diff options
author | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
---|---|---|
committer | Daniel Baumann <daniel.baumann@progress-linux.org> | 2024-04-21 11:54:28 +0000 |
commit | e6918187568dbd01842d8d1d2c808ce16a894239 (patch) | |
tree | 64f88b554b444a49f656b6c656111a145cbbaa28 /src/spdk/dpdk/doc/guides/cryptodevs/qat.rst | |
parent | Initial commit. (diff) | |
download | ceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip |
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/dpdk/doc/guides/cryptodevs/qat.rst')
-rw-r--r-- | src/spdk/dpdk/doc/guides/cryptodevs/qat.rst | 698 |
1 files changed, 698 insertions, 0 deletions
diff --git a/src/spdk/dpdk/doc/guides/cryptodevs/qat.rst b/src/spdk/dpdk/doc/guides/cryptodevs/qat.rst new file mode 100644 index 000000000..c2cc3d5ca --- /dev/null +++ b/src/spdk/dpdk/doc/guides/cryptodevs/qat.rst @@ -0,0 +1,698 @@ +.. SPDX-License-Identifier: BSD-3-Clause + Copyright(c) 2015-2019 Intel Corporation. + +Intel(R) QuickAssist (QAT) Crypto Poll Mode Driver +================================================== + +QAT documentation consists of three parts: + +* Details of the symmetric and asymmetric crypto services below. +* Details of the :doc:`compression service <../compressdevs/qat_comp>` + in the compressdev drivers section. +* Details of building the common QAT infrastructure and the PMDs to support the + above services. See :ref:`building_qat` below. + + +Symmetric Crypto Service on QAT +------------------------------- + +The QAT symmetric crypto PMD (hereafter referred to as `QAT SYM [PMD]`) provides +poll mode crypto driver support for the following hardware accelerator devices: + +* ``Intel QuickAssist Technology DH895xCC`` +* ``Intel QuickAssist Technology C62x`` +* ``Intel QuickAssist Technology C3xxx`` +* ``Intel QuickAssist Technology D15xx`` +* ``Intel QuickAssist Technology P5xxx`` + + +Features +~~~~~~~~ + +The QAT SYM PMD has support for: + +Cipher algorithms: + +* ``RTE_CRYPTO_CIPHER_3DES_CBC`` +* ``RTE_CRYPTO_CIPHER_3DES_CTR`` +* ``RTE_CRYPTO_CIPHER_AES128_CBC`` +* ``RTE_CRYPTO_CIPHER_AES192_CBC`` +* ``RTE_CRYPTO_CIPHER_AES256_CBC`` +* ``RTE_CRYPTO_CIPHER_AES128_CTR`` +* ``RTE_CRYPTO_CIPHER_AES192_CTR`` +* ``RTE_CRYPTO_CIPHER_AES256_CTR`` +* ``RTE_CRYPTO_CIPHER_AES_XTS`` +* ``RTE_CRYPTO_CIPHER_SNOW3G_UEA2`` +* ``RTE_CRYPTO_CIPHER_NULL`` +* ``RTE_CRYPTO_CIPHER_KASUMI_F8`` +* ``RTE_CRYPTO_CIPHER_DES_CBC`` +* ``RTE_CRYPTO_CIPHER_AES_DOCSISBPI`` +* ``RTE_CRYPTO_CIPHER_DES_DOCSISBPI`` +* ``RTE_CRYPTO_CIPHER_ZUC_EEA3`` + +Hash algorithms: + +* ``RTE_CRYPTO_AUTH_SHA1`` +* ``RTE_CRYPTO_AUTH_SHA1_HMAC`` +* ``RTE_CRYPTO_AUTH_SHA224`` +* ``RTE_CRYPTO_AUTH_SHA224_HMAC`` +* ``RTE_CRYPTO_AUTH_SHA256`` +* ``RTE_CRYPTO_AUTH_SHA256_HMAC`` +* ``RTE_CRYPTO_AUTH_SHA384`` +* ``RTE_CRYPTO_AUTH_SHA384_HMAC`` +* ``RTE_CRYPTO_AUTH_SHA512`` +* ``RTE_CRYPTO_AUTH_SHA512_HMAC`` +* ``RTE_CRYPTO_AUTH_AES_XCBC_MAC`` +* ``RTE_CRYPTO_AUTH_SNOW3G_UIA2`` +* ``RTE_CRYPTO_AUTH_MD5_HMAC`` +* ``RTE_CRYPTO_AUTH_NULL`` +* ``RTE_CRYPTO_AUTH_KASUMI_F9`` +* ``RTE_CRYPTO_AUTH_AES_GMAC`` +* ``RTE_CRYPTO_AUTH_ZUC_EIA3`` +* ``RTE_CRYPTO_AUTH_AES_CMAC`` + +Supported AEAD algorithms: + +* ``RTE_CRYPTO_AEAD_AES_GCM`` +* ``RTE_CRYPTO_AEAD_AES_CCM`` + + +Supported Chains +~~~~~~~~~~~~~~~~ + +All the usual chains are supported and also some mixed chains: + +.. table:: Supported hash-cipher chains for wireless digest-encrypted cases + + +------------------+-----------+-------------+----------+----------+ + | Cipher algorithm | NULL AUTH | SNOW3G UIA2 | ZUC EIA3 | AES CMAC | + +==================+===========+=============+==========+==========+ + | NULL CIPHER | Y | 2&3 | 2&3 | Y | + +------------------+-----------+-------------+----------+----------+ + | SNOW3G UEA2 | 2&3 | Y | 2&3 | 2&3 | + +------------------+-----------+-------------+----------+----------+ + | ZUC EEA3 | 2&3 | 2&3 | 2&3 | 2&3 | + +------------------+-----------+-------------+----------+----------+ + | AES CTR | Y | 2&3 | 2&3 | Y | + +------------------+-----------+-------------+----------+----------+ + +* The combinations marked as "Y" are supported on all QAT hardware versions. +* The combinations marked as "2&3" are supported on GEN2/GEN3 QAT hardware only. + + +Limitations +~~~~~~~~~~~ + +* Only supports the session-oriented API implementation (session-less APIs are not supported). +* SNOW 3G (UEA2), KASUMI (F8) and ZUC (EEA3) supported only if cipher length and offset fields are byte-multiple. +* SNOW 3G (UIA2) and ZUC (EIA3) supported only if hash length and offset fields are byte-multiple. +* No BSD support as BSD QAT kernel driver not available. +* ZUC EEA3/EIA3 is not supported by dh895xcc devices +* Maximum additional authenticated data (AAD) for GCM is 240 bytes long and must be passed to the device in a buffer rounded up to the nearest block-size multiple (x16) and padded with zeros. +* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single + queue-pair all enqueues to the TX queue must be done from one thread and all dequeues + from the RX queue must be done from one thread, but enqueues and dequeues may be done + in different threads.) +* A GCM limitation exists, but only in the case where there are multiple + generations of QAT devices on a single platform. + To optimise performance, the GCM crypto session should be initialised for the + device generation to which the ops will be enqueued. Specifically if a GCM + session is initialised on a GEN2 device, but then attached to an op enqueued + to a GEN3 device, it will work but cannot take advantage of hardware + optimisations in the GEN3 device. And if a GCM session is initialised on a + GEN3 device, then attached to an op sent to a GEN1/GEN2 device, it will not be + enqueued to the device and will be marked as failed. The simplest way to + mitigate this is to use the bdf whitelist to avoid mixing devices of different + generations in the same process if planning to use for GCM. +* The mixed algo feature on GEN2 is not supported by all kernel drivers. Check + the notes under the Available Kernel Drivers table below for specific details. + +Extra notes on KASUMI F9 +~~~~~~~~~~~~~~~~~~~~~~~~ + +When using KASUMI F9 authentication algorithm, the input buffer must be +constructed according to the +`3GPP KASUMI specification <http://cryptome.org/3gpp/35201-900.pdf>`_ +(section 4.4, page 13). The input buffer has to have COUNT (4 bytes), +FRESH (4 bytes), MESSAGE and DIRECTION (1 bit) concatenated. After the DIRECTION +bit, a single '1' bit is appended, followed by between 0 and 7 '0' bits, so that +the total length of the buffer is multiple of 8 bits. Note that the actual +message can be any length, specified in bits. + +Once this buffer is passed this way, when creating the crypto operation, +length of data to authenticate "op.sym.auth.data.length" must be the length +of all the items described above, including the padding at the end. +Also, offset of data to authenticate "op.sym.auth.data.offset" +must be such that points at the start of the COUNT bytes. + +Asymmetric Crypto Service on QAT +-------------------------------- + +The QAT asymmetric crypto PMD (hereafter referred to as `QAT ASYM [PMD]`) provides +poll mode crypto driver support for the following hardware accelerator devices: + +* ``Intel QuickAssist Technology DH895xCC`` +* ``Intel QuickAssist Technology C62x`` +* ``Intel QuickAssist Technology C3xxx`` +* ``Intel QuickAssist Technology D15xx`` +* ``Intel QuickAssist Technology P5xxx`` + +The QAT ASYM PMD has support for: + +* ``RTE_CRYPTO_ASYM_XFORM_MODEX`` +* ``RTE_CRYPTO_ASYM_XFORM_MODINV`` + +Limitations +~~~~~~~~~~~ + +* Big integers longer than 4096 bits are not supported. +* Queue-pairs are thread-safe on Intel CPUs but Queues are not (that is, within a single + queue-pair all enqueues to the TX queue must be done from one thread and all dequeues + from the RX queue must be done from one thread, but enqueues and dequeues may be done + in different threads.) +* RSA-2560, RSA-3584 are not supported + +.. _building_qat: + +Building PMDs on QAT +-------------------- + +A QAT device can host multiple acceleration services: + +* symmetric cryptography +* data compression +* asymmetric cryptography + +These services are provided to DPDK applications via PMDs which register to +implement the corresponding cryptodev and compressdev APIs. The PMDs use +common QAT driver code which manages the QAT PCI device. They also depend on a +QAT kernel driver being installed on the platform, see :ref:`qat_kernel` below. + + +Configuring and Building the DPDK QAT PMDs +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + + +Further information on configuring, building and installing DPDK is described +:doc:`here <../linux_gsg/build_dpdk>`. + + +Quick instructions for QAT cryptodev PMD are as follows: + +.. code-block:: console + + cd to the top-level DPDK directory + make defconfig + sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_SYM\)=n,\1=y,' build/.config + or/and + sed -i 's,\(CONFIG_RTE_LIBRTE_PMD_QAT_ASYM\)=n,\1=y,' build/.config + make + +Quick instructions for QAT compressdev PMD are as follows: + +.. code-block:: console + + cd to the top-level DPDK directory + make defconfig + make + + +.. _building_qat_config: + +Build Configuration +~~~~~~~~~~~~~~~~~~~ + +These are the build configuration options affecting QAT, and their default values: + +.. code-block:: console + + CONFIG_RTE_LIBRTE_PMD_QAT=y + CONFIG_RTE_LIBRTE_PMD_QAT_SYM=n + CONFIG_RTE_LIBRTE_PMD_QAT_ASYM=n + CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES=48 + CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE=65536 + +CONFIG_RTE_LIBRTE_PMD_QAT must be enabled for any QAT PMD to be built. + +Both QAT SYM PMD and QAT ASYM PMD have an external dependency on libcrypto, so are not +built by default. CONFIG_RTE_LIBRTE_PMD_QAT_SYM/ASYM should be enabled to build them. + +The QAT compressdev PMD has no external dependencies, so needs no configuration +options and is built by default. + +The number of VFs per PF varies - see table below. If multiple QAT packages are +installed on a platform then CONFIG_RTE_PMD_QAT_MAX_PCI_DEVICES should be +adjusted to the number of VFs which the QAT common code will need to handle. + +.. Note:: + + There are separate config items (not QAT-specific) for max cryptodevs + CONFIG_RTE_CRYPTO_MAX_DEVS and max compressdevs CONFIG_RTE_COMPRESS_MAX_DEVS, + if necessary these should be adjusted to handle the total of QAT and other + devices which the process will use. In particular for crypto, where each + QAT VF may expose two crypto devices, sym and asym, it may happen that the + number of devices will be bigger than MAX_DEVS and the process will show an error + during PMD initialisation. To avoid this problem CONFIG_RTE_CRYPTO_MAX_DEVS may be + increased or -w, pci-whitelist domain:bus:devid:func option may be used. + + +QAT compression PMD needs intermediate buffers to support Deflate compression +with Dynamic Huffman encoding. CONFIG_RTE_PMD_QAT_COMP_IM_BUFFER_SIZE +specifies the size of a single buffer, the PMD will allocate a multiple of these, +plus some extra space for associated meta-data. For GEN2 devices, 20 buffers are +allocated while for GEN1 devices, 12 buffers are allocated, plus 1472 bytes overhead. + +.. Note:: + + If the compressed output of a Deflate operation using Dynamic Huffman + Encoding is too big to fit in an intermediate buffer, then the + operation will be split into smaller operations and their results will + be merged afterwards. + This is not possible if any checksum calculation was requested - in such + case the code falls back to fixed compression. + To avoid this less performant case, applications should configure + the intermediate buffer size to be larger than the expected input data size + (compressed output size is usually unknown, so the only option is to make + larger than the input size). + + +Running QAT PMD with minimum threshold for burst size +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +If only a small number or packets can be enqueued. Each enqueue causes an expensive MMIO write. +These MMIO write occurrences can be optimised by setting any of the following parameters: + +- qat_sym_enq_threshold +- qat_asym_enq_threshold +- qat_comp_enq_threshold + +When any of these parameters is set rte_cryptodev_enqueue_burst function will +return 0 (thereby avoiding an MMIO) if the device is congested and number of packets +possible to enqueue is smaller. +To use this feature the user must set the parameter on process start as a device additional parameter:: + + -w 03:01.1,qat_sym_enq_threshold=32,qat_comp_enq_threshold=16 + +All parameters can be used with the same device regardless of order. Parameters are separated +by comma. When the same parameter is used more than once first occurrence of the parameter +is used. +Maximum threshold that can be set is 32. + + +Device and driver naming +~~~~~~~~~~~~~~~~~~~~~~~~ + +* The qat cryptodev symmetric crypto driver name is "crypto_qat". +* The qat cryptodev asymmetric crypto driver name is "crypto_qat_asym". + +The "rte_cryptodev_devices_get()" returns the devices exposed by either of these drivers. + +* Each qat sym crypto device has a unique name, in format + "<pci bdf>_<service>", e.g. "0000:41:01.0_qat_sym". +* Each qat asym crypto device has a unique name, in format + "<pci bdf>_<service>", e.g. "0000:41:01.0_qat_asym". + This name can be passed to "rte_cryptodev_get_dev_id()" to get the device_id. + +.. Note:: + + The cryptodev driver name is passed to the dpdk-test-crypto-perf tool in the "-devtype" parameter. + + The qat crypto device name is in the format of the slave parameter passed to the crypto scheduler. + +* The qat compressdev driver name is "compress_qat". + The rte_compressdev_devices_get() returns the devices exposed by this driver. + +* Each qat compression device has a unique name, in format + <pci bdf>_<service>, e.g. "0000:41:01.0_qat_comp". + This name can be passed to rte_compressdev_get_dev_id() to get the device_id. + +.. _qat_kernel: + +Dependency on the QAT kernel driver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +To use QAT an SRIOV-enabled QAT kernel driver is required. The VF +devices created and initialised by this driver will be used by the QAT PMDs. + +Instructions for installation are below, but first an explanation of the +relationships between the PF/VF devices and the PMDs visible to +DPDK applications. + +Each QuickAssist PF device exposes a number of VF devices. Each VF device can +enable one symmetric cryptodev PMD and/or one asymmetric cryptodev PMD and/or +one compressdev PMD. +These QAT PMDs share the same underlying device and pci-mgmt code, but are +enumerated independently on their respective APIs and appear as independent +devices to applications. + +.. Note:: + + Each VF can only be used by one DPDK process. It is not possible to share + the same VF across multiple processes, even if these processes are using + different acceleration services. + + Conversely one DPDK process can use one or more QAT VFs and can expose both + cryptodev and compressdev instances on each of those VFs. + + +Available kernel drivers +~~~~~~~~~~~~~~~~~~~~~~~~ + +Kernel drivers for each device for each service are listed in the following table. (Scroll right +to see the full table) + + +.. _table_qat_pmds_drivers: + +.. table:: QAT device generations, devices and drivers + + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | S | A | C | Gen | Device | Driver/ver | Kernel Module | Pci Driver | PF Did | #PFs | VF Did | VFs/PF | + +=====+=====+=====+=====+==========+===============+===============+============+========+======+========+========+ + | Yes | No | No | 1 | DH895xCC | linux/4.4+ | qat_dh895xcc | dh895xcc | 435 | 1 | 443 | 32 | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | Yes | No | " | " | 01.org/4.2.0+ | " | " | " | " | " | " | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | Yes | Yes | " | " | 01.org/4.3.0+ | " | " | " | " | " | " | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | No | No | 2 | C62x | linux/4.5+ | qat_c62x | c6xx | 37c8 | 3 | 37c9 | 16 | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | Yes | Yes | " | " | 01.org/4.2.0+ | " | " | " | " | " | " | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | No | No | 2 | C3xxx | linux/4.5+ | qat_c3xxx | c3xxx | 19e2 | 1 | 19e3 | 16 | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | Yes | Yes | " | " | 01.org/4.2.0+ | " | " | " | " | " | " | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | No | No | 2 | D15xx | p | qat_d15xx | d15xx | 6f54 | 1 | 6f55 | 16 | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + | Yes | No | No | 3 | P5xxx | p | qat_p5xxx | p5xxx | 18a0 | 1 | 18a1 | 128 | + +-----+-----+-----+-----+----------+---------------+---------------+------------+--------+------+--------+--------+ + +* Note: Symmetric mixed crypto algorithms feature on Gen 2 works only with 01.org driver version 4.9.0+ + +The first 3 columns indicate the service: + +* S = Symmetric crypto service (via cryptodev API) +* A = Asymmetric crypto service (via cryptodev API) +* C = Compression service (via compressdev API) + +The ``Driver`` column indicates either the Linux kernel version in which +support for this device was introduced or a driver available on Intel's 01.org +website. There are both linux in-tree and 01.org kernel drivers available for some +devices. p = release pending. + +If you are running on a kernel which includes a driver for your device, see +`Installation using kernel.org driver`_ below. Otherwise see +`Installation using 01.org QAT driver`_. + + +Installation using kernel.org driver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +The examples below are based on the C62x device, if you have a different device +use the corresponding values in the above table. + +In BIOS ensure that SRIOV is enabled and either: + +* Disable VT-d or +* Enable VT-d and set ``"intel_iommu=on iommu=pt"`` in the grub file. + +Check that the QAT driver is loaded on your system, by executing:: + + lsmod | grep qa + +You should see the kernel module for your device listed, e.g.:: + + qat_c62x 5626 0 + intel_qat 82336 1 qat_c62x + +Next, you need to expose the Virtual Functions (VFs) using the sysfs file system. + +First find the BDFs (Bus-Device-Function) of the physical functions (PFs) of +your device, e.g.:: + + lspci -d:37c8 + +You should see output similar to:: + + 1a:00.0 Co-processor: Intel Corporation Device 37c8 + 3d:00.0 Co-processor: Intel Corporation Device 37c8 + 3f:00.0 Co-processor: Intel Corporation Device 37c8 + +Enable the VFs for each PF by echoing the number of VFs per PF to the pci driver:: + + echo 16 > /sys/bus/pci/drivers/c6xx/0000:1a:00.0/sriov_numvfs + echo 16 > /sys/bus/pci/drivers/c6xx/0000:3d:00.0/sriov_numvfs + echo 16 > /sys/bus/pci/drivers/c6xx/0000:3f:00.0/sriov_numvfs + +Check that the VFs are available for use. For example ``lspci -d:37c9`` should +list 48 VF devices available for a ``C62x`` device. + +To complete the installation follow the instructions in +`Binding the available VFs to the DPDK UIO driver`_. + +.. Note:: + + If the QAT kernel modules are not loaded and you see an error like ``Failed + to load MMP firmware qat_895xcc_mmp.bin`` in kernel logs, this may be as a + result of not using a distribution, but just updating the kernel directly. + + Download firmware from the `kernel firmware repo + <http://git.kernel.org/cgit/linux/kernel/git/firmware/linux-firmware.git/tree/>`_. + + Copy qat binaries to ``/lib/firmware``:: + + cp qat_895xcc.bin /lib/firmware + cp qat_895xcc_mmp.bin /lib/firmware + + Change to your linux source root directory and start the qat kernel modules:: + + insmod ./drivers/crypto/qat/qat_common/intel_qat.ko + insmod ./drivers/crypto/qat/qat_dh895xcc/qat_dh895xcc.ko + + +.. Note:: + + If you see the following warning in ``/var/log/messages`` it can be ignored: + ``IOMMU should be enabled for SR-IOV to work correctly``. + + +Installation using 01.org QAT driver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Download the latest QuickAssist Technology Driver from `01.org +<https://01.org/packet-processing/intel%C2%AE-quickassist-technology-drivers-and-patches>`_. +Consult the *Getting Started Guide* at the same URL for further information. + +The steps below assume you are: + +* Building on a platform with one ``C62x`` device. +* Using package ``qat1.7.l.4.2.0-000xx.tar.gz``. +* On Fedora26 kernel ``4.11.11-300.fc26.x86_64``. + +In the BIOS ensure that SRIOV is enabled and VT-d is disabled. + +Uninstall any existing QAT driver, for example by running: + +* ``./installer.sh uninstall`` in the directory where originally installed. + + +Build and install the SRIOV-enabled QAT driver:: + + mkdir /QAT + cd /QAT + + # Copy the package to this location and unpack + tar zxof qat1.7.l.4.2.0-000xx.tar.gz + + ./configure --enable-icp-sriov=host + make install + +You can use ``cat /sys/kernel/debug/qat<your device type and bdf>/version/fw`` to confirm the driver is correctly installed and is using firmware version 4.2.0. +You can use ``lspci -d:37c9`` to confirm the presence of the 16 VF devices available per ``C62x`` PF. + +Confirm the driver is correctly installed and is using firmware version 4.2.0:: + + cat /sys/kernel/debug/qat<your device type and bdf>/version/fw + + +Confirm the presence of 48 VF devices - 16 per PF:: + + lspci -d:37c9 + + +To complete the installation - follow instructions in `Binding the available VFs to the DPDK UIO driver`_. + +.. Note:: + + If using a later kernel and the build fails with an error relating to + ``strict_stroul`` not being available apply the following patch: + + .. code-block:: diff + + /QAT/QAT1.6/quickassist/utilities/downloader/Target_CoreLibs/uclo/include/linux/uclo_platform.h + + #if LINUX_VERSION_CODE >= KERNEL_VERSION(3,18,5) + + #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (kstrtoul((str), (base), (num))) printk("Error strtoull convert %s\n", str); } + + #else + #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,38) + #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; if (strict_strtoull((str), (base), (num))) printk("Error strtoull convert %s\n", str); } + #else + #if LINUX_VERSION_CODE >= KERNEL_VERSION(2,6,25) + #define STR_TO_64(str, base, num, endPtr) {endPtr=NULL; strict_strtoll((str), (base), (num));} + #else + #define STR_TO_64(str, base, num, endPtr) \ + do { \ + if (str[0] == '-') \ + { \ + *(num) = -(simple_strtoull((str+1), &(endPtr), (base))); \ + }else { \ + *(num) = simple_strtoull((str), &(endPtr), (base)); \ + } \ + } while(0) + + #endif + #endif + #endif + + +.. Note:: + + If the build fails due to missing header files you may need to do following:: + + sudo yum install zlib-devel + sudo yum install openssl-devel + sudo yum install libudev-devel + +.. Note:: + + If the build or install fails due to mismatching kernel sources you may need to do the following:: + + sudo yum install kernel-headers-`uname -r` + sudo yum install kernel-src-`uname -r` + sudo yum install kernel-devel-`uname -r` + + +Binding the available VFs to the DPDK UIO driver +~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ + +Unbind the VFs from the stock driver so they can be bound to the uio driver. + +For an Intel(R) QuickAssist Technology DH895xCC device +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The unbind command below assumes ``BDFs`` of ``03:01.00-03:04.07``, if your +VFs are different adjust the unbind command below:: + + for device in $(seq 1 4); do \ + for fn in $(seq 0 7); do \ + echo -n 0000:03:0${device}.${fn} > \ + /sys/bus/pci/devices/0000\:03\:0${device}.${fn}/driver/unbind; \ + done; \ + done + +For an Intel(R) QuickAssist Technology C62x device +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The unbind command below assumes ``BDFs`` of ``1a:01.00-1a:02.07``, +``3d:01.00-3d:02.07`` and ``3f:01.00-3f:02.07``, if your VFs are different +adjust the unbind command below:: + + for device in $(seq 1 2); do \ + for fn in $(seq 0 7); do \ + echo -n 0000:1a:0${device}.${fn} > \ + /sys/bus/pci/devices/0000\:1a\:0${device}.${fn}/driver/unbind; \ + + echo -n 0000:3d:0${device}.${fn} > \ + /sys/bus/pci/devices/0000\:3d\:0${device}.${fn}/driver/unbind; \ + + echo -n 0000:3f:0${device}.${fn} > \ + /sys/bus/pci/devices/0000\:3f\:0${device}.${fn}/driver/unbind; \ + done; \ + done + +For Intel(R) QuickAssist Technology C3xxx or D15xx device +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +The unbind command below assumes ``BDFs`` of ``01:01.00-01:02.07``, if your +VFs are different adjust the unbind command below:: + + for device in $(seq 1 2); do \ + for fn in $(seq 0 7); do \ + echo -n 0000:01:0${device}.${fn} > \ + /sys/bus/pci/devices/0000\:01\:0${device}.${fn}/driver/unbind; \ + done; \ + done + +Bind to the DPDK uio driver +^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +Install the DPDK igb_uio driver, bind the VF PCI Device id to it and use lspci +to confirm the VF devices are now in use by igb_uio kernel driver, +e.g. for the C62x device:: + + cd to the top-level DPDK directory + modprobe uio + insmod ./build/kmod/igb_uio.ko + echo "8086 37c9" > /sys/bus/pci/drivers/igb_uio/new_id + lspci -vvd:37c9 + + +Another way to bind the VFs to the DPDK UIO driver is by using the +``dpdk-devbind.py`` script:: + + cd to the top-level DPDK directory + ./usertools/dpdk-devbind.py -b igb_uio 0000:03:01.1 + +Testing +~~~~~~~ + +QAT SYM crypto PMD can be tested by running the test application:: + + make defconfig + make -j + cd ./build/app + ./test -l1 -n1 -w <your qat bdf> + RTE>>cryptodev_qat_autotest + +QAT ASYM crypto PMD can be tested by running the test application:: + + make defconfig + make -j + cd ./build/app + ./test -l1 -n1 -w <your qat bdf> + RTE>>cryptodev_qat_asym_autotest + +QAT compression PMD can be tested by running the test application:: + + make defconfig + sed -i 's,\(CONFIG_RTE_COMPRESSDEV_TEST\)=n,\1=y,' build/.config + make -j + cd ./build/app + ./test -l1 -n1 -w <your qat bdf> + RTE>>compressdev_autotest + + +Debugging +~~~~~~~~~ + +There are 2 sets of trace available via the dynamic logging feature: + +* pmd.qat_dp exposes trace on the data-path. +* pmd.qat_general exposes all other trace. + +pmd.qat exposes both sets of traces. +They can be enabled using the log-level option (where 8=maximum log level) on +the process cmdline, e.g. using any of the following:: + + --log-level="pmd.qat_general,8" + --log-level="pmd.qat_dp,8" + --log-level="pmd.qat,8" + +.. Note:: + + The global RTE_LOG_DP_LEVEL overrides data-path trace so must be set to + RTE_LOG_DEBUG to see all the trace. This variable is in config/rte_config.h + for meson build and config/common_base for gnu make. + Also the dynamic global log level overrides both sets of trace, so e.g. no + QAT trace would display in this case:: + + --log-level="7" --log-level="pmd.qat_general,8" |