summaryrefslogtreecommitdiffstats
path: root/src/spdk/lib/nvme/nvme_rdma.c
diff options
context:
space:
mode:
authorDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
committerDaniel Baumann <daniel.baumann@progress-linux.org>2024-04-21 11:54:28 +0000
commite6918187568dbd01842d8d1d2c808ce16a894239 (patch)
tree64f88b554b444a49f656b6c656111a145cbbaa28 /src/spdk/lib/nvme/nvme_rdma.c
parentInitial commit. (diff)
downloadceph-e6918187568dbd01842d8d1d2c808ce16a894239.tar.xz
ceph-e6918187568dbd01842d8d1d2c808ce16a894239.zip
Adding upstream version 18.2.2.upstream/18.2.2
Signed-off-by: Daniel Baumann <daniel.baumann@progress-linux.org>
Diffstat (limited to 'src/spdk/lib/nvme/nvme_rdma.c')
-rw-r--r--src/spdk/lib/nvme/nvme_rdma.c2852
1 files changed, 2852 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_rdma.c b/src/spdk/lib/nvme/nvme_rdma.c
new file mode 100644
index 000000000..84537c4a1
--- /dev/null
+++ b/src/spdk/lib/nvme/nvme_rdma.c
@@ -0,0 +1,2852 @@
+/*-
+ * BSD LICENSE
+ *
+ * Copyright (c) Intel Corporation. All rights reserved.
+ * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions
+ * are met:
+ *
+ * * Redistributions of source code must retain the above copyright
+ * notice, this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in
+ * the documentation and/or other materials provided with the
+ * distribution.
+ * * Neither the name of Intel Corporation nor the names of its
+ * contributors may be used to endorse or promote products derived
+ * from this software without specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+ * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+ * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+ * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+ * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+ * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+ * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+ * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+ * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+ * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+ * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+ */
+
+/*
+ * NVMe over RDMA transport
+ */
+
+#include "spdk/stdinc.h"
+
+#include "spdk/assert.h"
+#include "spdk/log.h"
+#include "spdk/trace.h"
+#include "spdk/queue.h"
+#include "spdk/nvme.h"
+#include "spdk/nvmf_spec.h"
+#include "spdk/string.h"
+#include "spdk/endian.h"
+#include "spdk/likely.h"
+#include "spdk/config.h"
+
+#include "nvme_internal.h"
+#include "spdk_internal/rdma.h"
+
+#define NVME_RDMA_TIME_OUT_IN_MS 2000
+#define NVME_RDMA_RW_BUFFER_SIZE 131072
+
+/*
+ * NVME RDMA qpair Resource Defaults
+ */
+#define NVME_RDMA_DEFAULT_TX_SGE 2
+#define NVME_RDMA_DEFAULT_RX_SGE 1
+
+/* Max number of NVMe-oF SGL descriptors supported by the host */
+#define NVME_RDMA_MAX_SGL_DESCRIPTORS 16
+
+/* number of STAILQ entries for holding pending RDMA CM events. */
+#define NVME_RDMA_NUM_CM_EVENTS 256
+
+/* CM event processing timeout */
+#define NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US 1000000
+
+/* The default size for a shared rdma completion queue. */
+#define DEFAULT_NVME_RDMA_CQ_SIZE 4096
+
+/*
+ * In the special case of a stale connection we don't expose a mechanism
+ * for the user to retry the connection so we need to handle it internally.
+ */
+#define NVME_RDMA_STALE_CONN_RETRY_MAX 5
+#define NVME_RDMA_STALE_CONN_RETRY_DELAY_US 10000
+
+/*
+ * Maximum value of transport_retry_count used by RDMA controller
+ */
+#define NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT 7
+
+/*
+ * Maximum value of transport_ack_timeout used by RDMA controller
+ */
+#define NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT 31
+
+/*
+ * Number of poller cycles to keep a pointer to destroyed qpairs
+ * in the poll group.
+ */
+#define NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES 50
+
+/*
+ * The max length of keyed SGL data block (3 bytes)
+ */
+#define NVME_RDMA_MAX_KEYED_SGL_LENGTH ((1u << 24u) - 1)
+
+#define WC_PER_QPAIR(queue_depth) (queue_depth * 2)
+
+enum nvme_rdma_wr_type {
+ RDMA_WR_TYPE_RECV,
+ RDMA_WR_TYPE_SEND,
+};
+
+struct nvme_rdma_wr {
+ /* Using this instead of the enum allows this struct to only occupy one byte. */
+ uint8_t type;
+};
+
+struct spdk_nvmf_cmd {
+ struct spdk_nvme_cmd cmd;
+ struct spdk_nvme_sgl_descriptor sgl[NVME_RDMA_MAX_SGL_DESCRIPTORS];
+};
+
+struct spdk_nvme_rdma_hooks g_nvme_hooks = {};
+
+/* Mapping from virtual address to ibv_mr pointer for a protection domain */
+struct spdk_nvme_rdma_mr_map {
+ struct ibv_pd *pd;
+ struct spdk_mem_map *map;
+ uint64_t ref;
+ LIST_ENTRY(spdk_nvme_rdma_mr_map) link;
+};
+
+/* STAILQ wrapper for cm events. */
+struct nvme_rdma_cm_event_entry {
+ struct rdma_cm_event *evt;
+ STAILQ_ENTRY(nvme_rdma_cm_event_entry) link;
+};
+
+/* NVMe RDMA transport extensions for spdk_nvme_ctrlr */
+struct nvme_rdma_ctrlr {
+ struct spdk_nvme_ctrlr ctrlr;
+
+ struct ibv_pd *pd;
+
+ uint16_t max_sge;
+
+ struct rdma_event_channel *cm_channel;
+
+ STAILQ_HEAD(, nvme_rdma_cm_event_entry) pending_cm_events;
+
+ STAILQ_HEAD(, nvme_rdma_cm_event_entry) free_cm_events;
+
+ struct nvme_rdma_cm_event_entry *cm_events;
+};
+
+struct nvme_rdma_destroyed_qpair {
+ struct nvme_rdma_qpair *destroyed_qpair_tracker;
+ uint32_t completed_cycles;
+ STAILQ_ENTRY(nvme_rdma_destroyed_qpair) link;
+};
+
+struct nvme_rdma_poller {
+ struct ibv_context *device;
+ struct ibv_cq *cq;
+ int required_num_wc;
+ int current_num_wc;
+ STAILQ_ENTRY(nvme_rdma_poller) link;
+};
+
+struct nvme_rdma_poll_group {
+ struct spdk_nvme_transport_poll_group group;
+ STAILQ_HEAD(, nvme_rdma_poller) pollers;
+ int num_pollers;
+ STAILQ_HEAD(, nvme_rdma_destroyed_qpair) destroyed_qpairs;
+};
+
+struct spdk_nvme_send_wr_list {
+ struct ibv_send_wr *first;
+ struct ibv_send_wr *last;
+};
+
+struct spdk_nvme_recv_wr_list {
+ struct ibv_recv_wr *first;
+ struct ibv_recv_wr *last;
+};
+
+/* Memory regions */
+union nvme_rdma_mr {
+ struct ibv_mr *mr;
+ uint64_t key;
+};
+
+/* NVMe RDMA qpair extensions for spdk_nvme_qpair */
+struct nvme_rdma_qpair {
+ struct spdk_nvme_qpair qpair;
+
+ struct spdk_rdma_qp *rdma_qp;
+ struct rdma_cm_id *cm_id;
+ struct ibv_cq *cq;
+
+ struct spdk_nvme_rdma_req *rdma_reqs;
+
+ uint32_t max_send_sge;
+
+ uint32_t max_recv_sge;
+
+ uint16_t num_entries;
+
+ bool delay_cmd_submit;
+
+ bool poll_group_disconnect_in_progress;
+
+ uint32_t num_completions;
+
+ /* Parallel arrays of response buffers + response SGLs of size num_entries */
+ struct ibv_sge *rsp_sgls;
+ struct spdk_nvme_rdma_rsp *rsps;
+
+ struct ibv_recv_wr *rsp_recv_wrs;
+
+ struct spdk_nvme_send_wr_list sends_to_post;
+ struct spdk_nvme_recv_wr_list recvs_to_post;
+
+ /* Memory region describing all rsps for this qpair */
+ union nvme_rdma_mr rsp_mr;
+
+ /*
+ * Array of num_entries NVMe commands registered as RDMA message buffers.
+ * Indexed by rdma_req->id.
+ */
+ struct spdk_nvmf_cmd *cmds;
+
+ /* Memory region describing all cmds for this qpair */
+ union nvme_rdma_mr cmd_mr;
+
+ struct spdk_nvme_rdma_mr_map *mr_map;
+
+ TAILQ_HEAD(, spdk_nvme_rdma_req) free_reqs;
+ TAILQ_HEAD(, spdk_nvme_rdma_req) outstanding_reqs;
+
+ /* Counts of outstanding send and recv objects */
+ uint16_t current_num_recvs;
+ uint16_t current_num_sends;
+
+ /* Placed at the end of the struct since it is not used frequently */
+ struct rdma_cm_event *evt;
+
+ /* Used by poll group to keep the qpair around until it is ready to remove it. */
+ bool defer_deletion_to_pg;
+};
+
+enum NVME_RDMA_COMPLETION_FLAGS {
+ NVME_RDMA_SEND_COMPLETED = 1u << 0,
+ NVME_RDMA_RECV_COMPLETED = 1u << 1,
+};
+
+struct spdk_nvme_rdma_req {
+ uint16_t id;
+ uint16_t completion_flags: 2;
+ uint16_t reserved: 14;
+ /* if completion of RDMA_RECV received before RDMA_SEND, we will complete nvme request
+ * during processing of RDMA_SEND. To complete the request we must know the index
+ * of nvme_cpl received in RDMA_RECV, so store it in this field */
+ uint16_t rsp_idx;
+
+ struct nvme_rdma_wr rdma_wr;
+
+ struct ibv_send_wr send_wr;
+
+ struct nvme_request *req;
+
+ struct ibv_sge send_sgl[NVME_RDMA_DEFAULT_TX_SGE];
+
+ TAILQ_ENTRY(spdk_nvme_rdma_req) link;
+};
+
+enum nvme_rdma_key_type {
+ NVME_RDMA_MR_RKEY,
+ NVME_RDMA_MR_LKEY
+};
+
+struct spdk_nvme_rdma_rsp {
+ struct spdk_nvme_cpl cpl;
+ struct nvme_rdma_qpair *rqpair;
+ uint16_t idx;
+ struct nvme_rdma_wr rdma_wr;
+};
+
+static const char *rdma_cm_event_str[] = {
+ "RDMA_CM_EVENT_ADDR_RESOLVED",
+ "RDMA_CM_EVENT_ADDR_ERROR",
+ "RDMA_CM_EVENT_ROUTE_RESOLVED",
+ "RDMA_CM_EVENT_ROUTE_ERROR",
+ "RDMA_CM_EVENT_CONNECT_REQUEST",
+ "RDMA_CM_EVENT_CONNECT_RESPONSE",
+ "RDMA_CM_EVENT_CONNECT_ERROR",
+ "RDMA_CM_EVENT_UNREACHABLE",
+ "RDMA_CM_EVENT_REJECTED",
+ "RDMA_CM_EVENT_ESTABLISHED",
+ "RDMA_CM_EVENT_DISCONNECTED",
+ "RDMA_CM_EVENT_DEVICE_REMOVAL",
+ "RDMA_CM_EVENT_MULTICAST_JOIN",
+ "RDMA_CM_EVENT_MULTICAST_ERROR",
+ "RDMA_CM_EVENT_ADDR_CHANGE",
+ "RDMA_CM_EVENT_TIMEWAIT_EXIT"
+};
+
+static LIST_HEAD(, spdk_nvme_rdma_mr_map) g_rdma_mr_maps = LIST_HEAD_INITIALIZER(&g_rdma_mr_maps);
+static pthread_mutex_t g_rdma_mr_maps_mutex = PTHREAD_MUTEX_INITIALIZER;
+struct nvme_rdma_qpair *nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group,
+ uint32_t qp_num);
+
+static inline void *
+nvme_rdma_calloc(size_t nmemb, size_t size)
+{
+ if (!g_nvme_hooks.get_rkey) {
+ return calloc(nmemb, size);
+ } else {
+ return spdk_zmalloc(nmemb * size, 0, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA);
+ }
+}
+
+static inline void
+nvme_rdma_free(void *buf)
+{
+ if (!g_nvme_hooks.get_rkey) {
+ free(buf);
+ } else {
+ spdk_free(buf);
+ }
+}
+
+static int nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr,
+ struct spdk_nvme_qpair *qpair);
+
+static inline struct nvme_rdma_qpair *
+nvme_rdma_qpair(struct spdk_nvme_qpair *qpair)
+{
+ assert(qpair->trtype == SPDK_NVME_TRANSPORT_RDMA);
+ return SPDK_CONTAINEROF(qpair, struct nvme_rdma_qpair, qpair);
+}
+
+static inline struct nvme_rdma_poll_group *
+nvme_rdma_poll_group(struct spdk_nvme_transport_poll_group *group)
+{
+ return (SPDK_CONTAINEROF(group, struct nvme_rdma_poll_group, group));
+}
+
+static inline struct nvme_rdma_ctrlr *
+nvme_rdma_ctrlr(struct spdk_nvme_ctrlr *ctrlr)
+{
+ assert(ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA);
+ return SPDK_CONTAINEROF(ctrlr, struct nvme_rdma_ctrlr, ctrlr);
+}
+
+static struct spdk_nvme_rdma_req *
+nvme_rdma_req_get(struct nvme_rdma_qpair *rqpair)
+{
+ struct spdk_nvme_rdma_req *rdma_req;
+
+ rdma_req = TAILQ_FIRST(&rqpair->free_reqs);
+ if (rdma_req) {
+ TAILQ_REMOVE(&rqpair->free_reqs, rdma_req, link);
+ TAILQ_INSERT_TAIL(&rqpair->outstanding_reqs, rdma_req, link);
+ }
+
+ return rdma_req;
+}
+
+static void
+nvme_rdma_req_put(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
+{
+ rdma_req->completion_flags = 0;
+ rdma_req->req = NULL;
+ TAILQ_INSERT_HEAD(&rqpair->free_reqs, rdma_req, link);
+}
+
+static void
+nvme_rdma_req_complete(struct spdk_nvme_rdma_req *rdma_req,
+ struct spdk_nvme_cpl *rsp)
+{
+ struct nvme_request *req = rdma_req->req;
+ struct nvme_rdma_qpair *rqpair;
+
+ assert(req != NULL);
+
+ rqpair = nvme_rdma_qpair(req->qpair);
+ TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
+
+ nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, rsp);
+ nvme_free_request(req);
+}
+
+static const char *
+nvme_rdma_cm_event_str_get(uint32_t event)
+{
+ if (event < SPDK_COUNTOF(rdma_cm_event_str)) {
+ return rdma_cm_event_str[event];
+ } else {
+ return "Undefined";
+ }
+}
+
+
+static int
+nvme_rdma_qpair_process_cm_event(struct nvme_rdma_qpair *rqpair)
+{
+ struct rdma_cm_event *event = rqpair->evt;
+ struct spdk_nvmf_rdma_accept_private_data *accept_data;
+ int rc = 0;
+
+ if (event) {
+ switch (event->event) {
+ case RDMA_CM_EVENT_ADDR_RESOLVED:
+ case RDMA_CM_EVENT_ADDR_ERROR:
+ case RDMA_CM_EVENT_ROUTE_RESOLVED:
+ case RDMA_CM_EVENT_ROUTE_ERROR:
+ break;
+ case RDMA_CM_EVENT_CONNECT_REQUEST:
+ break;
+ case RDMA_CM_EVENT_CONNECT_ERROR:
+ break;
+ case RDMA_CM_EVENT_UNREACHABLE:
+ case RDMA_CM_EVENT_REJECTED:
+ break;
+ case RDMA_CM_EVENT_CONNECT_RESPONSE:
+ rc = spdk_rdma_qp_complete_connect(rqpair->rdma_qp);
+ /* fall through */
+ case RDMA_CM_EVENT_ESTABLISHED:
+ accept_data = (struct spdk_nvmf_rdma_accept_private_data *)event->param.conn.private_data;
+ if (accept_data == NULL) {
+ rc = -1;
+ } else {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested queue depth %d. Actually got queue depth %d.\n",
+ rqpair->num_entries, accept_data->crqsize);
+ rqpair->num_entries = spdk_min(rqpair->num_entries, accept_data->crqsize);
+ }
+ break;
+ case RDMA_CM_EVENT_DISCONNECTED:
+ rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
+ break;
+ case RDMA_CM_EVENT_DEVICE_REMOVAL:
+ rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
+ break;
+ case RDMA_CM_EVENT_MULTICAST_JOIN:
+ case RDMA_CM_EVENT_MULTICAST_ERROR:
+ break;
+ case RDMA_CM_EVENT_ADDR_CHANGE:
+ rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL;
+ break;
+ case RDMA_CM_EVENT_TIMEWAIT_EXIT:
+ break;
+ default:
+ SPDK_ERRLOG("Unexpected Acceptor Event [%d]\n", event->event);
+ break;
+ }
+ rqpair->evt = NULL;
+ rdma_ack_cm_event(event);
+ }
+
+ return rc;
+}
+
+/*
+ * This function must be called under the nvme controller's lock
+ * because it touches global controller variables. The lock is taken
+ * by the generic transport code before invoking a few of the functions
+ * in this file: nvme_rdma_ctrlr_connect_qpair, nvme_rdma_ctrlr_delete_io_qpair,
+ * and conditionally nvme_rdma_qpair_process_completions when it is calling
+ * completions on the admin qpair. When adding a new call to this function, please
+ * verify that it is in a situation where it falls under the lock.
+ */
+static int
+nvme_rdma_poll_events(struct nvme_rdma_ctrlr *rctrlr)
+{
+ struct nvme_rdma_cm_event_entry *entry, *tmp;
+ struct nvme_rdma_qpair *event_qpair;
+ struct rdma_cm_event *event;
+ struct rdma_event_channel *channel = rctrlr->cm_channel;
+
+ STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
+ event_qpair = nvme_rdma_qpair(entry->evt->id->context);
+ if (event_qpair->evt == NULL) {
+ event_qpair->evt = entry->evt;
+ STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
+ STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
+ }
+ }
+
+ while (rdma_get_cm_event(channel, &event) == 0) {
+ event_qpair = nvme_rdma_qpair(event->id->context);
+ if (event_qpair->evt == NULL) {
+ event_qpair->evt = event;
+ } else {
+ assert(rctrlr == nvme_rdma_ctrlr(event_qpair->qpair.ctrlr));
+ entry = STAILQ_FIRST(&rctrlr->free_cm_events);
+ if (entry == NULL) {
+ rdma_ack_cm_event(event);
+ return -ENOMEM;
+ }
+ STAILQ_REMOVE(&rctrlr->free_cm_events, entry, nvme_rdma_cm_event_entry, link);
+ entry->evt = event;
+ STAILQ_INSERT_TAIL(&rctrlr->pending_cm_events, entry, link);
+ }
+ }
+
+ if (errno == EAGAIN || errno == EWOULDBLOCK) {
+ return 0;
+ } else {
+ return errno;
+ }
+}
+
+static int
+nvme_rdma_validate_cm_event(enum rdma_cm_event_type expected_evt_type,
+ struct rdma_cm_event *reaped_evt)
+{
+ int rc = -EBADMSG;
+
+ if (expected_evt_type == reaped_evt->event) {
+ return 0;
+ }
+
+ switch (expected_evt_type) {
+ case RDMA_CM_EVENT_ESTABLISHED:
+ /*
+ * There is an enum ib_cm_rej_reason in the kernel headers that sets 10 as
+ * IB_CM_REJ_STALE_CONN. I can't find the corresponding userspace but we get
+ * the same values here.
+ */
+ if (reaped_evt->event == RDMA_CM_EVENT_REJECTED && reaped_evt->status == 10) {
+ rc = -ESTALE;
+ } else if (reaped_evt->event == RDMA_CM_EVENT_CONNECT_RESPONSE) {
+ /*
+ * If we are using a qpair which is not created using rdma cm API
+ * then we will receive RDMA_CM_EVENT_CONNECT_RESPONSE instead of
+ * RDMA_CM_EVENT_ESTABLISHED.
+ */
+ return 0;
+ }
+ break;
+ default:
+ break;
+ }
+
+ SPDK_ERRLOG("Expected %s but received %s (%d) from CM event channel (status = %d)\n",
+ nvme_rdma_cm_event_str_get(expected_evt_type),
+ nvme_rdma_cm_event_str_get(reaped_evt->event), reaped_evt->event,
+ reaped_evt->status);
+ return rc;
+}
+
+static int
+nvme_rdma_process_event(struct nvme_rdma_qpair *rqpair,
+ struct rdma_event_channel *channel,
+ enum rdma_cm_event_type evt)
+{
+ struct nvme_rdma_ctrlr *rctrlr;
+ uint64_t timeout_ticks;
+ int rc = 0, rc2;
+
+ if (rqpair->evt != NULL) {
+ rc = nvme_rdma_qpair_process_cm_event(rqpair);
+ if (rc) {
+ return rc;
+ }
+ }
+
+ timeout_ticks = (NVME_RDMA_QPAIR_CM_EVENT_TIMEOUT_US * spdk_get_ticks_hz()) / SPDK_SEC_TO_USEC +
+ spdk_get_ticks();
+ rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
+ assert(rctrlr != NULL);
+
+ while (!rqpair->evt && spdk_get_ticks() < timeout_ticks && rc == 0) {
+ rc = nvme_rdma_poll_events(rctrlr);
+ }
+
+ if (rc) {
+ return rc;
+ }
+
+ if (rqpair->evt == NULL) {
+ return -EADDRNOTAVAIL;
+ }
+
+ rc = nvme_rdma_validate_cm_event(evt, rqpair->evt);
+
+ rc2 = nvme_rdma_qpair_process_cm_event(rqpair);
+ /* bad message takes precedence over the other error codes from processing the event. */
+ return rc == 0 ? rc2 : rc;
+}
+
+static int
+nvme_rdma_qpair_init(struct nvme_rdma_qpair *rqpair)
+{
+ int rc;
+ struct spdk_rdma_qp_init_attr attr = {};
+ struct ibv_device_attr dev_attr;
+ struct nvme_rdma_ctrlr *rctrlr;
+
+ rc = ibv_query_device(rqpair->cm_id->verbs, &dev_attr);
+ if (rc != 0) {
+ SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
+ return -1;
+ }
+
+ if (rqpair->qpair.poll_group) {
+ assert(!rqpair->cq);
+ rc = nvme_poll_group_connect_qpair(&rqpair->qpair);
+ if (rc) {
+ SPDK_ERRLOG("Unable to activate the rdmaqpair.\n");
+ return -1;
+ }
+ assert(rqpair->cq);
+ } else {
+ rqpair->cq = ibv_create_cq(rqpair->cm_id->verbs, rqpair->num_entries * 2, rqpair, NULL, 0);
+ if (!rqpair->cq) {
+ SPDK_ERRLOG("Unable to create completion queue: errno %d: %s\n", errno, spdk_strerror(errno));
+ return -1;
+ }
+ }
+
+ rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
+ if (g_nvme_hooks.get_ibv_pd) {
+ rctrlr->pd = g_nvme_hooks.get_ibv_pd(&rctrlr->ctrlr.trid, rqpair->cm_id->verbs);
+ } else {
+ rctrlr->pd = NULL;
+ }
+
+ attr.pd = rctrlr->pd;
+ attr.send_cq = rqpair->cq;
+ attr.recv_cq = rqpair->cq;
+ attr.cap.max_send_wr = rqpair->num_entries; /* SEND operations */
+ attr.cap.max_recv_wr = rqpair->num_entries; /* RECV operations */
+ attr.cap.max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, dev_attr.max_sge);
+ attr.cap.max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, dev_attr.max_sge);
+
+ rqpair->rdma_qp = spdk_rdma_qp_create(rqpair->cm_id, &attr);
+
+ if (!rqpair->rdma_qp) {
+ return -1;
+ }
+
+ /* ibv_create_qp will change the values in attr.cap. Make sure we store the proper value. */
+ rqpair->max_send_sge = spdk_min(NVME_RDMA_DEFAULT_TX_SGE, attr.cap.max_send_sge);
+ rqpair->max_recv_sge = spdk_min(NVME_RDMA_DEFAULT_RX_SGE, attr.cap.max_recv_sge);
+ rqpair->current_num_recvs = 0;
+ rqpair->current_num_sends = 0;
+
+ rctrlr->pd = rqpair->rdma_qp->qp->pd;
+
+ rqpair->cm_id->context = &rqpair->qpair;
+
+ return 0;
+}
+
+static inline int
+nvme_rdma_qpair_submit_sends(struct nvme_rdma_qpair *rqpair)
+{
+ struct ibv_send_wr *bad_send_wr;
+ int rc;
+
+ rc = spdk_rdma_qp_flush_send_wrs(rqpair->rdma_qp, &bad_send_wr);
+
+ if (spdk_unlikely(rc)) {
+ SPDK_ERRLOG("Failed to post WRs on send queue, errno %d (%s), bad_wr %p\n",
+ rc, spdk_strerror(rc), bad_send_wr);
+ while (bad_send_wr != NULL) {
+ assert(rqpair->current_num_sends > 0);
+ rqpair->current_num_sends--;
+ bad_send_wr = bad_send_wr->next;
+ }
+ return rc;
+ }
+
+ return 0;
+}
+
+static inline int
+nvme_rdma_qpair_submit_recvs(struct nvme_rdma_qpair *rqpair)
+{
+ struct ibv_recv_wr *bad_recv_wr;
+ int rc = 0;
+
+ if (rqpair->recvs_to_post.first) {
+ rc = ibv_post_recv(rqpair->rdma_qp->qp, rqpair->recvs_to_post.first, &bad_recv_wr);
+ if (spdk_unlikely(rc)) {
+ SPDK_ERRLOG("Failed to post WRs on receive queue, errno %d (%s), bad_wr %p\n",
+ rc, spdk_strerror(rc), bad_recv_wr);
+ while (bad_recv_wr != NULL) {
+ assert(rqpair->current_num_sends > 0);
+ rqpair->current_num_recvs--;
+ bad_recv_wr = bad_recv_wr->next;
+ }
+ }
+
+ rqpair->recvs_to_post.first = NULL;
+ }
+ return rc;
+}
+
+/* Append the given send wr structure to the qpair's outstanding sends list. */
+/* This function accepts only a single wr. */
+static inline int
+nvme_rdma_qpair_queue_send_wr(struct nvme_rdma_qpair *rqpair, struct ibv_send_wr *wr)
+{
+ assert(wr->next == NULL);
+
+ assert(rqpair->current_num_sends < rqpair->num_entries);
+
+ rqpair->current_num_sends++;
+ spdk_rdma_qp_queue_send_wrs(rqpair->rdma_qp, wr);
+
+ if (!rqpair->delay_cmd_submit) {
+ return nvme_rdma_qpair_submit_sends(rqpair);
+ }
+
+ return 0;
+}
+
+/* Append the given recv wr structure to the qpair's outstanding recvs list. */
+/* This function accepts only a single wr. */
+static inline int
+nvme_rdma_qpair_queue_recv_wr(struct nvme_rdma_qpair *rqpair, struct ibv_recv_wr *wr)
+{
+
+ assert(wr->next == NULL);
+ assert(rqpair->current_num_recvs < rqpair->num_entries);
+
+ rqpair->current_num_recvs++;
+ if (rqpair->recvs_to_post.first == NULL) {
+ rqpair->recvs_to_post.first = wr;
+ } else {
+ rqpair->recvs_to_post.last->next = wr;
+ }
+
+ rqpair->recvs_to_post.last = wr;
+
+ if (!rqpair->delay_cmd_submit) {
+ return nvme_rdma_qpair_submit_recvs(rqpair);
+ }
+
+ return 0;
+}
+
+#define nvme_rdma_trace_ibv_sge(sg_list) \
+ if (sg_list) { \
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "local addr %p length 0x%x lkey 0x%x\n", \
+ (void *)(sg_list)->addr, (sg_list)->length, (sg_list)->lkey); \
+ }
+
+static int
+nvme_rdma_post_recv(struct nvme_rdma_qpair *rqpair, uint16_t rsp_idx)
+{
+ struct ibv_recv_wr *wr;
+
+ wr = &rqpair->rsp_recv_wrs[rsp_idx];
+ wr->next = NULL;
+ nvme_rdma_trace_ibv_sge(wr->sg_list);
+ return nvme_rdma_qpair_queue_recv_wr(rqpair, wr);
+}
+
+static int
+nvme_rdma_reg_mr(struct rdma_cm_id *cm_id, union nvme_rdma_mr *mr, void *mem, size_t length)
+{
+ if (!g_nvme_hooks.get_rkey) {
+ mr->mr = rdma_reg_msgs(cm_id, mem, length);
+ if (mr->mr == NULL) {
+ SPDK_ERRLOG("Unable to register mr: %s (%d)\n",
+ spdk_strerror(errno), errno);
+ return -1;
+ }
+ } else {
+ mr->key = g_nvme_hooks.get_rkey(cm_id->pd, mem, length);
+ }
+
+ return 0;
+}
+
+static void
+nvme_rdma_dereg_mr(union nvme_rdma_mr *mr)
+{
+ if (!g_nvme_hooks.get_rkey) {
+ if (mr->mr && rdma_dereg_mr(mr->mr)) {
+ SPDK_ERRLOG("Unable to de-register mr\n");
+ }
+ } else {
+ if (mr->key) {
+ g_nvme_hooks.put_rkey(mr->key);
+ }
+ }
+ memset(mr, 0, sizeof(*mr));
+}
+
+static uint32_t
+nvme_rdma_mr_get_lkey(union nvme_rdma_mr *mr)
+{
+ uint32_t lkey;
+
+ if (!g_nvme_hooks.get_rkey) {
+ lkey = mr->mr->lkey;
+ } else {
+ lkey = *((uint64_t *) mr->key);
+ }
+
+ return lkey;
+}
+
+static void
+nvme_rdma_unregister_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ nvme_rdma_dereg_mr(&rqpair->rsp_mr);
+}
+
+static void
+nvme_rdma_free_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ nvme_rdma_free(rqpair->rsps);
+ rqpair->rsps = NULL;
+ nvme_rdma_free(rqpair->rsp_sgls);
+ rqpair->rsp_sgls = NULL;
+ nvme_rdma_free(rqpair->rsp_recv_wrs);
+ rqpair->rsp_recv_wrs = NULL;
+}
+
+static int
+nvme_rdma_alloc_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ rqpair->rsps = NULL;
+ rqpair->rsp_recv_wrs = NULL;
+
+ rqpair->rsp_sgls = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_sgls));
+ if (!rqpair->rsp_sgls) {
+ SPDK_ERRLOG("Failed to allocate rsp_sgls\n");
+ goto fail;
+ }
+
+ rqpair->rsp_recv_wrs = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsp_recv_wrs));
+ if (!rqpair->rsp_recv_wrs) {
+ SPDK_ERRLOG("Failed to allocate rsp_recv_wrs\n");
+ goto fail;
+ }
+
+ rqpair->rsps = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->rsps));
+ if (!rqpair->rsps) {
+ SPDK_ERRLOG("can not allocate rdma rsps\n");
+ goto fail;
+ }
+
+ return 0;
+fail:
+ nvme_rdma_free_rsps(rqpair);
+ return -ENOMEM;
+}
+
+static int
+nvme_rdma_register_rsps(struct nvme_rdma_qpair *rqpair)
+{
+ uint16_t i;
+ int rc;
+ uint32_t lkey;
+
+ rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->rsp_mr,
+ rqpair->rsps, rqpair->num_entries * sizeof(*rqpair->rsps));
+
+ if (rc < 0) {
+ goto fail;
+ }
+
+ lkey = nvme_rdma_mr_get_lkey(&rqpair->rsp_mr);
+
+ for (i = 0; i < rqpair->num_entries; i++) {
+ struct ibv_sge *rsp_sgl = &rqpair->rsp_sgls[i];
+ struct spdk_nvme_rdma_rsp *rsp = &rqpair->rsps[i];
+
+ rsp->rqpair = rqpair;
+ rsp->rdma_wr.type = RDMA_WR_TYPE_RECV;
+ rsp->idx = i;
+ rsp_sgl->addr = (uint64_t)&rqpair->rsps[i];
+ rsp_sgl->length = sizeof(struct spdk_nvme_cpl);
+ rsp_sgl->lkey = lkey;
+
+ rqpair->rsp_recv_wrs[i].wr_id = (uint64_t)&rsp->rdma_wr;
+ rqpair->rsp_recv_wrs[i].next = NULL;
+ rqpair->rsp_recv_wrs[i].sg_list = rsp_sgl;
+ rqpair->rsp_recv_wrs[i].num_sge = 1;
+
+ rc = nvme_rdma_post_recv(rqpair, i);
+ if (rc) {
+ goto fail;
+ }
+ }
+
+ rc = nvme_rdma_qpair_submit_recvs(rqpair);
+ if (rc) {
+ goto fail;
+ }
+
+ return 0;
+
+fail:
+ nvme_rdma_unregister_rsps(rqpair);
+ return rc;
+}
+
+static void
+nvme_rdma_unregister_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ nvme_rdma_dereg_mr(&rqpair->cmd_mr);
+}
+
+static void
+nvme_rdma_free_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ if (!rqpair->rdma_reqs) {
+ return;
+ }
+
+ nvme_rdma_free(rqpair->cmds);
+ rqpair->cmds = NULL;
+
+ nvme_rdma_free(rqpair->rdma_reqs);
+ rqpair->rdma_reqs = NULL;
+}
+
+static int
+nvme_rdma_alloc_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ uint16_t i;
+
+ rqpair->rdma_reqs = nvme_rdma_calloc(rqpair->num_entries, sizeof(struct spdk_nvme_rdma_req));
+ if (rqpair->rdma_reqs == NULL) {
+ SPDK_ERRLOG("Failed to allocate rdma_reqs\n");
+ goto fail;
+ }
+
+ rqpair->cmds = nvme_rdma_calloc(rqpair->num_entries, sizeof(*rqpair->cmds));
+ if (!rqpair->cmds) {
+ SPDK_ERRLOG("Failed to allocate RDMA cmds\n");
+ goto fail;
+ }
+
+
+ TAILQ_INIT(&rqpair->free_reqs);
+ TAILQ_INIT(&rqpair->outstanding_reqs);
+ for (i = 0; i < rqpair->num_entries; i++) {
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct spdk_nvmf_cmd *cmd;
+
+ rdma_req = &rqpair->rdma_reqs[i];
+ rdma_req->rdma_wr.type = RDMA_WR_TYPE_SEND;
+ cmd = &rqpair->cmds[i];
+
+ rdma_req->id = i;
+
+ /* The first RDMA sgl element will always point
+ * at this data structure. Depending on whether
+ * an NVMe-oF SGL is required, the length of
+ * this element may change. */
+ rdma_req->send_sgl[0].addr = (uint64_t)cmd;
+ rdma_req->send_wr.wr_id = (uint64_t)&rdma_req->rdma_wr;
+ rdma_req->send_wr.next = NULL;
+ rdma_req->send_wr.opcode = IBV_WR_SEND;
+ rdma_req->send_wr.send_flags = IBV_SEND_SIGNALED;
+ rdma_req->send_wr.sg_list = rdma_req->send_sgl;
+ rdma_req->send_wr.imm_data = 0;
+
+ TAILQ_INSERT_TAIL(&rqpair->free_reqs, rdma_req, link);
+ }
+
+ return 0;
+fail:
+ nvme_rdma_free_reqs(rqpair);
+ return -ENOMEM;
+}
+
+static int
+nvme_rdma_register_reqs(struct nvme_rdma_qpair *rqpair)
+{
+ int i;
+ int rc;
+ uint32_t lkey;
+
+ rc = nvme_rdma_reg_mr(rqpair->cm_id, &rqpair->cmd_mr,
+ rqpair->cmds, rqpair->num_entries * sizeof(*rqpair->cmds));
+
+ if (rc < 0) {
+ goto fail;
+ }
+
+ lkey = nvme_rdma_mr_get_lkey(&rqpair->cmd_mr);
+
+ for (i = 0; i < rqpair->num_entries; i++) {
+ rqpair->rdma_reqs[i].send_sgl[0].lkey = lkey;
+ }
+
+ return 0;
+
+fail:
+ nvme_rdma_unregister_reqs(rqpair);
+ return -ENOMEM;
+}
+
+static int
+nvme_rdma_resolve_addr(struct nvme_rdma_qpair *rqpair,
+ struct sockaddr *src_addr,
+ struct sockaddr *dst_addr,
+ struct rdma_event_channel *cm_channel)
+{
+ int ret;
+
+ ret = rdma_resolve_addr(rqpair->cm_id, src_addr, dst_addr,
+ NVME_RDMA_TIME_OUT_IN_MS);
+ if (ret) {
+ SPDK_ERRLOG("rdma_resolve_addr, %d\n", errno);
+ return ret;
+ }
+
+ ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ADDR_RESOLVED);
+ if (ret) {
+ SPDK_ERRLOG("RDMA address resolution error\n");
+ return -1;
+ }
+
+ if (rqpair->qpair.ctrlr->opts.transport_ack_timeout != SPDK_NVME_TRANSPORT_ACK_TIMEOUT_DISABLED) {
+#ifdef SPDK_CONFIG_RDMA_SET_ACK_TIMEOUT
+ uint8_t timeout = rqpair->qpair.ctrlr->opts.transport_ack_timeout;
+ ret = rdma_set_option(rqpair->cm_id, RDMA_OPTION_ID,
+ RDMA_OPTION_ID_ACK_TIMEOUT,
+ &timeout, sizeof(timeout));
+ if (ret) {
+ SPDK_NOTICELOG("Can't apply RDMA_OPTION_ID_ACK_TIMEOUT %d, ret %d\n", timeout, ret);
+ }
+#else
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport_ack_timeout is not supported\n");
+#endif
+ }
+
+
+ ret = rdma_resolve_route(rqpair->cm_id, NVME_RDMA_TIME_OUT_IN_MS);
+ if (ret) {
+ SPDK_ERRLOG("rdma_resolve_route\n");
+ return ret;
+ }
+
+ ret = nvme_rdma_process_event(rqpair, cm_channel, RDMA_CM_EVENT_ROUTE_RESOLVED);
+ if (ret) {
+ SPDK_ERRLOG("RDMA route resolution error\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+nvme_rdma_connect(struct nvme_rdma_qpair *rqpair)
+{
+ struct rdma_conn_param param = {};
+ struct spdk_nvmf_rdma_request_private_data request_data = {};
+ struct ibv_device_attr attr;
+ int ret;
+ struct spdk_nvme_ctrlr *ctrlr;
+ struct nvme_rdma_ctrlr *rctrlr;
+
+ ret = ibv_query_device(rqpair->cm_id->verbs, &attr);
+ if (ret != 0) {
+ SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
+ return ret;
+ }
+
+ param.responder_resources = spdk_min(rqpair->num_entries, attr.max_qp_rd_atom);
+
+ ctrlr = rqpair->qpair.ctrlr;
+ if (!ctrlr) {
+ return -1;
+ }
+ rctrlr = nvme_rdma_ctrlr(ctrlr);
+ assert(rctrlr != NULL);
+
+ request_data.qid = rqpair->qpair.id;
+ request_data.hrqsize = rqpair->num_entries;
+ request_data.hsqsize = rqpair->num_entries - 1;
+ request_data.cntlid = ctrlr->cntlid;
+
+ param.private_data = &request_data;
+ param.private_data_len = sizeof(request_data);
+ param.retry_count = ctrlr->opts.transport_retry_count;
+ param.rnr_retry_count = 7;
+
+ /* Fields below are ignored by rdma cm if qpair has been
+ * created using rdma cm API. */
+ param.srq = 0;
+ param.qp_num = rqpair->rdma_qp->qp->qp_num;
+
+ ret = rdma_connect(rqpair->cm_id, &param);
+ if (ret) {
+ SPDK_ERRLOG("nvme rdma connect error\n");
+ return ret;
+ }
+
+ ret = nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_ESTABLISHED);
+ if (ret == -ESTALE) {
+ SPDK_NOTICELOG("Received a stale connection notice during connection.\n");
+ return -EAGAIN;
+ } else if (ret) {
+ SPDK_ERRLOG("RDMA connect error %d\n", ret);
+ return ret;
+ } else {
+ return 0;
+ }
+}
+
+static int
+nvme_rdma_parse_addr(struct sockaddr_storage *sa, int family, const char *addr, const char *service)
+{
+ struct addrinfo *res;
+ struct addrinfo hints;
+ int ret;
+
+ memset(&hints, 0, sizeof(hints));
+ hints.ai_family = family;
+ hints.ai_socktype = SOCK_STREAM;
+ hints.ai_protocol = 0;
+
+ ret = getaddrinfo(addr, service, &hints, &res);
+ if (ret) {
+ SPDK_ERRLOG("getaddrinfo failed: %s (%d)\n", gai_strerror(ret), ret);
+ return ret;
+ }
+
+ if (res->ai_addrlen > sizeof(*sa)) {
+ SPDK_ERRLOG("getaddrinfo() ai_addrlen %zu too large\n", (size_t)res->ai_addrlen);
+ ret = EINVAL;
+ } else {
+ memcpy(sa, res->ai_addr, res->ai_addrlen);
+ }
+
+ freeaddrinfo(res);
+ return ret;
+}
+
+static int
+nvme_rdma_mr_map_notify(void *cb_ctx, struct spdk_mem_map *map,
+ enum spdk_mem_map_notify_action action,
+ void *vaddr, size_t size)
+{
+ struct ibv_pd *pd = cb_ctx;
+ struct ibv_mr *mr;
+ int rc;
+
+ switch (action) {
+ case SPDK_MEM_MAP_NOTIFY_REGISTER:
+ if (!g_nvme_hooks.get_rkey) {
+ mr = ibv_reg_mr(pd, vaddr, size,
+ IBV_ACCESS_LOCAL_WRITE |
+ IBV_ACCESS_REMOTE_READ |
+ IBV_ACCESS_REMOTE_WRITE);
+ if (mr == NULL) {
+ SPDK_ERRLOG("ibv_reg_mr() failed\n");
+ return -EFAULT;
+ } else {
+ rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size, (uint64_t)mr);
+ }
+ } else {
+ rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, size,
+ g_nvme_hooks.get_rkey(pd, vaddr, size));
+ }
+ break;
+ case SPDK_MEM_MAP_NOTIFY_UNREGISTER:
+ if (!g_nvme_hooks.get_rkey) {
+ mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)vaddr, NULL);
+ if (mr) {
+ ibv_dereg_mr(mr);
+ }
+ }
+ rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, size);
+ break;
+ default:
+ SPDK_UNREACHABLE();
+ }
+
+ return rc;
+}
+
+static int
+nvme_rdma_check_contiguous_entries(uint64_t addr_1, uint64_t addr_2)
+{
+ /* Two contiguous mappings will point to the same address which is the start of the RDMA MR. */
+ return addr_1 == addr_2;
+}
+
+static int
+nvme_rdma_register_mem(struct nvme_rdma_qpair *rqpair)
+{
+ struct ibv_pd *pd = rqpair->rdma_qp->qp->pd;
+ struct spdk_nvme_rdma_mr_map *mr_map;
+ const struct spdk_mem_map_ops nvme_rdma_map_ops = {
+ .notify_cb = nvme_rdma_mr_map_notify,
+ .are_contiguous = nvme_rdma_check_contiguous_entries
+ };
+
+ pthread_mutex_lock(&g_rdma_mr_maps_mutex);
+
+ /* Look up existing mem map registration for this pd */
+ LIST_FOREACH(mr_map, &g_rdma_mr_maps, link) {
+ if (mr_map->pd == pd) {
+ mr_map->ref++;
+ rqpair->mr_map = mr_map;
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return 0;
+ }
+ }
+
+ mr_map = nvme_rdma_calloc(1, sizeof(*mr_map));
+ if (mr_map == NULL) {
+ SPDK_ERRLOG("Failed to allocate mr_map\n");
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return -1;
+ }
+
+ mr_map->ref = 1;
+ mr_map->pd = pd;
+ mr_map->map = spdk_mem_map_alloc((uint64_t)NULL, &nvme_rdma_map_ops, pd);
+ if (mr_map->map == NULL) {
+ SPDK_ERRLOG("spdk_mem_map_alloc() failed\n");
+ nvme_rdma_free(mr_map);
+
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+ return -1;
+ }
+
+ rqpair->mr_map = mr_map;
+ LIST_INSERT_HEAD(&g_rdma_mr_maps, mr_map, link);
+
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+
+ return 0;
+}
+
+static void
+nvme_rdma_unregister_mem(struct nvme_rdma_qpair *rqpair)
+{
+ struct spdk_nvme_rdma_mr_map *mr_map;
+
+ mr_map = rqpair->mr_map;
+ rqpair->mr_map = NULL;
+
+ if (mr_map == NULL) {
+ return;
+ }
+
+ pthread_mutex_lock(&g_rdma_mr_maps_mutex);
+
+ assert(mr_map->ref > 0);
+ mr_map->ref--;
+ if (mr_map->ref == 0) {
+ LIST_REMOVE(mr_map, link);
+ spdk_mem_map_free(&mr_map->map);
+ nvme_rdma_free(mr_map);
+ }
+
+ pthread_mutex_unlock(&g_rdma_mr_maps_mutex);
+}
+
+static int
+_nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ struct sockaddr_storage dst_addr;
+ struct sockaddr_storage src_addr;
+ bool src_addr_specified;
+ int rc;
+ struct nvme_rdma_ctrlr *rctrlr;
+ struct nvme_rdma_qpair *rqpair;
+ int family;
+
+ rqpair = nvme_rdma_qpair(qpair);
+ rctrlr = nvme_rdma_ctrlr(ctrlr);
+ assert(rctrlr != NULL);
+
+ switch (ctrlr->trid.adrfam) {
+ case SPDK_NVMF_ADRFAM_IPV4:
+ family = AF_INET;
+ break;
+ case SPDK_NVMF_ADRFAM_IPV6:
+ family = AF_INET6;
+ break;
+ default:
+ SPDK_ERRLOG("Unhandled ADRFAM %d\n", ctrlr->trid.adrfam);
+ return -1;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "adrfam %d ai_family %d\n", ctrlr->trid.adrfam, family);
+
+ memset(&dst_addr, 0, sizeof(dst_addr));
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "trsvcid is %s\n", ctrlr->trid.trsvcid);
+ rc = nvme_rdma_parse_addr(&dst_addr, family, ctrlr->trid.traddr, ctrlr->trid.trsvcid);
+ if (rc != 0) {
+ SPDK_ERRLOG("dst_addr nvme_rdma_parse_addr() failed\n");
+ return -1;
+ }
+
+ if (ctrlr->opts.src_addr[0] || ctrlr->opts.src_svcid[0]) {
+ memset(&src_addr, 0, sizeof(src_addr));
+ rc = nvme_rdma_parse_addr(&src_addr, family, ctrlr->opts.src_addr, ctrlr->opts.src_svcid);
+ if (rc != 0) {
+ SPDK_ERRLOG("src_addr nvme_rdma_parse_addr() failed\n");
+ return -1;
+ }
+ src_addr_specified = true;
+ } else {
+ src_addr_specified = false;
+ }
+
+ rc = rdma_create_id(rctrlr->cm_channel, &rqpair->cm_id, rqpair, RDMA_PS_TCP);
+ if (rc < 0) {
+ SPDK_ERRLOG("rdma_create_id() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_resolve_addr(rqpair,
+ src_addr_specified ? (struct sockaddr *)&src_addr : NULL,
+ (struct sockaddr *)&dst_addr, rctrlr->cm_channel);
+ if (rc < 0) {
+ SPDK_ERRLOG("nvme_rdma_resolve_addr() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_qpair_init(rqpair);
+ if (rc < 0) {
+ SPDK_ERRLOG("nvme_rdma_qpair_init() failed\n");
+ return -1;
+ }
+
+ rc = nvme_rdma_connect(rqpair);
+ if (rc != 0) {
+ SPDK_ERRLOG("Unable to connect the rqpair\n");
+ return rc;
+ }
+
+ rc = nvme_rdma_register_reqs(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc) {
+ SPDK_ERRLOG("Unable to register rqpair RDMA requests\n");
+ return -1;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests registered\n");
+
+ rc = nvme_rdma_register_rsps(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc < 0) {
+ SPDK_ERRLOG("Unable to register rqpair RDMA responses\n");
+ return -1;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses registered\n");
+
+ rc = nvme_rdma_register_mem(rqpair);
+ if (rc < 0) {
+ SPDK_ERRLOG("Unable to register memory for RDMA\n");
+ return -1;
+ }
+
+ rc = nvme_fabric_qpair_connect(&rqpair->qpair, rqpair->num_entries);
+ if (rc < 0) {
+ rqpair->qpair.transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
+ SPDK_ERRLOG("Failed to send an NVMe-oF Fabric CONNECT command\n");
+ return -1;
+ }
+
+ return 0;
+}
+
+static int
+nvme_rdma_ctrlr_connect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ int rc;
+ int retry_count = 0;
+
+ rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
+
+ /*
+ * -EAGAIN represents the special case where the target side still thought it was connected.
+ * Most NICs will fail the first connection attempt, and the NICs will clean up whatever
+ * state they need to. After that, subsequent connection attempts will succeed.
+ */
+ if (rc == -EAGAIN) {
+ SPDK_NOTICELOG("Detected stale connection on Target side for qpid: %d\n", qpair->id);
+ do {
+ nvme_delay(NVME_RDMA_STALE_CONN_RETRY_DELAY_US);
+ nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
+ rc = _nvme_rdma_ctrlr_connect_qpair(ctrlr, qpair);
+ retry_count++;
+ } while (rc == -EAGAIN && retry_count < NVME_RDMA_STALE_CONN_RETRY_MAX);
+ }
+
+ return rc;
+}
+
+/*
+ * Build SGL describing empty payload.
+ */
+static int
+nvme_rdma_build_null_request(struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ /* The RDMA SGL needs one element describing the NVMe command. */
+ rdma_req->send_wr.num_sge = 1;
+
+ req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ req->cmd.dptr.sgl1.keyed.length = 0;
+ req->cmd.dptr.sgl1.keyed.key = 0;
+ req->cmd.dptr.sgl1.address = 0;
+
+ return 0;
+}
+
+static inline bool
+nvme_rdma_get_key(struct spdk_mem_map *map, void *payload, uint64_t size,
+ enum nvme_rdma_key_type key_type, uint32_t *key)
+{
+ struct ibv_mr *mr;
+ uint64_t real_size = size;
+ uint32_t _key = 0;
+
+ if (!g_nvme_hooks.get_rkey) {
+ mr = (struct ibv_mr *)spdk_mem_map_translate(map, (uint64_t)payload, &real_size);
+
+ if (spdk_unlikely(!mr)) {
+ SPDK_ERRLOG("No translation for ptr %p, size %lu\n", payload, size);
+ return false;
+ }
+ switch (key_type) {
+ case NVME_RDMA_MR_RKEY:
+ _key = mr->rkey;
+ break;
+ case NVME_RDMA_MR_LKEY:
+ _key = mr->lkey;
+ break;
+ default:
+ SPDK_ERRLOG("Invalid key type %d\n", key_type);
+ assert(0);
+ return false;
+ }
+ } else {
+ _key = spdk_mem_map_translate(map, (uint64_t)payload, &real_size);
+ }
+
+ if (spdk_unlikely(real_size < size)) {
+ SPDK_ERRLOG("Data buffer split over multiple RDMA Memory Regions\n");
+ return false;
+ }
+
+ *key = _key;
+ return true;
+}
+
+/*
+ * Build inline SGL describing contiguous payload buffer.
+ */
+static int
+nvme_rdma_build_contig_inline_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ uint32_t lkey = 0;
+ void *payload;
+
+ payload = req->payload.contig_or_cb_arg + req->payload_offset;
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+
+ if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size,
+ NVME_RDMA_MR_LKEY, &lkey))) {
+ return -1;
+ }
+
+ rdma_req->send_sgl[1].lkey = lkey;
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ rdma_req->send_sgl[1].addr = (uint64_t)payload;
+ rdma_req->send_sgl[1].length = (uint32_t)req->payload_size;
+
+ /* The RDMA SGL contains two elements. The first describes
+ * the NVMe command and the second describes the data
+ * payload. */
+ rdma_req->send_wr.num_sge = 2;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
+ /* Inline only supported for icdoff == 0 currently. This function will
+ * not get called for controllers with other values. */
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+
+ return 0;
+}
+
+/*
+ * Build SGL describing contiguous payload buffer.
+ */
+static int
+nvme_rdma_build_contig_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ void *payload = req->payload.contig_or_cb_arg + req->payload_offset;
+ uint32_t rkey = 0;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_CONTIG);
+
+ if (spdk_unlikely(req->payload_size > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
+ SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
+ req->payload_size, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
+ return -1;
+ }
+
+ if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, payload, req->payload_size,
+ NVME_RDMA_MR_RKEY, &rkey))) {
+ return -1;
+ }
+
+ req->cmd.dptr.sgl1.keyed.key = rkey;
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ /* The RDMA SGL needs one element describing the NVMe command. */
+ rdma_req->send_wr.num_sge = 1;
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ req->cmd.dptr.sgl1.keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ req->cmd.dptr.sgl1.keyed.length = req->payload_size;
+ req->cmd.dptr.sgl1.address = (uint64_t)payload;
+
+ return 0;
+}
+
+/*
+ * Build SGL describing scattered payload buffer.
+ */
+static int
+nvme_rdma_build_sgl_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ struct spdk_nvmf_cmd *cmd = &rqpair->cmds[rdma_req->id];
+ void *virt_addr;
+ uint32_t remaining_size;
+ uint32_t sge_length;
+ int rc, max_num_sgl, num_sgl_desc;
+ uint32_t rkey = 0;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ max_num_sgl = req->qpair->ctrlr->max_sges;
+
+ remaining_size = req->payload_size;
+ num_sgl_desc = 0;
+ do {
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &sge_length);
+ if (rc) {
+ return -1;
+ }
+
+ sge_length = spdk_min(remaining_size, sge_length);
+
+ if (spdk_unlikely(sge_length > NVME_RDMA_MAX_KEYED_SGL_LENGTH)) {
+ SPDK_ERRLOG("SGL length %u exceeds max keyed SGL block size %u\n",
+ sge_length, NVME_RDMA_MAX_KEYED_SGL_LENGTH);
+ return -1;
+ }
+
+ if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, sge_length,
+ NVME_RDMA_MR_RKEY, &rkey))) {
+ return -1;
+ }
+
+ cmd->sgl[num_sgl_desc].keyed.key = rkey;
+ cmd->sgl[num_sgl_desc].keyed.type = SPDK_NVME_SGL_TYPE_KEYED_DATA_BLOCK;
+ cmd->sgl[num_sgl_desc].keyed.subtype = SPDK_NVME_SGL_SUBTYPE_ADDRESS;
+ cmd->sgl[num_sgl_desc].keyed.length = sge_length;
+ cmd->sgl[num_sgl_desc].address = (uint64_t)virt_addr;
+
+ remaining_size -= sge_length;
+ num_sgl_desc++;
+ } while (remaining_size > 0 && num_sgl_desc < max_num_sgl);
+
+
+ /* Should be impossible if we did our sgl checks properly up the stack, but do a sanity check here. */
+ if (remaining_size > 0) {
+ return -1;
+ }
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+
+ /* The RDMA SGL needs one element describing some portion
+ * of the spdk_nvmf_cmd structure. */
+ rdma_req->send_wr.num_sge = 1;
+
+ /*
+ * If only one SGL descriptor is required, it can be embedded directly in the command
+ * as a data block descriptor.
+ */
+ if (num_sgl_desc == 1) {
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ req->cmd.dptr.sgl1.keyed.type = cmd->sgl[0].keyed.type;
+ req->cmd.dptr.sgl1.keyed.subtype = cmd->sgl[0].keyed.subtype;
+ req->cmd.dptr.sgl1.keyed.length = cmd->sgl[0].keyed.length;
+ req->cmd.dptr.sgl1.keyed.key = cmd->sgl[0].keyed.key;
+ req->cmd.dptr.sgl1.address = cmd->sgl[0].address;
+ } else {
+ /*
+ * Otherwise, The SGL descriptor embedded in the command must point to the list of
+ * SGL descriptors used to describe the operation. In that case it is a last segment descriptor.
+ */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd) + sizeof(struct
+ spdk_nvme_sgl_descriptor) * num_sgl_desc;
+
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_LAST_SEGMENT;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = num_sgl_desc * sizeof(struct spdk_nvme_sgl_descriptor);
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+ }
+
+ return 0;
+}
+
+/*
+ * Build inline SGL describing sgl payload buffer.
+ */
+static int
+nvme_rdma_build_sgl_inline_request(struct nvme_rdma_qpair *rqpair,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct nvme_request *req = rdma_req->req;
+ uint32_t lkey = 0;
+ uint32_t length;
+ void *virt_addr;
+ int rc;
+
+ assert(req->payload_size != 0);
+ assert(nvme_payload_type(&req->payload) == NVME_PAYLOAD_TYPE_SGL);
+ assert(req->payload.reset_sgl_fn != NULL);
+ assert(req->payload.next_sge_fn != NULL);
+ req->payload.reset_sgl_fn(req->payload.contig_or_cb_arg, req->payload_offset);
+
+ rc = req->payload.next_sge_fn(req->payload.contig_or_cb_arg, &virt_addr, &length);
+ if (rc) {
+ return -1;
+ }
+
+ if (length < req->payload_size) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Inline SGL request split so sending separately.\n");
+ return nvme_rdma_build_sgl_request(rqpair, rdma_req);
+ }
+
+ if (length > req->payload_size) {
+ length = req->payload_size;
+ }
+
+ if (spdk_unlikely(!nvme_rdma_get_key(rqpair->mr_map->map, virt_addr, length,
+ NVME_RDMA_MR_LKEY, &lkey))) {
+ return -1;
+ }
+
+ rdma_req->send_sgl[1].addr = (uint64_t)virt_addr;
+ rdma_req->send_sgl[1].length = length;
+ rdma_req->send_sgl[1].lkey = lkey;
+
+ rdma_req->send_wr.num_sge = 2;
+
+ /* The first element of this SGL is pointing at an
+ * spdk_nvmf_cmd object. For this particular command,
+ * we only need the first 64 bytes corresponding to
+ * the NVMe command. */
+ rdma_req->send_sgl[0].length = sizeof(struct spdk_nvme_cmd);
+
+ req->cmd.psdt = SPDK_NVME_PSDT_SGL_MPTR_CONTIG;
+ req->cmd.dptr.sgl1.unkeyed.type = SPDK_NVME_SGL_TYPE_DATA_BLOCK;
+ req->cmd.dptr.sgl1.unkeyed.subtype = SPDK_NVME_SGL_SUBTYPE_OFFSET;
+ req->cmd.dptr.sgl1.unkeyed.length = (uint32_t)req->payload_size;
+ /* Inline only supported for icdoff == 0 currently. This function will
+ * not get called for controllers with other values. */
+ req->cmd.dptr.sgl1.address = (uint64_t)0;
+
+ return 0;
+}
+
+static int
+nvme_rdma_req_init(struct nvme_rdma_qpair *rqpair, struct nvme_request *req,
+ struct spdk_nvme_rdma_req *rdma_req)
+{
+ struct spdk_nvme_ctrlr *ctrlr = rqpair->qpair.ctrlr;
+ enum nvme_payload_type payload_type;
+ bool icd_supported;
+ int rc;
+
+ assert(rdma_req->req == NULL);
+ rdma_req->req = req;
+ req->cmd.cid = rdma_req->id;
+ payload_type = nvme_payload_type(&req->payload);
+ /*
+ * Check if icdoff is non zero, to avoid interop conflicts with
+ * targets with non-zero icdoff. Both SPDK and the Linux kernel
+ * targets use icdoff = 0. For targets with non-zero icdoff, we
+ * will currently just not use inline data for now.
+ */
+ icd_supported = spdk_nvme_opc_get_data_transfer(req->cmd.opc) == SPDK_NVME_DATA_HOST_TO_CONTROLLER
+ && req->payload_size <= ctrlr->ioccsz_bytes && ctrlr->icdoff == 0;
+
+ if (req->payload_size == 0) {
+ rc = nvme_rdma_build_null_request(rdma_req);
+ } else if (payload_type == NVME_PAYLOAD_TYPE_CONTIG) {
+ if (icd_supported) {
+ rc = nvme_rdma_build_contig_inline_request(rqpair, rdma_req);
+ } else {
+ rc = nvme_rdma_build_contig_request(rqpair, rdma_req);
+ }
+ } else if (payload_type == NVME_PAYLOAD_TYPE_SGL) {
+ if (icd_supported) {
+ rc = nvme_rdma_build_sgl_inline_request(rqpair, rdma_req);
+ } else {
+ rc = nvme_rdma_build_sgl_request(rqpair, rdma_req);
+ }
+ } else {
+ rc = -1;
+ }
+
+ if (rc) {
+ rdma_req->req = NULL;
+ return rc;
+ }
+
+ memcpy(&rqpair->cmds[rdma_req->id], &req->cmd, sizeof(req->cmd));
+ return 0;
+}
+
+static struct spdk_nvme_qpair *
+nvme_rdma_ctrlr_create_qpair(struct spdk_nvme_ctrlr *ctrlr,
+ uint16_t qid, uint32_t qsize,
+ enum spdk_nvme_qprio qprio,
+ uint32_t num_requests,
+ bool delay_cmd_submit)
+{
+ struct nvme_rdma_qpair *rqpair;
+ struct spdk_nvme_qpair *qpair;
+ int rc;
+
+ rqpair = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_qpair));
+ if (!rqpair) {
+ SPDK_ERRLOG("failed to get create rqpair\n");
+ return NULL;
+ }
+
+ rqpair->num_entries = qsize;
+ rqpair->delay_cmd_submit = delay_cmd_submit;
+ qpair = &rqpair->qpair;
+ rc = nvme_qpair_init(qpair, qid, ctrlr, qprio, num_requests);
+ if (rc != 0) {
+ return NULL;
+ }
+
+ rc = nvme_rdma_alloc_reqs(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc) {
+ SPDK_ERRLOG("Unable to allocate rqpair RDMA requests\n");
+ nvme_rdma_free(rqpair);
+ return NULL;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA requests allocated\n");
+
+ rc = nvme_rdma_alloc_rsps(rqpair);
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "rc =%d\n", rc);
+ if (rc < 0) {
+ SPDK_ERRLOG("Unable to allocate rqpair RDMA responses\n");
+ nvme_rdma_free_reqs(rqpair);
+ nvme_rdma_free(rqpair);
+ return NULL;
+ }
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "RDMA responses allocated\n");
+
+ return qpair;
+}
+
+static void
+nvme_rdma_ctrlr_disconnect_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct nvme_rdma_ctrlr *rctrlr = NULL;
+ struct nvme_rdma_cm_event_entry *entry, *tmp;
+
+ nvme_rdma_unregister_mem(rqpair);
+ nvme_rdma_unregister_reqs(rqpair);
+ nvme_rdma_unregister_rsps(rqpair);
+
+ if (rqpair->evt) {
+ rdma_ack_cm_event(rqpair->evt);
+ rqpair->evt = NULL;
+ }
+
+ /*
+ * This works because we have the controller lock both in
+ * this function and in the function where we add new events.
+ */
+ if (qpair->ctrlr != NULL) {
+ rctrlr = nvme_rdma_ctrlr(qpair->ctrlr);
+ STAILQ_FOREACH_SAFE(entry, &rctrlr->pending_cm_events, link, tmp) {
+ if (nvme_rdma_qpair(entry->evt->id->context) == rqpair) {
+ STAILQ_REMOVE(&rctrlr->pending_cm_events, entry, nvme_rdma_cm_event_entry, link);
+ rdma_ack_cm_event(entry->evt);
+ STAILQ_INSERT_HEAD(&rctrlr->free_cm_events, entry, link);
+ }
+ }
+ }
+
+ if (rqpair->cm_id) {
+ if (rqpair->rdma_qp) {
+ spdk_rdma_qp_disconnect(rqpair->rdma_qp);
+ if (rctrlr != NULL) {
+ if (nvme_rdma_process_event(rqpair, rctrlr->cm_channel, RDMA_CM_EVENT_DISCONNECTED)) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Target did not respond to qpair disconnect.\n");
+ }
+ }
+ spdk_rdma_qp_destroy(rqpair->rdma_qp);
+ rqpair->rdma_qp = NULL;
+ }
+
+ rdma_destroy_id(rqpair->cm_id);
+ rqpair->cm_id = NULL;
+ }
+
+ if (rqpair->cq) {
+ ibv_destroy_cq(rqpair->cq);
+ rqpair->cq = NULL;
+ }
+}
+
+static void nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr);
+
+static int
+nvme_rdma_ctrlr_delete_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_rdma_qpair *rqpair;
+
+ rqpair = nvme_rdma_qpair(qpair);
+ nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair);
+ if (rqpair->defer_deletion_to_pg) {
+ nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING);
+ return 0;
+ }
+
+ nvme_rdma_qpair_abort_reqs(qpair, 1);
+ nvme_qpair_deinit(qpair);
+
+ nvme_rdma_free_reqs(rqpair);
+ nvme_rdma_free_rsps(rqpair);
+ nvme_rdma_free(rqpair);
+
+ return 0;
+}
+
+static struct spdk_nvme_qpair *
+nvme_rdma_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, uint16_t qid,
+ const struct spdk_nvme_io_qpair_opts *opts)
+{
+ return nvme_rdma_ctrlr_create_qpair(ctrlr, qid, opts->io_queue_size, opts->qprio,
+ opts->io_queue_requests,
+ opts->delay_cmd_submit);
+}
+
+static int
+nvme_rdma_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /* do nothing here */
+ return 0;
+}
+
+static int nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr);
+
+static struct spdk_nvme_ctrlr *nvme_rdma_ctrlr_construct(const struct spdk_nvme_transport_id *trid,
+ const struct spdk_nvme_ctrlr_opts *opts,
+ void *devhandle)
+{
+ struct nvme_rdma_ctrlr *rctrlr;
+ union spdk_nvme_cap_register cap;
+ union spdk_nvme_vs_register vs;
+ struct ibv_context **contexts;
+ struct ibv_device_attr dev_attr;
+ int i, flag, rc;
+
+ rctrlr = nvme_rdma_calloc(1, sizeof(struct nvme_rdma_ctrlr));
+ if (rctrlr == NULL) {
+ SPDK_ERRLOG("could not allocate ctrlr\n");
+ return NULL;
+ }
+
+ rctrlr->ctrlr.opts = *opts;
+ rctrlr->ctrlr.trid = *trid;
+
+ if (opts->transport_retry_count > NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT) {
+ SPDK_NOTICELOG("transport_retry_count exceeds max value %d, use max value\n",
+ NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT);
+ rctrlr->ctrlr.opts.transport_retry_count = NVME_RDMA_CTRLR_MAX_TRANSPORT_RETRY_COUNT;
+ }
+
+ if (opts->transport_ack_timeout > NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT) {
+ SPDK_NOTICELOG("transport_ack_timeout exceeds max value %d, use max value\n",
+ NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT);
+ rctrlr->ctrlr.opts.transport_ack_timeout = NVME_RDMA_CTRLR_MAX_TRANSPORT_ACK_TIMEOUT;
+ }
+
+ contexts = rdma_get_devices(NULL);
+ if (contexts == NULL) {
+ SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
+ nvme_rdma_free(rctrlr);
+ return NULL;
+ }
+
+ i = 0;
+ rctrlr->max_sge = NVME_RDMA_MAX_SGL_DESCRIPTORS;
+
+ while (contexts[i] != NULL) {
+ rc = ibv_query_device(contexts[i], &dev_attr);
+ if (rc < 0) {
+ SPDK_ERRLOG("Failed to query RDMA device attributes.\n");
+ rdma_free_devices(contexts);
+ nvme_rdma_free(rctrlr);
+ return NULL;
+ }
+ rctrlr->max_sge = spdk_min(rctrlr->max_sge, (uint16_t)dev_attr.max_sge);
+ i++;
+ }
+
+ rdma_free_devices(contexts);
+
+ rc = nvme_ctrlr_construct(&rctrlr->ctrlr);
+ if (rc != 0) {
+ nvme_rdma_free(rctrlr);
+ return NULL;
+ }
+
+ STAILQ_INIT(&rctrlr->pending_cm_events);
+ STAILQ_INIT(&rctrlr->free_cm_events);
+ rctrlr->cm_events = nvme_rdma_calloc(NVME_RDMA_NUM_CM_EVENTS, sizeof(*rctrlr->cm_events));
+ if (rctrlr->cm_events == NULL) {
+ SPDK_ERRLOG("unable to allocat buffers to hold CM events.\n");
+ goto destruct_ctrlr;
+ }
+
+ for (i = 0; i < NVME_RDMA_NUM_CM_EVENTS; i++) {
+ STAILQ_INSERT_TAIL(&rctrlr->free_cm_events, &rctrlr->cm_events[i], link);
+ }
+
+ rctrlr->cm_channel = rdma_create_event_channel();
+ if (rctrlr->cm_channel == NULL) {
+ SPDK_ERRLOG("rdma_create_event_channel() failed\n");
+ goto destruct_ctrlr;
+ }
+
+ flag = fcntl(rctrlr->cm_channel->fd, F_GETFL);
+ if (fcntl(rctrlr->cm_channel->fd, F_SETFL, flag | O_NONBLOCK) < 0) {
+ SPDK_ERRLOG("Cannot set event channel to non blocking\n");
+ goto destruct_ctrlr;
+ }
+
+ rctrlr->ctrlr.adminq = nvme_rdma_ctrlr_create_qpair(&rctrlr->ctrlr, 0,
+ rctrlr->ctrlr.opts.admin_queue_size, 0,
+ rctrlr->ctrlr.opts.admin_queue_size, false);
+ if (!rctrlr->ctrlr.adminq) {
+ SPDK_ERRLOG("failed to create admin qpair\n");
+ goto destruct_ctrlr;
+ }
+
+ rc = nvme_transport_ctrlr_connect_qpair(&rctrlr->ctrlr, rctrlr->ctrlr.adminq);
+ if (rc < 0) {
+ SPDK_ERRLOG("failed to connect admin qpair\n");
+ goto destruct_ctrlr;
+ }
+
+ if (nvme_ctrlr_get_cap(&rctrlr->ctrlr, &cap)) {
+ SPDK_ERRLOG("get_cap() failed\n");
+ goto destruct_ctrlr;
+ }
+
+ if (nvme_ctrlr_get_vs(&rctrlr->ctrlr, &vs)) {
+ SPDK_ERRLOG("get_vs() failed\n");
+ goto destruct_ctrlr;
+ }
+
+ if (nvme_ctrlr_add_process(&rctrlr->ctrlr, 0) != 0) {
+ SPDK_ERRLOG("nvme_ctrlr_add_process() failed\n");
+ goto destruct_ctrlr;
+ }
+
+ nvme_ctrlr_init_cap(&rctrlr->ctrlr, &cap, &vs);
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "successfully initialized the nvmf ctrlr\n");
+ return &rctrlr->ctrlr;
+
+destruct_ctrlr:
+ nvme_ctrlr_destruct(&rctrlr->ctrlr);
+ return NULL;
+}
+
+static int
+nvme_rdma_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
+ struct nvme_rdma_cm_event_entry *entry;
+
+ if (ctrlr->adminq) {
+ nvme_rdma_ctrlr_delete_io_qpair(ctrlr, ctrlr->adminq);
+ }
+
+ STAILQ_FOREACH(entry, &rctrlr->pending_cm_events, link) {
+ rdma_ack_cm_event(entry->evt);
+ }
+
+ STAILQ_INIT(&rctrlr->free_cm_events);
+ STAILQ_INIT(&rctrlr->pending_cm_events);
+ nvme_rdma_free(rctrlr->cm_events);
+
+ if (rctrlr->cm_channel) {
+ rdma_destroy_event_channel(rctrlr->cm_channel);
+ rctrlr->cm_channel = NULL;
+ }
+
+ nvme_ctrlr_destruct_finish(ctrlr);
+
+ nvme_rdma_free(rctrlr);
+
+ return 0;
+}
+
+static int
+nvme_rdma_qpair_submit_request(struct spdk_nvme_qpair *qpair,
+ struct nvme_request *req)
+{
+ struct nvme_rdma_qpair *rqpair;
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct ibv_send_wr *wr;
+
+ rqpair = nvme_rdma_qpair(qpair);
+ assert(rqpair != NULL);
+ assert(req != NULL);
+
+ rdma_req = nvme_rdma_req_get(rqpair);
+ if (!rdma_req) {
+ /* Inform the upper layer to try again later. */
+ return -EAGAIN;
+ }
+
+ if (nvme_rdma_req_init(rqpair, req, rdma_req)) {
+ SPDK_ERRLOG("nvme_rdma_req_init() failed\n");
+ TAILQ_REMOVE(&rqpair->outstanding_reqs, rdma_req, link);
+ nvme_rdma_req_put(rqpair, rdma_req);
+ return -1;
+ }
+
+ wr = &rdma_req->send_wr;
+ wr->next = NULL;
+ nvme_rdma_trace_ibv_sge(wr->sg_list);
+ return nvme_rdma_qpair_queue_send_wr(rqpair, wr);
+}
+
+static int
+nvme_rdma_qpair_reset(struct spdk_nvme_qpair *qpair)
+{
+ /* Currently, doing nothing here */
+ return 0;
+}
+
+static void
+nvme_rdma_qpair_abort_reqs(struct spdk_nvme_qpair *qpair, uint32_t dnr)
+{
+ struct spdk_nvme_rdma_req *rdma_req, *tmp;
+ struct spdk_nvme_cpl cpl;
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+
+ cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
+ cpl.status.sct = SPDK_NVME_SCT_GENERIC;
+ cpl.status.dnr = dnr;
+
+ /*
+ * We cannot abort requests at the RDMA layer without
+ * unregistering them. If we do, we can still get error
+ * free completions on the shared completion queue.
+ */
+ if (nvme_qpair_get_state(qpair) > NVME_QPAIR_DISCONNECTING &&
+ nvme_qpair_get_state(qpair) != NVME_QPAIR_DESTROYING) {
+ nvme_ctrlr_disconnect_qpair(qpair);
+ }
+
+ TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
+ nvme_rdma_req_complete(rdma_req, &cpl);
+ nvme_rdma_req_put(rqpair, rdma_req);
+ }
+}
+
+static void
+nvme_rdma_qpair_check_timeout(struct spdk_nvme_qpair *qpair)
+{
+ uint64_t t02;
+ struct spdk_nvme_rdma_req *rdma_req, *tmp;
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr;
+ struct spdk_nvme_ctrlr_process *active_proc;
+
+ /* Don't check timeouts during controller initialization. */
+ if (ctrlr->state != NVME_CTRLR_STATE_READY) {
+ return;
+ }
+
+ if (nvme_qpair_is_admin_queue(qpair)) {
+ active_proc = nvme_ctrlr_get_current_process(ctrlr);
+ } else {
+ active_proc = qpair->active_proc;
+ }
+
+ /* Only check timeouts if the current process has a timeout callback. */
+ if (active_proc == NULL || active_proc->timeout_cb_fn == NULL) {
+ return;
+ }
+
+ t02 = spdk_get_ticks();
+ TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
+ assert(rdma_req->req != NULL);
+
+ if (nvme_request_check_timeout(rdma_req->req, rdma_req->id, active_proc, t02)) {
+ /*
+ * The requests are in order, so as soon as one has not timed out,
+ * stop iterating.
+ */
+ break;
+ }
+ }
+}
+
+static inline int
+nvme_rdma_request_ready(struct nvme_rdma_qpair *rqpair, struct spdk_nvme_rdma_req *rdma_req)
+{
+ nvme_rdma_req_complete(rdma_req, &rqpair->rsps[rdma_req->rsp_idx].cpl);
+ nvme_rdma_req_put(rqpair, rdma_req);
+ return nvme_rdma_post_recv(rqpair, rdma_req->rsp_idx);
+}
+
+#define MAX_COMPLETIONS_PER_POLL 128
+
+static void
+nvme_rdma_fail_qpair(struct spdk_nvme_qpair *qpair, int failure_reason)
+{
+ if (failure_reason == IBV_WC_RETRY_EXC_ERR) {
+ qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_REMOTE;
+ } else if (qpair->transport_failure_reason == SPDK_NVME_QPAIR_FAILURE_NONE) {
+ qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_UNKNOWN;
+ }
+
+ nvme_ctrlr_disconnect_qpair(qpair);
+}
+
+static void
+nvme_rdma_conditional_fail_qpair(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poll_group *group)
+{
+ struct nvme_rdma_destroyed_qpair *qpair_tracker;
+
+ assert(rqpair);
+ if (group) {
+ STAILQ_FOREACH(qpair_tracker, &group->destroyed_qpairs, link) {
+ if (qpair_tracker->destroyed_qpair_tracker == rqpair) {
+ return;
+ }
+ }
+ }
+ nvme_rdma_fail_qpair(&rqpair->qpair, 0);
+}
+
+static int
+nvme_rdma_cq_process_completions(struct ibv_cq *cq, uint32_t batch_size,
+ struct nvme_rdma_poll_group *group,
+ struct nvme_rdma_qpair *rdma_qpair)
+{
+ struct ibv_wc wc[MAX_COMPLETIONS_PER_POLL];
+ struct nvme_rdma_qpair *rqpair;
+ struct spdk_nvme_rdma_req *rdma_req;
+ struct spdk_nvme_rdma_rsp *rdma_rsp;
+ struct nvme_rdma_wr *rdma_wr;
+ uint32_t reaped = 0;
+ int completion_rc = 0;
+ int rc, i;
+
+ rc = ibv_poll_cq(cq, batch_size, wc);
+ if (rc < 0) {
+ SPDK_ERRLOG("Error polling CQ! (%d): %s\n",
+ errno, spdk_strerror(errno));
+ return -ECANCELED;
+ } else if (rc == 0) {
+ return 0;
+ }
+
+ for (i = 0; i < rc; i++) {
+ rdma_wr = (struct nvme_rdma_wr *)wc[i].wr_id;
+ switch (rdma_wr->type) {
+ case RDMA_WR_TYPE_RECV:
+ rdma_rsp = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_rsp, rdma_wr);
+ rqpair = rdma_rsp->rqpair;
+ assert(rqpair->current_num_recvs > 0);
+ rqpair->current_num_recvs--;
+
+ if (wc[i].status) {
+ SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
+ rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
+ nvme_rdma_conditional_fail_qpair(rqpair, group);
+ completion_rc = -ENXIO;
+ continue;
+ }
+
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "CQ recv completion\n");
+
+ if (wc[i].byte_len < sizeof(struct spdk_nvme_cpl)) {
+ SPDK_ERRLOG("recv length %u less than expected response size\n", wc[i].byte_len);
+ nvme_rdma_conditional_fail_qpair(rqpair, group);
+ completion_rc = -ENXIO;
+ continue;
+ }
+ rdma_req = &rqpair->rdma_reqs[rdma_rsp->cpl.cid];
+ rdma_req->completion_flags |= NVME_RDMA_RECV_COMPLETED;
+ rdma_req->rsp_idx = rdma_rsp->idx;
+
+ if ((rdma_req->completion_flags & NVME_RDMA_SEND_COMPLETED) != 0) {
+ if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
+ SPDK_ERRLOG("Unable to re-post rx descriptor\n");
+ nvme_rdma_conditional_fail_qpair(rqpair, group);
+ completion_rc = -ENXIO;
+ continue;
+ }
+ reaped++;
+ rqpair->num_completions++;
+ }
+ break;
+
+ case RDMA_WR_TYPE_SEND:
+ rdma_req = SPDK_CONTAINEROF(rdma_wr, struct spdk_nvme_rdma_req, rdma_wr);
+
+ /* If we are flushing I/O */
+ if (wc[i].status) {
+ rqpair = rdma_req->req ? nvme_rdma_qpair(rdma_req->req->qpair) : NULL;
+ if (!rqpair) {
+ rqpair = rdma_qpair != NULL ? rdma_qpair : nvme_rdma_poll_group_get_qpair_by_id(group,
+ wc[i].qp_num);
+ }
+ assert(rqpair);
+ assert(rqpair->current_num_sends > 0);
+ rqpair->current_num_sends--;
+ nvme_rdma_conditional_fail_qpair(rqpair, group);
+ SPDK_ERRLOG("CQ error on Queue Pair %p, Response Index %lu (%d): %s\n",
+ rqpair, wc[i].wr_id, wc[i].status, ibv_wc_status_str(wc[i].status));
+ completion_rc = -ENXIO;
+ continue;
+ }
+
+ rqpair = nvme_rdma_qpair(rdma_req->req->qpair);
+ rdma_req->completion_flags |= NVME_RDMA_SEND_COMPLETED;
+ rqpair->current_num_sends--;
+
+ if ((rdma_req->completion_flags & NVME_RDMA_RECV_COMPLETED) != 0) {
+ if (spdk_unlikely(nvme_rdma_request_ready(rqpair, rdma_req))) {
+ SPDK_ERRLOG("Unable to re-post rx descriptor\n");
+ nvme_rdma_conditional_fail_qpair(rqpair, group);
+ completion_rc = -ENXIO;
+ continue;
+ }
+ reaped++;
+ rqpair->num_completions++;
+ }
+ break;
+
+ default:
+ SPDK_ERRLOG("Received an unexpected opcode on the CQ: %d\n", rdma_wr->type);
+ return -ECANCELED;
+ }
+ }
+
+ if (completion_rc) {
+ return completion_rc;
+ }
+
+ return reaped;
+}
+
+static void
+dummy_disconnected_qpair_cb(struct spdk_nvme_qpair *qpair, void *poll_group_ctx)
+{
+
+}
+
+static int
+nvme_rdma_qpair_process_completions(struct spdk_nvme_qpair *qpair,
+ uint32_t max_completions)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ int rc = 0, batch_size;
+ struct ibv_cq *cq;
+ struct nvme_rdma_ctrlr *rctrlr;
+
+ /*
+ * This is used during the connection phase. It's possible that we are still reaping error completions
+ * from other qpairs so we need to call the poll group function. Also, it's more correct since the cq
+ * is shared.
+ */
+ if (qpair->poll_group != NULL) {
+ return spdk_nvme_poll_group_process_completions(qpair->poll_group->group, max_completions,
+ dummy_disconnected_qpair_cb);
+ }
+
+ if (max_completions == 0) {
+ max_completions = rqpair->num_entries;
+ } else {
+ max_completions = spdk_min(max_completions, rqpair->num_entries);
+ }
+
+ if (nvme_qpair_is_admin_queue(&rqpair->qpair)) {
+ rctrlr = nvme_rdma_ctrlr(rqpair->qpair.ctrlr);
+ nvme_rdma_poll_events(rctrlr);
+ }
+ nvme_rdma_qpair_process_cm_event(rqpair);
+
+ if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
+ nvme_rdma_fail_qpair(qpair, 0);
+ return -ENXIO;
+ }
+
+ cq = rqpair->cq;
+
+ rqpair->num_completions = 0;
+ do {
+ batch_size = spdk_min((max_completions - rqpair->num_completions), MAX_COMPLETIONS_PER_POLL);
+ rc = nvme_rdma_cq_process_completions(cq, batch_size, NULL, rqpair);
+
+ if (rc == 0) {
+ break;
+ /* Handle the case where we fail to poll the cq. */
+ } else if (rc == -ECANCELED) {
+ nvme_rdma_fail_qpair(qpair, 0);
+ return -ENXIO;
+ } else if (rc == -ENXIO) {
+ return rc;
+ }
+ } while (rqpair->num_completions < max_completions);
+
+ if (spdk_unlikely(nvme_rdma_qpair_submit_sends(rqpair) ||
+ nvme_rdma_qpair_submit_recvs(rqpair))) {
+ nvme_rdma_fail_qpair(qpair, 0);
+ return -ENXIO;
+ }
+
+ if (spdk_unlikely(rqpair->qpair.ctrlr->timeout_enabled)) {
+ nvme_rdma_qpair_check_timeout(qpair);
+ }
+
+ return rqpair->num_completions;
+}
+
+static uint32_t
+nvme_rdma_ctrlr_get_max_xfer_size(struct spdk_nvme_ctrlr *ctrlr)
+{
+ /* max_mr_size by ibv_query_device indicates the largest value that we can
+ * set for a registered memory region. It is independent from the actual
+ * I/O size and is very likely to be larger than 2 MiB which is the
+ * granularity we currently register memory regions. Hence return
+ * UINT32_MAX here and let the generic layer use the controller data to
+ * moderate this value.
+ */
+ return UINT32_MAX;
+}
+
+static uint16_t
+nvme_rdma_ctrlr_get_max_sges(struct spdk_nvme_ctrlr *ctrlr)
+{
+ struct nvme_rdma_ctrlr *rctrlr = nvme_rdma_ctrlr(ctrlr);
+
+ return rctrlr->max_sge;
+}
+
+static int
+nvme_rdma_qpair_iterate_requests(struct spdk_nvme_qpair *qpair,
+ int (*iter_fn)(struct nvme_request *req, void *arg),
+ void *arg)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct spdk_nvme_rdma_req *rdma_req, *tmp;
+ int rc;
+
+ assert(iter_fn != NULL);
+
+ TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
+ assert(rdma_req->req != NULL);
+
+ rc = iter_fn(rdma_req->req, arg);
+ if (rc != 0) {
+ return rc;
+ }
+ }
+
+ return 0;
+}
+
+static void
+nvme_rdma_admin_qpair_abort_aers(struct spdk_nvme_qpair *qpair)
+{
+ struct spdk_nvme_rdma_req *rdma_req, *tmp;
+ struct spdk_nvme_cpl cpl;
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+
+ cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION;
+ cpl.status.sct = SPDK_NVME_SCT_GENERIC;
+
+ TAILQ_FOREACH_SAFE(rdma_req, &rqpair->outstanding_reqs, link, tmp) {
+ assert(rdma_req->req != NULL);
+
+ if (rdma_req->req->cmd.opc != SPDK_NVME_OPC_ASYNC_EVENT_REQUEST) {
+ continue;
+ }
+
+ nvme_rdma_req_complete(rdma_req, &cpl);
+ nvme_rdma_req_put(rqpair, rdma_req);
+ }
+}
+
+static int
+nvme_rdma_poller_create(struct nvme_rdma_poll_group *group, struct ibv_context *ctx)
+{
+ struct nvme_rdma_poller *poller;
+
+ poller = calloc(1, sizeof(*poller));
+ if (poller == NULL) {
+ SPDK_ERRLOG("Unable to allocate poller.\n");
+ return -ENOMEM;
+ }
+
+ poller->device = ctx;
+ poller->cq = ibv_create_cq(poller->device, DEFAULT_NVME_RDMA_CQ_SIZE, group, NULL, 0);
+
+ if (poller->cq == NULL) {
+ free(poller);
+ return -EINVAL;
+ }
+
+ STAILQ_INSERT_HEAD(&group->pollers, poller, link);
+ group->num_pollers++;
+ poller->current_num_wc = DEFAULT_NVME_RDMA_CQ_SIZE;
+ poller->required_num_wc = 0;
+ return 0;
+}
+
+static void
+nvme_rdma_poll_group_free_pollers(struct nvme_rdma_poll_group *group)
+{
+ struct nvme_rdma_poller *poller, *tmp_poller;
+
+ STAILQ_FOREACH_SAFE(poller, &group->pollers, link, tmp_poller) {
+ if (poller->cq) {
+ ibv_destroy_cq(poller->cq);
+ }
+ STAILQ_REMOVE(&group->pollers, poller, nvme_rdma_poller, link);
+ free(poller);
+ }
+}
+
+static struct spdk_nvme_transport_poll_group *
+nvme_rdma_poll_group_create(void)
+{
+ struct nvme_rdma_poll_group *group;
+ struct ibv_context **contexts;
+ int i = 0;
+
+ group = calloc(1, sizeof(*group));
+ if (group == NULL) {
+ SPDK_ERRLOG("Unable to allocate poll group.\n");
+ return NULL;
+ }
+
+ STAILQ_INIT(&group->pollers);
+
+ contexts = rdma_get_devices(NULL);
+ if (contexts == NULL) {
+ SPDK_ERRLOG("rdma_get_devices() failed: %s (%d)\n", spdk_strerror(errno), errno);
+ free(group);
+ return NULL;
+ }
+
+ while (contexts[i] != NULL) {
+ if (nvme_rdma_poller_create(group, contexts[i])) {
+ nvme_rdma_poll_group_free_pollers(group);
+ free(group);
+ rdma_free_devices(contexts);
+ return NULL;
+ }
+ i++;
+ }
+
+ rdma_free_devices(contexts);
+ STAILQ_INIT(&group->destroyed_qpairs);
+ return &group->group;
+}
+
+struct nvme_rdma_qpair *
+nvme_rdma_poll_group_get_qpair_by_id(struct nvme_rdma_poll_group *group, uint32_t qp_num)
+{
+ struct spdk_nvme_qpair *qpair;
+ struct nvme_rdma_destroyed_qpair *rqpair_tracker;
+ struct nvme_rdma_qpair *rqpair;
+
+ STAILQ_FOREACH(qpair, &group->group.disconnected_qpairs, poll_group_stailq) {
+ rqpair = nvme_rdma_qpair(qpair);
+ if (rqpair->rdma_qp->qp->qp_num == qp_num) {
+ return rqpair;
+ }
+ }
+
+ STAILQ_FOREACH(qpair, &group->group.connected_qpairs, poll_group_stailq) {
+ rqpair = nvme_rdma_qpair(qpair);
+ if (rqpair->rdma_qp->qp->qp_num == qp_num) {
+ return rqpair;
+ }
+ }
+
+ STAILQ_FOREACH(rqpair_tracker, &group->destroyed_qpairs, link) {
+ rqpair = rqpair_tracker->destroyed_qpair_tracker;
+ if (rqpair->rdma_qp->qp->qp_num == qp_num) {
+ return rqpair;
+ }
+ }
+
+ return NULL;
+}
+
+static int
+nvme_rdma_resize_cq(struct nvme_rdma_qpair *rqpair, struct nvme_rdma_poller *poller)
+{
+ int current_num_wc, required_num_wc;
+
+ required_num_wc = poller->required_num_wc + WC_PER_QPAIR(rqpair->num_entries);
+ current_num_wc = poller->current_num_wc;
+ if (current_num_wc < required_num_wc) {
+ current_num_wc = spdk_max(current_num_wc * 2, required_num_wc);
+ }
+
+ if (poller->current_num_wc != current_num_wc) {
+ SPDK_DEBUGLOG(SPDK_LOG_NVME, "Resize RDMA CQ from %d to %d\n", poller->current_num_wc,
+ current_num_wc);
+ if (ibv_resize_cq(poller->cq, current_num_wc)) {
+ SPDK_ERRLOG("RDMA CQ resize failed: errno %d: %s\n", errno, spdk_strerror(errno));
+ return -1;
+ }
+
+ poller->current_num_wc = current_num_wc;
+ }
+
+ poller->required_num_wc = required_num_wc;
+ return 0;
+}
+
+static int
+nvme_rdma_poll_group_connect_qpair(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(qpair->poll_group);
+ struct nvme_rdma_poller *poller;
+
+ assert(rqpair->cq == NULL);
+
+ STAILQ_FOREACH(poller, &group->pollers, link) {
+ if (poller->device == rqpair->cm_id->verbs) {
+ if (nvme_rdma_resize_cq(rqpair, poller)) {
+ return -EPROTO;
+ }
+ rqpair->cq = poller->cq;
+ break;
+ }
+ }
+
+ if (rqpair->cq == NULL) {
+ SPDK_ERRLOG("Unable to find a cq for qpair %p on poll group %p\n", qpair, qpair->poll_group);
+ return -EINVAL;
+ }
+
+ return 0;
+}
+
+static int
+nvme_rdma_poll_group_disconnect_qpair(struct spdk_nvme_qpair *qpair)
+{
+ struct nvme_rdma_qpair *rqpair = nvme_rdma_qpair(qpair);
+ struct nvme_rdma_poll_group *group;
+ struct nvme_rdma_destroyed_qpair *destroyed_qpair;
+ enum nvme_qpair_state state;
+
+ if (rqpair->poll_group_disconnect_in_progress) {
+ return -EINPROGRESS;
+ }
+
+ rqpair->poll_group_disconnect_in_progress = true;
+ state = nvme_qpair_get_state(qpair);
+ group = nvme_rdma_poll_group(qpair->poll_group);
+ rqpair->cq = NULL;
+
+ /*
+ * We want to guard against an endless recursive loop while making
+ * sure the qpair is disconnected before we disconnect it from the qpair.
+ */
+ if (state > NVME_QPAIR_DISCONNECTING && state != NVME_QPAIR_DESTROYING) {
+ nvme_ctrlr_disconnect_qpair(qpair);
+ }
+
+ /*
+ * If this fails, the system is in serious trouble,
+ * just let the qpair get cleaned up immediately.
+ */
+ destroyed_qpair = calloc(1, sizeof(*destroyed_qpair));
+ if (destroyed_qpair == NULL) {
+ return 0;
+ }
+
+ destroyed_qpair->destroyed_qpair_tracker = rqpair;
+ destroyed_qpair->completed_cycles = 0;
+ STAILQ_INSERT_TAIL(&group->destroyed_qpairs, destroyed_qpair, link);
+
+ rqpair->defer_deletion_to_pg = true;
+
+ rqpair->poll_group_disconnect_in_progress = false;
+ return 0;
+}
+
+static int
+nvme_rdma_poll_group_add(struct spdk_nvme_transport_poll_group *tgroup,
+ struct spdk_nvme_qpair *qpair)
+{
+ return 0;
+}
+
+static int
+nvme_rdma_poll_group_remove(struct spdk_nvme_transport_poll_group *tgroup,
+ struct spdk_nvme_qpair *qpair)
+{
+ if (qpair->poll_group_tailq_head == &tgroup->connected_qpairs) {
+ return nvme_poll_group_disconnect_qpair(qpair);
+ }
+
+ return 0;
+}
+
+static void
+nvme_rdma_poll_group_delete_qpair(struct nvme_rdma_poll_group *group,
+ struct nvme_rdma_destroyed_qpair *qpair_tracker)
+{
+ struct nvme_rdma_qpair *rqpair = qpair_tracker->destroyed_qpair_tracker;
+
+ rqpair->defer_deletion_to_pg = false;
+ if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
+ nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
+ }
+ STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
+ free(qpair_tracker);
+}
+
+static int64_t
+nvme_rdma_poll_group_process_completions(struct spdk_nvme_transport_poll_group *tgroup,
+ uint32_t completions_per_qpair, spdk_nvme_disconnected_qpair_cb disconnected_qpair_cb)
+{
+ struct spdk_nvme_qpair *qpair, *tmp_qpair;
+ struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker;
+ struct nvme_rdma_qpair *rqpair;
+ struct nvme_rdma_poll_group *group;
+ struct nvme_rdma_poller *poller;
+ int num_qpairs = 0, batch_size, rc;
+ int64_t total_completions = 0;
+ uint64_t completions_allowed = 0;
+ uint64_t completions_per_poller = 0;
+ uint64_t poller_completions = 0;
+
+
+ if (completions_per_qpair == 0) {
+ completions_per_qpair = MAX_COMPLETIONS_PER_POLL;
+ }
+
+ group = nvme_rdma_poll_group(tgroup);
+ STAILQ_FOREACH_SAFE(qpair, &tgroup->disconnected_qpairs, poll_group_stailq, tmp_qpair) {
+ disconnected_qpair_cb(qpair, tgroup->group->ctx);
+ }
+
+ STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
+ rqpair = nvme_rdma_qpair(qpair);
+ rqpair->num_completions = 0;
+ nvme_rdma_qpair_process_cm_event(rqpair);
+
+ if (spdk_unlikely(qpair->transport_failure_reason != SPDK_NVME_QPAIR_FAILURE_NONE)) {
+ nvme_rdma_fail_qpair(qpair, 0);
+ disconnected_qpair_cb(qpair, tgroup->group->ctx);
+ continue;
+ }
+ num_qpairs++;
+ }
+
+ completions_allowed = completions_per_qpair * num_qpairs;
+ completions_per_poller = spdk_max(completions_allowed / group->num_pollers, 1);
+
+ STAILQ_FOREACH(poller, &group->pollers, link) {
+ poller_completions = 0;
+ do {
+ batch_size = spdk_min((completions_per_poller - poller_completions), MAX_COMPLETIONS_PER_POLL);
+ rc = nvme_rdma_cq_process_completions(poller->cq, batch_size, group, NULL);
+ if (rc <= 0) {
+ if (rc == -ECANCELED) {
+ return -EIO;
+ }
+ break;
+ }
+
+ poller_completions += rc;
+ } while (poller_completions < completions_per_poller);
+ total_completions += poller_completions;
+ }
+
+ STAILQ_FOREACH_SAFE(qpair, &tgroup->connected_qpairs, poll_group_stailq, tmp_qpair) {
+ rqpair = nvme_rdma_qpair(qpair);
+ if (spdk_unlikely(qpair->ctrlr->timeout_enabled)) {
+ nvme_rdma_qpair_check_timeout(qpair);
+ }
+
+ nvme_rdma_qpair_submit_sends(rqpair);
+ nvme_rdma_qpair_submit_recvs(rqpair);
+ nvme_qpair_resubmit_requests(&rqpair->qpair, rqpair->num_completions);
+ }
+
+ /*
+ * Once a qpair is disconnected, we can still get flushed completions for those disconnected qpairs.
+ * For most pieces of hardware, those requests will complete immediately. However, there are certain
+ * cases where flushed requests will linger. Default is to destroy qpair after all completions are freed,
+ * but have a fallback for other cases where we don't get all of our completions back.
+ */
+ STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
+ qpair_tracker->completed_cycles++;
+ rqpair = qpair_tracker->destroyed_qpair_tracker;
+ if ((rqpair->current_num_sends == 0 && rqpair->current_num_recvs == 0) ||
+ qpair_tracker->completed_cycles > NVME_RDMA_DESTROYED_QPAIR_EXPIRATION_CYCLES) {
+ nvme_rdma_poll_group_delete_qpair(group, qpair_tracker);
+ }
+ }
+
+ return total_completions;
+}
+
+static int
+nvme_rdma_poll_group_destroy(struct spdk_nvme_transport_poll_group *tgroup)
+{
+ struct nvme_rdma_poll_group *group = nvme_rdma_poll_group(tgroup);
+ struct nvme_rdma_destroyed_qpair *qpair_tracker, *tmp_qpair_tracker;
+ struct nvme_rdma_qpair *rqpair;
+
+ if (!STAILQ_EMPTY(&tgroup->connected_qpairs) || !STAILQ_EMPTY(&tgroup->disconnected_qpairs)) {
+ return -EBUSY;
+ }
+
+ STAILQ_FOREACH_SAFE(qpair_tracker, &group->destroyed_qpairs, link, tmp_qpair_tracker) {
+ rqpair = qpair_tracker->destroyed_qpair_tracker;
+ if (nvme_qpair_get_state(&rqpair->qpair) == NVME_QPAIR_DESTROYING) {
+ rqpair->defer_deletion_to_pg = false;
+ nvme_rdma_ctrlr_delete_io_qpair(rqpair->qpair.ctrlr, &rqpair->qpair);
+ }
+
+ STAILQ_REMOVE(&group->destroyed_qpairs, qpair_tracker, nvme_rdma_destroyed_qpair, link);
+ free(qpair_tracker);
+ }
+
+ nvme_rdma_poll_group_free_pollers(group);
+ free(group);
+
+ return 0;
+}
+
+void
+spdk_nvme_rdma_init_hooks(struct spdk_nvme_rdma_hooks *hooks)
+{
+ g_nvme_hooks = *hooks;
+}
+
+const struct spdk_nvme_transport_ops rdma_ops = {
+ .name = "RDMA",
+ .type = SPDK_NVME_TRANSPORT_RDMA,
+ .ctrlr_construct = nvme_rdma_ctrlr_construct,
+ .ctrlr_scan = nvme_fabric_ctrlr_scan,
+ .ctrlr_destruct = nvme_rdma_ctrlr_destruct,
+ .ctrlr_enable = nvme_rdma_ctrlr_enable,
+
+ .ctrlr_set_reg_4 = nvme_fabric_ctrlr_set_reg_4,
+ .ctrlr_set_reg_8 = nvme_fabric_ctrlr_set_reg_8,
+ .ctrlr_get_reg_4 = nvme_fabric_ctrlr_get_reg_4,
+ .ctrlr_get_reg_8 = nvme_fabric_ctrlr_get_reg_8,
+
+ .ctrlr_get_max_xfer_size = nvme_rdma_ctrlr_get_max_xfer_size,
+ .ctrlr_get_max_sges = nvme_rdma_ctrlr_get_max_sges,
+
+ .ctrlr_create_io_qpair = nvme_rdma_ctrlr_create_io_qpair,
+ .ctrlr_delete_io_qpair = nvme_rdma_ctrlr_delete_io_qpair,
+ .ctrlr_connect_qpair = nvme_rdma_ctrlr_connect_qpair,
+ .ctrlr_disconnect_qpair = nvme_rdma_ctrlr_disconnect_qpair,
+
+ .qpair_abort_reqs = nvme_rdma_qpair_abort_reqs,
+ .qpair_reset = nvme_rdma_qpair_reset,
+ .qpair_submit_request = nvme_rdma_qpair_submit_request,
+ .qpair_process_completions = nvme_rdma_qpair_process_completions,
+ .qpair_iterate_requests = nvme_rdma_qpair_iterate_requests,
+ .admin_qpair_abort_aers = nvme_rdma_admin_qpair_abort_aers,
+
+ .poll_group_create = nvme_rdma_poll_group_create,
+ .poll_group_connect_qpair = nvme_rdma_poll_group_connect_qpair,
+ .poll_group_disconnect_qpair = nvme_rdma_poll_group_disconnect_qpair,
+ .poll_group_add = nvme_rdma_poll_group_add,
+ .poll_group_remove = nvme_rdma_poll_group_remove,
+ .poll_group_process_completions = nvme_rdma_poll_group_process_completions,
+ .poll_group_destroy = nvme_rdma_poll_group_destroy,
+
+};
+
+SPDK_NVME_TRANSPORT_REGISTER(rdma, &rdma_ops);