_TXPKT_L4CSUM_DIS | F_TXPKT_IPCSUM_DIS; + /* align the end of coalesce WR to a 512 byte boundary */ + txq->q.coalesce.max = (8 - (txq->q.pidx & 7)) * 8; + + if (!((m->ol_flags & PKT_TX_TCP_SEG) || (m->pkt_len > ETHER_MAX_LEN))) { + if (should_tx_packet_coalesce(txq, mbuf, &cflits, adap)) { + if (unlikely(map_mbuf(mbuf, addr) < 0)) { + dev_warn(adap, "%s: mapping err for coalesce\n", + __func__); + txq->stats.mapping_err++; + goto out_free; + } + rte_prefetch0((volatile void *)addr); + return tx_do_packet_coalesce(txq, mbuf, cflits, adap, + pi, addr, nb_pkts); + } else { + return -EBUSY; + } + } + + if (txq->q.coalesce.idx) + ship_tx_pkt_coalesce_wr(adap, txq); + + flits = calc_tx_flits(m, adap); + ndesc = flits_to_desc(flits); + credits = txq_avail(&txq->q) - ndesc; + + if (unlikely(credits < 0)) { + dev_debug(adap, "%s: Tx ring %u full; credits = %d\n", + __func__, txq->q.cntxt_id, credits); + return -EBUSY; + } + + if (unlikely(map_mbuf(m, addr) < 0)) { + txq->stats.mapping_err++; + goto out_free; + } + + wr_mid = V_FW_WR_LEN16(DIV_ROUND_UP(flits, 2)); + if (Q_IDXDIFF(&txq->q, equeidx) >= 64) { + txq->q.equeidx = txq->q.pidx; + wr_mid |= F_FW_WR_EQUEQ; + } + + wr = (void *)&txq->q.desc[txq->q.pidx]; + vmwr = (void *)&txq->q.desc[txq->q.pidx]; + wr->equiq_to_len16 = htonl(wr_mid); + if (is_pf4(adap)) { + wr->r3 = rte_cpu_to_be_64(0); + end = (u64 *)wr + flits; + } else { + const size_t fw_hdr_copy_len = (sizeof(vmwr->ethmacdst) + + sizeof(vmwr->ethmacsrc) + + sizeof(vmwr->ethtype) + + sizeof(vmwr->vlantci)); + + vmwr->r3[0] = rte_cpu_to_be_32(0); + vmwr->r3[1] = rte_cpu_to_be_32(0); + memcpy((void *)vmwr->ethmacdst, rte_pktmbuf_mtod(m, void *), + fw_hdr_copy_len); + end = (u64 *)vmwr + flits; + } + + len = 0; + len += sizeof(*cpl); + + /* Coalescing skipped and we send through normal path */ + if (!(m->ol_flags & PKT_TX_TCP_SEG)) { + wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ? + FW_ETH_TX_PKT_WR : + FW_ETH_TX_PKT_VM_WR) | + V_FW_WR_IMMDLEN(len)); + if (is_pf4(adap)) + cpl = (void *)(wr + 1); + else + cpl = (void *)(vmwr + 1); + if (m->ol_flags & PKT_TX_IP_CKSUM) { + cntrl = hwcsum(adap->params.chip, m) | + F_TXPKT_IPCSUM_DIS; + txq->stats.tx_cso++; + } + } else { + if (is_pf4(adap)) + lso = (void *)(wr + 1); + else + lso = (void *)(vmwr + 1); + v6 = (m->ol_flags & PKT_TX_IPV6) != 0; + l3hdr_len = m->l3_len; + l4hdr_len = m->l4_len; + eth_xtra_len = m->l2_len - ETHER_HDR_LEN; + len += sizeof(*lso); + wr->op_immdlen = htonl(V_FW_WR_OP(is_pf4(adap) ? + FW_ETH_TX_PKT_WR : + FW_ETH_TX_PKT_VM_WR) | + V_FW_WR_IMMDLEN(len)); + lso->lso_ctrl = htonl(V_LSO_OPCODE(CPL_TX_PKT_LSO) | + F_LSO_FIRST_SLICE | F_LSO_LAST_SLICE | + V_LSO_IPV6(v6) | + V_LSO_ETHHDR_LEN(eth_xtra_len / 4) | + V_LSO_IPHDR_LEN(l3hdr_len / 4) | + V_LSO_TCPHDR_LEN(l4hdr_len / 4)); + lso->ipid_ofst = htons(0); + lso->mss = htons(m->tso_segsz); + lso->seqno_offset = htonl(0); + if (is_t4(adap->params.chip)) + lso->len = htonl(m->pkt_len); + else + lso->len = htonl(V_LSO_T5_XFER_SIZE(m->pkt_len)); + cpl = (void *)(lso + 1); + + if (CHELSIO_CHIP_VERSION(adap->params.chip) <= CHELSIO_T5) + cntrl = V_TXPKT_ETHHDR_LEN(eth_xtra_len); + else + cntrl = V_T6_TXPKT_ETHHDR_LEN(eth_xtra_len); + + cntrl |= V_TXPKT_CSUM_TYPE(v6 ? TX_CSUM_TCPIP6 : + TX_CSUM_TCPIP) | + V_TXPKT_IPHDR_LEN(l3hdr_len); + txq->stats.tso++; + txq->stats.tx_cso += m->tso_segsz; + } + + if (m->ol_flags & PKT_TX_VLAN_PKT) { + txq->stats.vlan_ins++; + cntrl |= F_TXPKT_VLAN_VLD | V_TXPKT_VLAN(m->vlan_tci); + } + + cpl->ctrl0 = htonl(V_TXPKT_OPCODE(CPL_TX_PKT_XT)); + if (is_pf4(adap)) + cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->tx_chan) | + V_TXPKT_PF(adap->pf)); + else + cpl->ctrl0 |= htonl(V_TXPKT_INTF(pi->port_id) | + V_TXPKT_PF(0)); + + cpl->pack = htons(0); + cpl->len = htons(m->pkt_len); + cpl->ctrl1 = cpu_to_be64(cntrl); + + txq->stats.pkts++; + txq->stats.tx_bytes += m->pkt_len; + last_desc = txq->q.pidx + ndesc - 1; + if (last_desc >= (int)txq->q.size) + last_desc -= txq->q.size; + + d = &txq->q.sdesc[last_desc]; + if (d->coalesce.idx) { + int i; + + for (i = 0; i < d->coalesce.idx; i++) { + rte_pktmbuf_free(d->coalesce.mbuf[i]); + d->coalesce.mbuf[i] = NULL; + } + d->coalesce.idx = 0; + } + write_sgl(m, &txq->q, (struct ulptx_sgl *)(cpl + 1), end, 0, + addr); + txq->q.sdesc[last_desc].mbuf = m; + txq->q.sdesc[last_desc].sgl = (struct ulptx_sgl *)(cpl + 1); + txq_advance(&txq->q, ndesc); + ring_tx_db(adap, &txq->q); + return 0; +} + +/** + * reclaim_completed_tx_imm - reclaim completed control-queue Tx descs + * @q: the SGE control Tx queue + * + * This is a variant of reclaim_completed_tx() that is used for Tx queues + * that send only immediate data (presently just the control queues) and + * thus do not have any mbufs to release. + */ +static inline void reclaim_completed_tx_imm(struct sge_txq *q) +{ + int hw_cidx = ntohs(q->stat->cidx); + int reclaim = hw_cidx - q->cidx; + + if (reclaim < 0) + reclaim += q->size; + + q->in_use -= reclaim; + q->cidx = hw_cidx; +} + +/** + * is_imm - check whether a packet can be sent as immediate data + * @mbuf: the packet + * + * Returns true if a packet can be sent as a WR with immediate data. + */ +static inline int is_imm(const struct rte_mbuf *mbuf) +{ + return mbuf->pkt_len <= MAX_CTRL_WR_LEN; +} + +/** + * inline_tx_mbuf: inline a packet's data into TX descriptors + * @q: the TX queue where the packet will be inlined + * @from: pointer to data portion of packet + * @to: pointer after cpl where data has to be inlined + * @len: length of data to inline + * + * Inline a packet's contents directly to TX descriptors, starting at + * the given position within the TX DMA ring. + * Most of the complexity of this operation is dealing with wrap arounds + * in the middle of the packet we want to inline. + */ +static void inline_tx_mbuf(const struct sge_txq *q, caddr_t from, caddr_t *to, + int len) +{ + int left = RTE_PTR_DIFF(q->stat, *to); + + if (likely((uintptr_t)*to + len <= (uintptr_t)q->stat)) { + rte_memcpy(*to, from, len); + *to = RTE_PTR_ADD(*to, len); + } else { + rte_memcpy(*to, from, left); + from = RTE_PTR_ADD(from, left); + left = len - left; + rte_memcpy((void *)q->desc, from, left); + *to = RTE_PTR_ADD((void *)q->desc, left); + } +} + +/** + * ctrl_xmit - send a packet through an SGE control Tx queue + * @q: the control queue + * @mbuf: the packet + * + * Send a packet through an SGE control Tx queue. Packets sent through + * a control queue must fit entirely as immediate data. + */ +static int ctrl_xmit(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf) +{ + unsigned int ndesc; + struct fw_wr_hdr *wr; + caddr_t dst; + + if (unlikely(!is_imm(mbuf))) { + WARN_ON(1); + rte_pktmbuf_free(mbuf); + return -1; + } + + reclaim_completed_tx_imm(&q->q); + ndesc = DIV_ROUND_UP(mbuf->pkt_len, sizeof(struct tx_desc)); + t4_os_lock(&q->ctrlq_lock); + + q->full = txq_avail(&q->q) < ndesc ? 1 : 0; + if (unlikely(q->full)) { + t4_os_unlock(&q->ctrlq_lock); + return -1; + } + + wr = (struct fw_wr_hdr *)&q->q.desc[q->q.pidx]; + dst = (void *)wr; + inline_tx_mbuf(&q->q, rte_pktmbuf_mtod(mbuf, caddr_t), + &dst, mbuf->data_len); + + txq_advance(&q->q, ndesc); + if (unlikely(txq_avail(&q->q) < 64)) + wr->lo |= htonl(F_FW_WR_EQUEQ); + + q->txp++; + + ring_tx_db(q->adapter, &q->q); + t4_os_unlock(&q->ctrlq_lock); + + rte_pktmbuf_free(mbuf); + return 0; +} + +/** + * t4_mgmt_tx - send a management message + * @q: the control queue + * @mbuf: the packet containing the management message + * + * Send a management message through control queue. + */ +int t4_mgmt_tx(struct sge_ctrl_txq *q, struct rte_mbuf *mbuf) +{ + return ctrl_xmit(q, mbuf); +} + +/** + * alloc_ring - allocate resources for an SGE descriptor ring + * @dev: the PCI device's core device + * @nelem: the number of descriptors + * @elem_size: the size of each descriptor + * @sw_size: the size of the SW state associated with each ring element + * @phys: the physical address of the allocated ring + * @metadata: address of the array holding the SW state for the ring + * @stat_size: extra space in HW ring for status information + * @node: preferred node for memory allocations + * + * Allocates resources for an SGE descriptor ring, such as Tx queues, + * free buffer lists, or response queues. Each SGE ring requires + * space for its HW descriptors plus, optionally, space for the SW state + * associated with each HW entry (the metadata). The function returns + * three values: the virtual address for the HW ring (the return value + * of the function), the bus address of the HW ring, and the address + * of the SW ring. + */ +static void *alloc_ring(size_t nelem, size_t elem_size, + size_t sw_size, dma_addr_t *phys, void *metadata, + size_t stat_size, __rte_unused uint16_t queue_id, + int socket_id, const char *z_name, + const char *z_name_sw) +{ + size_t len = CXGBE_MAX_RING_DESC_SIZE * elem_size + stat_size; + const struct rte_memzone *tz; + void *s = NULL; + + dev_debug(adapter, "%s: nelem = %zu; elem_size = %zu; sw_size = %zu; " + "stat_size = %zu; queue_id = %u; socket_id = %d; z_name = %s;" + " z_name_sw = %s\n", __func__, nelem, elem_size, sw_size, + stat_size, queue_id, socket_id, z_name, z_name_sw); + + tz = rte_memzone_lookup(z_name); + if (tz) { + dev_debug(adapter, "%s: tz exists...returning existing..\n", + __func__); + goto alloc_sw_ring; + } + + /* + * Allocate TX/RX ring hardware descriptors. A memzone large enough to + * handle the maximum ring size is allocated in order to allow for + * resizing in later calls to the queue setup function. + */ + tz = rte_memzone_reserve_aligned(z_name, len, socket_id, + RTE_MEMZONE_IOVA_CONTIG, 4096); + if (!tz) + return NULL; + +alloc_sw_ring: + memset(tz->addr, 0, len); + if (sw_size) { + s = rte_zmalloc_socket(z_name_sw, nelem * sw_size, + RTE_CACHE_LINE_SIZE, socket_id); + + if (!s) { + dev_err(adapter, "%s: failed to get sw_ring memory\n", + __func__); + return NULL; + } + } + if (metadata) + *(void **)metadata = s; + + *phys = (uint64_t)tz->iova; + return tz->addr; +} + +#define CXGB4_MSG_AN ((void *)1) + +/** + * rspq_next - advance to the next entry in a response queue + * @q: the queue + * + * Updates the state of a response queue to advance it to the next entry. + */ +static inline void rspq_next(struct sge_rspq *q) +{ + q->cur_desc = (const __be64 *)((const char *)q->cur_desc + q->iqe_len); + if (unlikely(++q->cidx == q->size)) { + q->cidx = 0; + q->gen ^= 1; + q->cur_desc = q->desc; + } +} + +static inline void cxgbe_set_mbuf_info(struct rte_mbuf *pkt, uint32_t ptype, + uint64_t ol_flags) +{ + pkt->packet_type |= ptype; + pkt->ol_flags |= ol_flags; +} + +static inline void cxgbe_fill_mbuf_info(struct adapter *adap, + const struct cpl_rx_pkt *cpl, + struct rte_mbuf *pkt) +{ + bool csum_ok; + u16 err_vec; + + if (adap->params.tp.rx_pkt_encap) + err_vec = G_T6_COMPR_RXERR_VEC(ntohs(cpl->err_vec)); + else + err_vec = ntohs(cpl->err_vec); + + csum_ok = cpl->csum_calc && !err_vec; + + if (cpl->vlan_ex) + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER_VLAN, + PKT_RX_VLAN | PKT_RX_VLAN_STRIPPED); + else + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L2_ETHER, 0); + + if (cpl->l2info & htonl(F_RXF_IP)) + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV4, + csum_ok ? PKT_RX_IP_CKSUM_GOOD : + PKT_RX_IP_CKSUM_BAD); + else if (cpl->l2info & htonl(F_RXF_IP6)) + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L3_IPV6, + csum_ok ? PKT_RX_IP_CKSUM_GOOD : + PKT_RX_IP_CKSUM_BAD); + + if (cpl->l2info & htonl(F_RXF_TCP)) + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_TCP, + csum_ok ? PKT_RX_L4_CKSUM_GOOD : + PKT_RX_L4_CKSUM_BAD); + else if (cpl->l2info & htonl(F_RXF_UDP)) + cxgbe_set_mbuf_info(pkt, RTE_PTYPE_L4_UDP, + csum_ok ? PKT_RX_L4_CKSUM_GOOD : + PKT_RX_L4_CKSUM_BAD); +} + +/** + * process_responses - process responses from an SGE response queue + * @q: the ingress queue to process + * @budget: how many responses can be processed in this round + * @rx_pkts: mbuf to put the pkts + * + * Process responses from an SGE response queue up to the supplied budget. + * Responses include received packets as well as control messages from FW + * or HW. + * + * Additionally choose the interrupt holdoff time for the next interrupt + * on this queue. If the system is under memory shortage use a fairly + * long delay to help recovery. + */ +static int process_responses(struct sge_rspq *q, int budget, + struct rte_mbuf **rx_pkts) +{ + int ret = 0, rsp_type; + int budget_left = budget; + const struct rsp_ctrl *rc; + struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); + + while (likely(budget_left)) { + if (q->cidx == ntohs(q->stat->pidx)) + break; + + rc = (const struct rsp_ctrl *) + ((const char *)q->cur_desc + (q->iqe_len - sizeof(*rc))); + + /* + * Ensure response has been read + */ + rmb(); + rsp_type = G_RSPD_TYPE(rc->u.type_gen); + + if (likely(rsp_type == X_RSPD_TYPE_FLBUF)) { + struct sge *s = &q->adapter->sge; + unsigned int stat_pidx; + int stat_pidx_diff; + + stat_pidx = ntohs(q->stat->pidx); + stat_pidx_diff = P_IDXDIFF(q, stat_pidx); + while (stat_pidx_diff && budget_left) { + const struct rx_sw_desc *rsd = + &rxq->fl.sdesc[rxq->fl.cidx]; + const struct rss_header *rss_hdr = + (const void *)q->cur_desc; + const struct cpl_rx_pkt *cpl = + (const void *)&q->cur_desc[1]; + struct rte_mbuf *pkt, *npkt; + u32 len, bufsz; + + rc = (const struct rsp_ctrl *) + ((const char *)q->cur_desc + + (q->iqe_len - sizeof(*rc))); + + rsp_type = G_RSPD_TYPE(rc->u.type_gen); + if (unlikely(rsp_type != X_RSPD_TYPE_FLBUF)) + break; + + len = ntohl(rc->pldbuflen_qid); + BUG_ON(!(len & F_RSPD_NEWBUF)); + pkt = rsd->buf; + npkt = pkt; + len = G_RSPD_LEN(len); + pkt->pkt_len = len; + + /* Chain mbufs into len if necessary */ + while (len) { + struct rte_mbuf *new_pkt = rsd->buf; + + bufsz = min(get_buf_size(q->adapter, + rsd), len); + new_pkt->data_len = bufsz; + unmap_rx_buf(&rxq->fl); + len -= bufsz; + npkt->next = new_pkt; + npkt = new_pkt; + pkt->nb_segs++; + rsd = &rxq->fl.sdesc[rxq->fl.cidx]; + } + npkt->next = NULL; + pkt->nb_segs--; + + cxgbe_fill_mbuf_info(q->adapter, cpl, pkt); + + if (!rss_hdr->filter_tid && + rss_hdr->hash_type) { + pkt->ol_flags |= PKT_RX_RSS_HASH; + pkt->hash.rss = + ntohl(rss_hdr->hash_val); + } + + if (cpl->vlan_ex) + pkt->vlan_tci = ntohs(cpl->vlan); + + rte_pktmbuf_adj(pkt, s->pktshift); + rxq->stats.pkts++; + rxq->stats.rx_bytes += pkt->pkt_len; + rx_pkts[budget - budget_left] = pkt; + + rspq_next(q); + budget_left--; + stat_pidx_diff--; + } + continue; + } else if (likely(rsp_type == X_RSPD_TYPE_CPL)) { + ret = q->handler(q, q->cur_desc, NULL); + } else { + ret = q->handler(q, (const __be64 *)rc, CXGB4_MSG_AN); + } + + if (unlikely(ret)) { + /* couldn't process descriptor, back off for recovery */ + q->next_intr_params = V_QINTR_TIMER_IDX(NOMEM_TMR_IDX); + break; + } + + rspq_next(q); + budget_left--; + } + + /* + * If this is a Response Queue with an associated Free List and + * there's room for another chunk of new Free List buffer pointers, + * refill the Free List. + */ + + if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) + __refill_fl(q->adapter, &rxq->fl); + + return budget - budget_left; +} + +int cxgbe_poll(struct sge_rspq *q, struct rte_mbuf **rx_pkts, + unsigned int budget, unsigned int *work_done) +{ + struct sge_eth_rxq *rxq = container_of(q, struct sge_eth_rxq, rspq); + unsigned int cidx_inc; + unsigned int params; + u32 val; + + *work_done = process_responses(q, budget, rx_pkts); + + if (*work_done) { + cidx_inc = R_IDXDIFF(q, gts_idx); + + if (q->offset >= 0 && fl_cap(&rxq->fl) - rxq->fl.avail >= 64) + __refill_fl(q->adapter, &rxq->fl); + + params = q->intr_params; + q->next_intr_params = params; + val = V_CIDXINC(cidx_inc) | V_SEINTARM(params); + + if (unlikely(!q->bar2_addr)) { + u32 reg = is_pf4(q->adapter) ? MYPF_REG(A_SGE_PF_GTS) : + T4VF_SGE_BASE_ADDR + + A_SGE_VF_GTS; + + t4_write_reg(q->adapter, reg, + val | V_INGRESSQID((u32)q->cntxt_id)); + } else { + writel(val | V_INGRESSQID(q->bar2_qid), + (void *)((uintptr_t)q->bar2_addr + SGE_UDB_GTS)); + /* This Write memory Barrier will force the + * write to the User Doorbell area to be + * flushed. + */ + wmb(); + } + q->gts_idx = q->cidx; + } + return 0; +} + +/** + * bar2_address - return the BAR2 address for an SGE Queue's Registers + * @adapter: the adapter + * @qid: the SGE Queue ID + * @qtype: the SGE Queue Type (Egress or Ingress) + * @pbar2_qid: BAR2 Queue ID or 0 for Queue ID inferred SGE Queues + * + * Returns the BAR2 address for the SGE Queue Registers associated with + * @qid. If BAR2 SGE Registers aren't available, returns NULL. Also + * returns the BAR2 Queue ID to be used with writes to the BAR2 SGE + * Queue Registers. If the BAR2 Queue ID is 0, then "Inferred Queue ID" + * Registers are supported (e.g. the Write Combining Doorbell Buffer). + */ +static void __iomem *bar2_address(struct adapter *adapter, unsigned int qid, + enum t4_bar2_qtype qtype, + unsigned int *pbar2_qid) +{ + u64 bar2_qoffset; + int ret; + + ret = t4_bar2_sge_qregs(adapter, qid, qtype, &bar2_qoffset, pbar2_qid); + if (ret) + return NULL; + + return adapter->bar2 + bar2_qoffset; +} + +int t4_sge_eth_rxq_start(struct adapter *adap, struct sge_rspq *rq) +{ + struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq); + unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; + + return t4_iq_start_stop(adap, adap->mbox, true, adap->pf, 0, + rq->cntxt_id, fl_id, 0xffff); +} + +int t4_sge_eth_rxq_stop(struct adapter *adap, struct sge_rspq *rq) +{ + struct sge_eth_rxq *rxq = container_of(rq, struct sge_eth_rxq, rspq); + unsigned int fl_id = rxq->fl.size ? rxq->fl.cntxt_id : 0xffff; + + return t4_iq_start_stop(adap, adap->mbox, false, adap->pf, 0, + rq->cntxt_id, fl_id, 0xffff); +} + +/* + * @intr_idx: MSI/MSI-X vector if >=0, -(absolute qid + 1) if < 0 + * @cong: < 0 -> no congestion feedback, >= 0 -> congestion channel map + */ +int t4_sge_alloc_rxq(struct adapter *adap, struct sge_rspq *iq, bool fwevtq, + struct rte_eth_dev *eth_dev, int intr_idx, + struct sge_fl *fl, rspq_handler_t hnd, int cong, + struct rte_mempool *mp, int queue_id, int socket_id) +{ + int ret, flsz = 0; + struct fw_iq_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private); + char z_name[RTE_MEMZONE_NAMESIZE]; + char z_name_sw[RTE_MEMZONE_NAMESIZE]; + unsigned int nb_refill; + u8 pciechan; + + /* Size needs to be multiple of 16, including status entry. */ + iq->size = cxgbe_roundup(iq->size, 16); + + snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s", + eth_dev->data->port_id, queue_id, + fwevtq ? "fwq_ring" : "rx_ring"); + snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); + + iq->desc = alloc_ring(iq->size, iq->iqe_len, 0, &iq->phys_addr, NULL, 0, + queue_id, socket_id, z_name, z_name_sw); + if (!iq->desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(V_FW_CMD_OP(FW_IQ_CMD) | F_FW_CMD_REQUEST | + F_FW_CMD_WRITE | F_FW_CMD_EXEC); + + if (is_pf4(adap)) { + pciechan = pi->tx_chan; + c.op_to_vfn |= htonl(V_FW_IQ_CMD_PFN(adap->pf) | + V_FW_IQ_CMD_VFN(0)); + if (cong >= 0) + c.iqns_to_fl0congen = + htonl(F_FW_IQ_CMD_IQFLINTCONGEN | + V_FW_IQ_CMD_IQTYPE(cong ? + FW_IQ_IQTYPE_NIC : + FW_IQ_IQTYPE_OFLD) | + F_FW_IQ_CMD_IQRO); + } else { + pciechan = pi->port_id; + } + + c.alloc_to_len16 = htonl(F_FW_IQ_CMD_ALLOC | F_FW_IQ_CMD_IQSTART | + (sizeof(c) / 16)); + c.type_to_iqandstindex = + htonl(V_FW_IQ_CMD_TYPE(FW_IQ_TYPE_FL_INT_CAP) | + V_FW_IQ_CMD_IQASYNCH(fwevtq) | + V_FW_IQ_CMD_VIID(pi->viid) | + V_FW_IQ_CMD_IQANDST(intr_idx < 0) | + V_FW_IQ_CMD_IQANUD(X_UPDATEDELIVERY_STATUS_PAGE) | + V_FW_IQ_CMD_IQANDSTINDEX(intr_idx >= 0 ? intr_idx : + -intr_idx - 1)); + c.iqdroprss_to_iqesize = + htons(V_FW_IQ_CMD_IQPCIECH(pciechan) | + F_FW_IQ_CMD_IQGTSMODE | + V_FW_IQ_CMD_IQINTCNTTHRESH(iq->pktcnt_idx) | + V_FW_IQ_CMD_IQESIZE(ilog2(iq->iqe_len) - 4)); + c.iqsize = htons(iq->size); + c.iqaddr = cpu_to_be64(iq->phys_addr); + + if (fl) { + struct sge_eth_rxq *rxq = container_of(fl, struct sge_eth_rxq, + fl); + unsigned int chip_ver = CHELSIO_CHIP_VERSION(adap->params.chip); + + /* + * Allocate the ring for the hardware free list (with space + * for its status page) along with the associated software + * descriptor ring. The free list size needs to be a multiple + * of the Egress Queue Unit and at least 2 Egress Units larger + * than the SGE's Egress Congrestion Threshold + * (fl_starve_thres - 1). + */ + if (fl->size < s->fl_starve_thres - 1 + 2 * 8) + fl->size = s->fl_starve_thres - 1 + 2 * 8; + fl->size = cxgbe_roundup(fl->size, 8); + + snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s", + eth_dev->data->port_id, queue_id, + fwevtq ? "fwq_ring" : "fl_ring"); + snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); + + fl->desc = alloc_ring(fl->size, sizeof(__be64), + sizeof(struct rx_sw_desc), + &fl->addr, &fl->sdesc, s->stat_len, + queue_id, socket_id, z_name, z_name_sw); + + if (!fl->desc) + goto fl_nomem; + + flsz = fl->size / 8 + s->stat_len / sizeof(struct tx_desc); + c.iqns_to_fl0congen |= + htonl(V_FW_IQ_CMD_FL0HOSTFCMODE(X_HOSTFCMODE_NONE) | + (unlikely(rxq->usembufs) ? + 0 : F_FW_IQ_CMD_FL0PACKEN) | + F_FW_IQ_CMD_FL0FETCHRO | F_FW_IQ_CMD_FL0DATARO | + F_FW_IQ_CMD_FL0PADEN); + if (is_pf4(adap) && cong >= 0) + c.iqns_to_fl0congen |= + htonl(V_FW_IQ_CMD_FL0CNGCHMAP(cong) | + F_FW_IQ_CMD_FL0CONGCIF | + F_FW_IQ_CMD_FL0CONGEN); + + /* In T6, for egress queue type FL there is internal overhead + * of 16B for header going into FLM module. + * Hence maximum allowed burst size will be 448 bytes. + */ + c.fl0dcaen_to_fl0cidxfthresh = + htons(V_FW_IQ_CMD_FL0FBMIN(chip_ver <= CHELSIO_T5 ? + X_FETCHBURSTMIN_128B : + X_FETCHBURSTMIN_64B) | + V_FW_IQ_CMD_FL0FBMAX(chip_ver <= CHELSIO_T5 ? + X_FETCHBURSTMAX_512B : + X_FETCHBURSTMAX_256B)); + c.fl0size = htons(flsz); + c.fl0addr = cpu_to_be64(fl->addr); + } + + if (is_pf4(adap)) + ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); + else + ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c); + if (ret) + goto err; + + iq->cur_desc = iq->desc; + iq->cidx = 0; + iq->gts_idx = 0; + iq->gen = 1; + iq->next_intr_params = iq->intr_params; + iq->cntxt_id = ntohs(c.iqid); + iq->abs_id = ntohs(c.physiqid); + iq->bar2_addr = bar2_address(adap, iq->cntxt_id, T4_BAR2_QTYPE_INGRESS, + &iq->bar2_qid); + iq->size--; /* subtract status entry */ + iq->stat = (void *)&iq->desc[iq->size * 8]; + iq->eth_dev = eth_dev; + iq->handler = hnd; + iq->port_id = pi->pidx; + iq->mb_pool = mp; + + /* set offset to -1 to distinguish ingress queues without FL */ + iq->offset = fl ? 0 : -1; + + if (fl) { + fl->cntxt_id = ntohs(c.fl0id); + fl->avail = 0; + fl->pend_cred = 0; + fl->pidx = 0; + fl->cidx = 0; + fl->alloc_failed = 0; + + /* + * Note, we must initialize the BAR2 Free List User Doorbell + * information before refilling the Free List! + */ + fl->bar2_addr = bar2_address(adap, fl->cntxt_id, + T4_BAR2_QTYPE_EGRESS, + &fl->bar2_qid); + + nb_refill = refill_fl(adap, fl, fl_cap(fl)); + if (nb_refill != fl_cap(fl)) { + ret = -ENOMEM; + dev_err(adap, "%s: mbuf alloc failed with error: %d\n", + __func__, ret); + goto refill_fl_err; + } + } + + /* + * For T5 and later we attempt to set up the Congestion Manager values + * of the new RX Ethernet Queue. This should really be handled by + * firmware because it's more complex than any host driver wants to + * get involved with and it's different per chip and this is almost + * certainly wrong. Formware would be wrong as well, but it would be + * a lot easier to fix in one place ... For now we do something very + * simple (and hopefully less wrong). + */ + if (is_pf4(adap) && !is_t4(adap->params.chip) && cong >= 0) { + u32 param, val; + int i; + + param = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_DMAQ) | + V_FW_PARAMS_PARAM_X(FW_PARAMS_PARAM_DMAQ_CONM_CTXT) | + V_FW_PARAMS_PARAM_YZ(iq->cntxt_id)); + if (cong == 0) { + val = V_CONMCTXT_CNGTPMODE(X_CONMCTXT_CNGTPMODE_QUEUE); + } else { + val = V_CONMCTXT_CNGTPMODE( + X_CONMCTXT_CNGTPMODE_CHANNEL); + for (i = 0; i < 4; i++) { + if (cong & (1 << i)) + val |= V_CONMCTXT_CNGCHMAP(1 << + (i << 2)); + } + } + ret = t4_set_params(adap, adap->mbox, adap->pf, 0, 1, + ¶m, &val); + if (ret) + dev_warn(adap->pdev_dev, "Failed to set Congestion Manager Context for Ingress Queue %d: %d\n", + iq->cntxt_id, -ret); + } + + return 0; + +refill_fl_err: + t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, + iq->cntxt_id, fl->cntxt_id, 0xffff); +fl_nomem: + ret = -ENOMEM; +err: + iq->cntxt_id = 0; + iq->abs_id = 0; + if (iq->desc) + iq->desc = NULL; + + if (fl && fl->desc) { + rte_free(fl->sdesc); + fl->cntxt_id = 0; + fl->sdesc = NULL; + fl->desc = NULL; + } + return ret; +} + +static void init_txq(struct adapter *adap, struct sge_txq *q, unsigned int id, + unsigned int abs_id) +{ + q->cntxt_id = id; + q->abs_id = abs_id; + q->bar2_addr = bar2_address(adap, q->cntxt_id, T4_BAR2_QTYPE_EGRESS, + &q->bar2_qid); + q->cidx = 0; + q->pidx = 0; + q->dbidx = 0; + q->in_use = 0; + q->equeidx = 0; + q->coalesce.idx = 0; + q->coalesce.len = 0; + q->coalesce.flits = 0; + q->last_coal_idx = 0; + q->last_pidx = 0; + q->stat = (void *)&q->desc[q->size]; +} + +int t4_sge_eth_txq_start(struct sge_eth_txq *txq) +{ + /* + * TODO: For flow-control, queue may be stopped waiting to reclaim + * credits. + * Ensure queue is in EQ_STOPPED state before starting it. + */ + if (!(txq->flags & EQ_STOPPED)) + return -(EBUSY); + + txq->flags &= ~EQ_STOPPED; + + return 0; +} + +int t4_sge_eth_txq_stop(struct sge_eth_txq *txq) +{ + txq->flags |= EQ_STOPPED; + + return 0; +} + +int t4_sge_alloc_eth_txq(struct adapter *adap, struct sge_eth_txq *txq, + struct rte_eth_dev *eth_dev, uint16_t queue_id, + unsigned int iqid, int socket_id) +{ + int ret, nentries; + struct fw_eq_eth_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private); + char z_name[RTE_MEMZONE_NAMESIZE]; + char z_name_sw[RTE_MEMZONE_NAMESIZE]; + u8 pciechan; + + /* Add status entries */ + nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); + + snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s", + eth_dev->data->port_id, queue_id, "tx_ring"); + snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); + + txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc), + sizeof(struct tx_sw_desc), &txq->q.phys_addr, + &txq->q.sdesc, s->stat_len, queue_id, + socket_id, z_name, z_name_sw); + if (!txq->q.desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_ETH_CMD) | F_FW_CMD_REQUEST | + F_FW_CMD_WRITE | F_FW_CMD_EXEC); + if (is_pf4(adap)) { + pciechan = pi->tx_chan; + c.op_to_vfn |= htonl(V_FW_EQ_ETH_CMD_PFN(adap->pf) | + V_FW_EQ_ETH_CMD_VFN(0)); + } else { + pciechan = pi->port_id; + } + + c.alloc_to_len16 = htonl(F_FW_EQ_ETH_CMD_ALLOC | + F_FW_EQ_ETH_CMD_EQSTART | (sizeof(c) / 16)); + c.autoequiqe_to_viid = htonl(F_FW_EQ_ETH_CMD_AUTOEQUEQE | + V_FW_EQ_ETH_CMD_VIID(pi->viid)); + c.fetchszm_to_iqid = + htonl(V_FW_EQ_ETH_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | + V_FW_EQ_ETH_CMD_PCIECHN(pciechan) | + F_FW_EQ_ETH_CMD_FETCHRO | V_FW_EQ_ETH_CMD_IQID(iqid)); + c.dcaen_to_eqsize = + htonl(V_FW_EQ_ETH_CMD_FBMIN(X_FETCHBURSTMIN_64B) | + V_FW_EQ_ETH_CMD_FBMAX(X_FETCHBURSTMAX_512B) | + V_FW_EQ_ETH_CMD_EQSIZE(nentries)); + c.eqaddr = rte_cpu_to_be_64(txq->q.phys_addr); + + if (is_pf4(adap)) + ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); + else + ret = t4vf_wr_mbox(adap, &c, sizeof(c), &c); + if (ret) { + rte_free(txq->q.sdesc); + txq->q.sdesc = NULL; + txq->q.desc = NULL; + return ret; + } + + init_txq(adap, &txq->q, G_FW_EQ_ETH_CMD_EQID(ntohl(c.eqid_pkd)), + G_FW_EQ_ETH_CMD_PHYSEQID(ntohl(c.physeqid_pkd))); + txq->stats.tso = 0; + txq->stats.pkts = 0; + txq->stats.tx_cso = 0; + txq->stats.coal_wr = 0; + txq->stats.vlan_ins = 0; + txq->stats.tx_bytes = 0; + txq->stats.coal_pkts = 0; + txq->stats.mapping_err = 0; + txq->flags |= EQ_STOPPED; + txq->eth_dev = eth_dev; + txq->data = eth_dev->data; + t4_os_lock_init(&txq->txq_lock); + return 0; +} + +int t4_sge_alloc_ctrl_txq(struct adapter *adap, struct sge_ctrl_txq *txq, + struct rte_eth_dev *eth_dev, uint16_t queue_id, + unsigned int iqid, int socket_id) +{ + int ret, nentries; + struct fw_eq_ctrl_cmd c; + struct sge *s = &adap->sge; + struct port_info *pi = (struct port_info *)(eth_dev->data->dev_private); + char z_name[RTE_MEMZONE_NAMESIZE]; + char z_name_sw[RTE_MEMZONE_NAMESIZE]; + + /* Add status entries */ + nentries = txq->q.size + s->stat_len / sizeof(struct tx_desc); + + snprintf(z_name, sizeof(z_name), "eth_p%d_q%d_%s", + eth_dev->data->port_id, queue_id, "ctrl_tx_ring"); + snprintf(z_name_sw, sizeof(z_name_sw), "%s_sw_ring", z_name); + + txq->q.desc = alloc_ring(txq->q.size, sizeof(struct tx_desc), + 0, &txq->q.phys_addr, + NULL, 0, queue_id, + socket_id, z_name, z_name_sw); + if (!txq->q.desc) + return -ENOMEM; + + memset(&c, 0, sizeof(c)); + c.op_to_vfn = htonl(V_FW_CMD_OP(FW_EQ_CTRL_CMD) | F_FW_CMD_REQUEST | + F_FW_CMD_WRITE | F_FW_CMD_EXEC | + V_FW_EQ_CTRL_CMD_PFN(adap->pf) | + V_FW_EQ_CTRL_CMD_VFN(0)); + c.alloc_to_len16 = htonl(F_FW_EQ_CTRL_CMD_ALLOC | + F_FW_EQ_CTRL_CMD_EQSTART | (sizeof(c) / 16)); + c.cmpliqid_eqid = htonl(V_FW_EQ_CTRL_CMD_CMPLIQID(0)); + c.physeqid_pkd = htonl(0); + c.fetchszm_to_iqid = + htonl(V_FW_EQ_CTRL_CMD_HOSTFCMODE(X_HOSTFCMODE_NONE) | + V_FW_EQ_CTRL_CMD_PCIECHN(pi->tx_chan) | + F_FW_EQ_CTRL_CMD_FETCHRO | V_FW_EQ_CTRL_CMD_IQID(iqid)); + c.dcaen_to_eqsize = + htonl(V_FW_EQ_CTRL_CMD_FBMIN(X_FETCHBURSTMIN_64B) | + V_FW_EQ_CTRL_CMD_FBMAX(X_FETCHBURSTMAX_512B) | + V_FW_EQ_CTRL_CMD_EQSIZE(nentries)); + c.eqaddr = cpu_to_be64(txq->q.phys_addr); + + ret = t4_wr_mbox(adap, adap->mbox, &c, sizeof(c), &c); + if (ret) { + txq->q.desc = NULL; + return ret; + } + + init_txq(adap, &txq->q, G_FW_EQ_CTRL_CMD_EQID(ntohl(c.cmpliqid_eqid)), + G_FW_EQ_CTRL_CMD_EQID(ntohl(c. physeqid_pkd))); + txq->adapter = adap; + txq->full = 0; + return 0; +} + +static void free_txq(struct sge_txq *q) +{ + q->cntxt_id = 0; + q->sdesc = NULL; + q->desc = NULL; +} + +static void free_rspq_fl(struct adapter *adap, struct sge_rspq *rq, + struct sge_fl *fl) +{ + unsigned int fl_id = fl ? fl->cntxt_id : 0xffff; + + t4_iq_free(adap, adap->mbox, adap->pf, 0, FW_IQ_TYPE_FL_INT_CAP, + rq->cntxt_id, fl_id, 0xffff); + rq->cntxt_id = 0; + rq->abs_id = 0; + rq->desc = NULL; + + if (fl) { + free_rx_bufs(fl, fl->avail); + rte_free(fl->sdesc); + fl->sdesc = NULL; + fl->cntxt_id = 0; + fl->desc = NULL; + } +} + +/* + * Clear all queues of the port + * + * Note: This function must only be called after rx and tx path + * of the port have been disabled. + */ +void t4_sge_eth_clear_queues(struct port_info *pi) +{ + int i; + struct adapter *adap = pi->adapter; + struct sge_eth_rxq *rxq = &adap->sge.ethrxq[pi->first_qset]; + struct sge_eth_txq *txq = &adap->sge.ethtxq[pi->first_qset]; + + for (i = 0; i < pi->n_rx_qsets; i++, rxq++) { + if (rxq->rspq.desc) + t4_sge_eth_rxq_stop(adap, &rxq->rspq); + } + for (i = 0; i < pi->n_tx_qsets; i++, txq++) { + if (txq->q.desc) { + struct sge_txq *q = &txq->q; + + t4_sge_eth_txq_stop(txq); + reclaim_completed_tx(q); + free_tx_desc(q, q->size); + q->equeidx = q->pidx; + } + } +} + +void t4_sge_eth_rxq_release(struct adapter *adap, struct sge_eth_rxq *rxq) +{ + if (rxq->rspq.desc) { + t4_sge_eth_rxq_stop(adap, &rxq->rspq); + free_rspq_fl(adap, &rxq->rspq, rxq->fl.size ? &rxq->fl : NULL); + } +} + +void t4_sge_eth_txq_release(struct adapter *adap, struct sge_eth_txq *txq) +{ + if (txq->q.desc) { + t4_sge_eth_txq_stop(txq); + reclaim_completed_tx(&txq->q); + t4_eth_eq_free(adap, adap->mbox, adap->pf, 0, txq->q.cntxt_id); + free_tx_desc(&txq->q, txq->q.size); + rte_free(txq->q.sdesc); + free_txq(&txq->q); + } +} + +void t4_sge_tx_monitor_start(struct adapter *adap) +{ + rte_eal_alarm_set(50, tx_timer_cb, (void *)adap); +} + +void t4_sge_tx_monitor_stop(struct adapter *adap) +{ + rte_eal_alarm_cancel(tx_timer_cb, (void *)adap); +} + +/** + * t4_free_sge_resources - free SGE resources + * @adap: the adapter + * + * Frees resources used by the SGE queue sets. + */ +void t4_free_sge_resources(struct adapter *adap) +{ + unsigned int i; + struct sge_eth_rxq *rxq = &adap->sge.ethrxq[0]; + struct sge_eth_txq *txq = &adap->sge.ethtxq[0]; + + /* clean up Ethernet Tx/Rx queues */ + for (i = 0; i < adap->sge.max_ethqsets; i++, rxq++, txq++) { + /* Free only the queues allocated */ + if (rxq->rspq.desc) { + t4_sge_eth_rxq_release(adap, rxq); + rxq->rspq.eth_dev = NULL; + } + if (txq->q.desc) { + t4_sge_eth_txq_release(adap, txq); + txq->eth_dev = NULL; + } + } + + /* clean up control Tx queues */ + for (i = 0; i < ARRAY_SIZE(adap->sge.ctrlq); i++) { + struct sge_ctrl_txq *cq = &adap->sge.ctrlq[i]; + + if (cq->q.desc) { + reclaim_completed_tx_imm(&cq->q); + t4_ctrl_eq_free(adap, adap->mbox, adap->pf, 0, + cq->q.cntxt_id); + free_txq(&cq->q); + } + } + + if (adap->sge.fw_evtq.desc) + free_rspq_fl(adap, &adap->sge.fw_evtq, NULL); +} + +/** + * t4_sge_init - initialize SGE + * @adap: the adapter + * + * Performs SGE initialization needed every time after a chip reset. + * We do not initialize any of the queues here, instead the driver + * top-level must request those individually. + * + * Called in two different modes: + * + * 1. Perform actual hardware initialization and record hard-coded + * parameters which were used. This gets used when we're the + * Master PF and the Firmware Configuration File support didn't + * work for some reason. + * + * 2. We're not the Master PF or initialization was performed with + * a Firmware Configuration File. In this case we need to grab + * any of the SGE operating parameters that we need to have in + * order to do our job and make sure we can live with them ... + */ +static int t4_sge_init_soft(struct adapter *adap) +{ + struct sge *s = &adap->sge; + u32 fl_small_pg, fl_large_pg, fl_small_mtu, fl_large_mtu; + u32 timer_value_0_and_1, timer_value_2_and_3, timer_value_4_and_5; + u32 ingress_rx_threshold; + + /* + * Verify that CPL messages are going to the Ingress Queue for + * process_responses() and that only packet data is going to the + * Free Lists. + */ + if ((t4_read_reg(adap, A_SGE_CONTROL) & F_RXPKTCPLMODE) != + V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { + dev_err(adap, "bad SGE CPL MODE\n"); + return -EINVAL; + } + + /* + * Validate the Host Buffer Register Array indices that we want to + * use ... + * + * XXX Note that we should really read through the Host Buffer Size + * XXX register array and find the indices of the Buffer Sizes which + * XXX meet our needs! + */ +#define READ_FL_BUF(x) \ + t4_read_reg(adap, A_SGE_FL_BUFFER_SIZE0 + (x) * sizeof(u32)) + + fl_small_pg = READ_FL_BUF(RX_SMALL_PG_BUF); + fl_large_pg = READ_FL_BUF(RX_LARGE_PG_BUF); + fl_small_mtu = READ_FL_BUF(RX_SMALL_MTU_BUF); + fl_large_mtu = READ_FL_BUF(RX_LARGE_MTU_BUF); + + /* + * We only bother using the Large Page logic if the Large Page Buffer + * is larger than our Page Size Buffer. + */ + if (fl_large_pg <= fl_small_pg) + fl_large_pg = 0; + +#undef READ_FL_BUF + + /* + * The Page Size Buffer must be exactly equal to our Page Size and the + * Large Page Size Buffer should be 0 (per above) or a power of 2. + */ + if (fl_small_pg != CXGBE_PAGE_SIZE || + (fl_large_pg & (fl_large_pg - 1)) != 0) { + dev_err(adap, "bad SGE FL page buffer sizes [%d, %d]\n", + fl_small_pg, fl_large_pg); + return -EINVAL; + } + if (fl_large_pg) + s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; + + if (adap->use_unpacked_mode) { + int err = 0; + + if (fl_small_mtu < FL_MTU_SMALL_BUFSIZE(adap)) { + dev_err(adap, "bad SGE FL small MTU %d\n", + fl_small_mtu); + err = -EINVAL; + } + if (fl_large_mtu < FL_MTU_LARGE_BUFSIZE(adap)) { + dev_err(adap, "bad SGE FL large MTU %d\n", + fl_large_mtu); + err = -EINVAL; + } + if (err) + return err; + } + + /* + * Retrieve our RX interrupt holdoff timer values and counter + * threshold values from the SGE parameters. + */ + timer_value_0_and_1 = t4_read_reg(adap, A_SGE_TIMER_VALUE_0_AND_1); + timer_value_2_and_3 = t4_read_reg(adap, A_SGE_TIMER_VALUE_2_AND_3); + timer_value_4_and_5 = t4_read_reg(adap, A_SGE_TIMER_VALUE_4_AND_5); + s->timer_val[0] = core_ticks_to_us(adap, + G_TIMERVALUE0(timer_value_0_and_1)); + s->timer_val[1] = core_ticks_to_us(adap, + G_TIMERVALUE1(timer_value_0_and_1)); + s->timer_val[2] = core_ticks_to_us(adap, + G_TIMERVALUE2(timer_value_2_and_3)); + s->timer_val[3] = core_ticks_to_us(adap, + G_TIMERVALUE3(timer_value_2_and_3)); + s->timer_val[4] = core_ticks_to_us(adap, + G_TIMERVALUE4(timer_value_4_and_5)); + s->timer_val[5] = core_ticks_to_us(adap, + G_TIMERVALUE5(timer_value_4_and_5)); + + ingress_rx_threshold = t4_read_reg(adap, A_SGE_INGRESS_RX_THRESHOLD); + s->counter_val[0] = G_THRESHOLD_0(ingress_rx_threshold); + s->counter_val[1] = G_THRESHOLD_1(ingress_rx_threshold); + s->counter_val[2] = G_THRESHOLD_2(ingress_rx_threshold); + s->counter_val[3] = G_THRESHOLD_3(ingress_rx_threshold); + + return 0; +} + +int t4_sge_init(struct adapter *adap) +{ + struct sge *s = &adap->sge; + u32 sge_control, sge_conm_ctrl; + int ret, egress_threshold; + + /* + * Ingress Padding Boundary and Egress Status Page Size are set up by + * t4_fixup_host_params(). + */ + sge_control = t4_read_reg(adap, A_SGE_CONTROL); + s->pktshift = G_PKTSHIFT(sge_control); + s->stat_len = (sge_control & F_EGRSTATUSPAGESIZE) ? 128 : 64; + s->fl_align = t4_fl_pkt_align(adap); + ret = t4_sge_init_soft(adap); + if (ret < 0) { + dev_err(adap, "%s: t4_sge_init_soft failed, error %d\n", + __func__, -ret); + return ret; + } + + /* + * A FL with <= fl_starve_thres buffers is starving and a periodic + * timer will attempt to refill it. This needs to be larger than the + * SGE's Egress Congestion Threshold. If it isn't, then we can get + * stuck waiting for new packets while the SGE is waiting for us to + * give it more Free List entries. (Note that the SGE's Egress + * Congestion Threshold is in units of 2 Free List pointers.) For T4, + * there was only a single field to control this. For T5 there's the + * original field which now only applies to Unpacked Mode Free List + * buffers and a new field which only applies to Packed Mode Free List + * buffers. + */ + sge_conm_ctrl = t4_read_reg(adap, A_SGE_CONM_CTRL); + if (is_t4(adap->params.chip) || adap->use_unpacked_mode) + egress_threshold = G_EGRTHRESHOLD(sge_conm_ctrl); + else + egress_threshold = G_EGRTHRESHOLDPACKING(sge_conm_ctrl); + s->fl_starve_thres = 2 * egress_threshold + 1; + + return 0; +} + +int t4vf_sge_init(struct adapter *adap) +{ + struct sge_params *sge_params = &adap->params.sge; + u32 sge_ingress_queues_per_page; + u32 sge_egress_queues_per_page; + u32 sge_control, sge_control2; + u32 fl_small_pg, fl_large_pg; + u32 sge_ingress_rx_threshold; + u32 sge_timer_value_0_and_1; + u32 sge_timer_value_2_and_3; + u32 sge_timer_value_4_and_5; + u32 sge_congestion_control; + struct sge *s = &adap->sge; + unsigned int s_hps, s_qpp; + u32 sge_host_page_size; + u32 params[7], vals[7]; + int v; + + /* query basic params from fw */ + params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL)); + params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_HOST_PAGE_SIZE)); + params[2] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE0)); + params[3] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_FL_BUFFER_SIZE1)); + params[4] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_0_AND_1)); + params[5] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_2_AND_3)); + params[6] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_TIMER_VALUE_4_AND_5)); + v = t4vf_query_params(adap, 7, params, vals); + if (v != FW_SUCCESS) + return v; + + sge_control = vals[0]; + sge_host_page_size = vals[1]; + fl_small_pg = vals[2]; + fl_large_pg = vals[3]; + sge_timer_value_0_and_1 = vals[4]; + sge_timer_value_2_and_3 = vals[5]; + sge_timer_value_4_and_5 = vals[6]; + + /* + * Start by vetting the basic SGE parameters which have been set up by + * the Physical Function Driver. + */ + + /* We only bother using the Large Page logic if the Large Page Buffer + * is larger than our Page Size Buffer. + */ + if (fl_large_pg <= fl_small_pg) + fl_large_pg = 0; + + /* The Page Size Buffer must be exactly equal to our Page Size and the + * Large Page Size Buffer should be 0 (per above) or a power of 2. + */ + if (fl_small_pg != CXGBE_PAGE_SIZE || + (fl_large_pg & (fl_large_pg - 1)) != 0) { + dev_err(adapter->pdev_dev, "bad SGE FL buffer sizes [%d, %d]\n", + fl_small_pg, fl_large_pg); + return -EINVAL; + } + + if ((sge_control & F_RXPKTCPLMODE) != + V_RXPKTCPLMODE(X_RXPKTCPLMODE_SPLIT)) { + dev_err(adapter->pdev_dev, "bad SGE CPL MODE\n"); + return -EINVAL; + } + + + /* Grab ingress packing boundary from SGE_CONTROL2 for */ + params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_CONTROL2)); + v = t4vf_query_params(adap, 1, params, vals); + if (v != FW_SUCCESS) { + dev_err(adapter, "Unable to get SGE Control2; " + "probably old firmware.\n"); + return v; + } + sge_control2 = vals[0]; + + params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_RX_THRESHOLD)); + params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_CONM_CTRL)); + v = t4vf_query_params(adap, 2, params, vals); + if (v != FW_SUCCESS) + return v; + sge_ingress_rx_threshold = vals[0]; + sge_congestion_control = vals[1]; + params[0] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_EGRESS_QUEUES_PER_PAGE_VF)); + params[1] = (V_FW_PARAMS_MNEM(FW_PARAMS_MNEM_REG) | + V_FW_PARAMS_PARAM_XYZ(A_SGE_INGRESS_QUEUES_PER_PAGE_VF)); + v = t4vf_query_params(adap, 2, params, vals); + if (v != FW_SUCCESS) { + dev_warn(adap, "Unable to get VF SGE Queues/Page; " + "probably old firmware.\n"); + return v; + } + sge_egress_queues_per_page = vals[0]; + sge_ingress_queues_per_page = vals[1]; + + /* + * We need the Queues/Page for our VF. This is based on the + * PF from which we're instantiated and is indexed in the + * register we just read. + */ + s_hps = (S_HOSTPAGESIZEPF0 + + (S_HOSTPAGESIZEPF1 - S_HOSTPAGESIZEPF0) * adap->pf); + sge_params->hps = + ((sge_host_page_size >> s_hps) & M_HOSTPAGESIZEPF0); + + s_qpp = (S_QUEUESPERPAGEPF0 + + (S_QUEUESPERPAGEPF1 - S_QUEUESPERPAGEPF0) * adap->pf); + sge_params->eq_qpp = + ((sge_egress_queues_per_page >> s_qpp) + & M_QUEUESPERPAGEPF0); + sge_params->iq_qpp = + ((sge_ingress_queues_per_page >> s_qpp) + & M_QUEUESPERPAGEPF0); + + /* + * Now translate the queried parameters into our internal forms. + */ + if (fl_large_pg) + s->fl_pg_order = ilog2(fl_large_pg) - PAGE_SHIFT; + s->stat_len = ((sge_control & F_EGRSTATUSPAGESIZE) + ? 128 : 64); + s->pktshift = G_PKTSHIFT(sge_control); + s->fl_align = t4vf_fl_pkt_align(adap, sge_control, sge_control2); + + /* + * A FL with <= fl_starve_thres buffers is starving and a periodic + * timer will attempt to refill it. This needs to be larger than the + * SGE's Egress Congestion Threshold. If it isn't, then we can get + * stuck waiting for new packets while the SGE is waiting for us to + * give it more Free List entries. (Note that the SGE's Egress + * Congestion Threshold is in units of 2 Free List pointers.) + */ + switch (CHELSIO_CHIP_VERSION(adap->params.chip)) { + case CHELSIO_T5: + s->fl_starve_thres = + G_EGRTHRESHOLDPACKING(sge_congestion_control); + break; + case CHELSIO_T6: + default: + s->fl_starve_thres = + G_T6_EGRTHRESHOLDPACKING(sge_congestion_control); + break; + } + s->fl_starve_thres = s->fl_starve_thres * 2 + 1; + + /* + * Save RX interrupt holdoff timer values and counter + * threshold values from the SGE parameters. + */ + s->timer_val[0] = core_ticks_to_us(adap, + G_TIMERVALUE0(sge_timer_value_0_and_1)); + s->timer_val[1] = core_ticks_to_us(adap, + G_TIMERVALUE1(sge_timer_value_0_and_1)); + s->timer_val[2] = core_ticks_to_us(adap, + G_TIMERVALUE2(sge_timer_value_2_and_3)); + s->timer_val[3] = core_ticks_to_us(adap, + G_TIMERVALUE3(sge_timer_value_2_and_3)); + s->timer_val[4] = core_ticks_to_us(adap, + G_TIMERVALUE4(sge_timer_value_4_and_5)); + s->timer_val[5] = core_ticks_to_us(adap, + G_TIMERVALUE5(sge_timer_value_4_and_5)); + s->counter_val[0] = G_THRESHOLD_0(sge_ingress_rx_threshold); + s->counter_val[1] = G_THRESHOLD_1(sge_ingress_rx_threshold); + s->counter_val[2] = G_THRESHOLD_2(sge_ingress_rx_threshold); + s->counter_val[3] = G_THRESHOLD_3(sge_ingress_rx_threshold); + return 0; +} |