summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/dplyr.R
diff options
context:
space:
mode:
Diffstat (limited to 'src/arrow/r/R/dplyr.R')
-rw-r--r--src/arrow/r/R/dplyr.R259
1 files changed, 259 insertions, 0 deletions
diff --git a/src/arrow/r/R/dplyr.R b/src/arrow/r/R/dplyr.R
new file mode 100644
index 000000000..e6f67c066
--- /dev/null
+++ b/src/arrow/r/R/dplyr.R
@@ -0,0 +1,259 @@
+# Licensed to the Apache Software Foundation (ASF) under one
+# or more contributor license agreements. See the NOTICE file
+# distributed with this work for additional information
+# regarding copyright ownership. The ASF licenses this file
+# to you under the Apache License, Version 2.0 (the
+# "License"); you may not use this file except in compliance
+# with the License. You may obtain a copy of the License at
+#
+# http://www.apache.org/licenses/LICENSE-2.0
+#
+# Unless required by applicable law or agreed to in writing,
+# software distributed under the License is distributed on an
+# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
+# KIND, either express or implied. See the License for the
+# specific language governing permissions and limitations
+# under the License.
+
+#' @include expression.R
+#' @include record-batch.R
+#' @include table.R
+
+arrow_dplyr_query <- function(.data) {
+ # An arrow_dplyr_query is a container for an Arrow data object (Table,
+ # RecordBatch, or Dataset) and the state of the user's dplyr query--things
+ # like selected columns, filters, and group vars.
+ # An arrow_dplyr_query can contain another arrow_dplyr_query in .data
+ gv <- dplyr::group_vars(.data) %||% character()
+
+ if (!inherits(.data, c("Dataset", "arrow_dplyr_query", "RecordBatchReader"))) {
+ .data <- InMemoryDataset$create(.data)
+ }
+ # Evaluating expressions on a dataset with duplicated fieldnames will error
+ dupes <- duplicated(names(.data))
+ if (any(dupes)) {
+ abort(c(
+ "Duplicated field names",
+ x = paste0(
+ "The following field names were found more than once in the data: ",
+ oxford_paste(names(.data)[dupes])
+ )
+ ))
+ }
+ structure(
+ list(
+ .data = .data,
+ # selected_columns is a named list:
+ # * contents are references/expressions pointing to the data
+ # * names are the names they should be in the end (i.e. this
+ # records any renaming)
+ selected_columns = make_field_refs(names(.data$schema)),
+ # filtered_rows will be an Expression
+ filtered_rows = TRUE,
+ # group_by_vars is a character vector of columns (as renamed)
+ # in the data. They will be kept when data is pulled into R.
+ group_by_vars = gv,
+ # drop_empty_groups is a logical value indicating whether to drop
+ # groups formed by factor levels that don't appear in the data. It
+ # should be non-null only when the data is grouped.
+ drop_empty_groups = NULL,
+ # arrange_vars will be a list of expressions named by their associated
+ # column names
+ arrange_vars = list(),
+ # arrange_desc will be a logical vector indicating the sort order for each
+ # expression in arrange_vars (FALSE for ascending, TRUE for descending)
+ arrange_desc = logical()
+ ),
+ class = "arrow_dplyr_query"
+ )
+}
+
+# The only difference between `arrow_dplyr_query()` and `as_adq()` is that if
+# `.data` is already an `arrow_dplyr_query`, `as_adq()`, will return it as is, but
+# `arrow_dplyr_query()` will nest it inside a new `arrow_dplyr_query`. The only
+# place where `arrow_dplyr_query()` should be called directly is inside
+# `collapse()` methods; everywhere else, call `as_adq()`.
+as_adq <- function(.data) {
+ # For most dplyr methods,
+ # method.Table == method.RecordBatch == method.Dataset == method.arrow_dplyr_query
+ # This works because the functions all pass .data through as_adq()
+ if (inherits(.data, "arrow_dplyr_query")) {
+ return(.data)
+ }
+ arrow_dplyr_query(.data)
+}
+
+make_field_refs <- function(field_names) {
+ set_names(lapply(field_names, Expression$field_ref), field_names)
+}
+
+#' @export
+print.arrow_dplyr_query <- function(x, ...) {
+ schm <- x$.data$schema
+ types <- map_chr(x$selected_columns, function(expr) {
+ name <- expr$field_name
+ if (nzchar(name)) {
+ # Just a field_ref, so look up in the schema
+ schm$GetFieldByName(name)$type$ToString()
+ } else {
+ # Expression, so get its type and append the expression
+ paste0(
+ expr$type(schm)$ToString(),
+ " (", expr$ToString(), ")"
+ )
+ }
+ })
+ fields <- paste(names(types), types, sep = ": ", collapse = "\n")
+ cat(class(source_data(x))[1], " (query)\n", sep = "")
+ cat(fields, "\n", sep = "")
+ cat("\n")
+ if (length(x$aggregations)) {
+ cat("* Aggregations:\n")
+ aggs <- paste0(names(x$aggregations), ": ", map_chr(x$aggregations, format_aggregation), collapse = "\n")
+ cat(aggs, "\n", sep = "")
+ }
+ if (!isTRUE(x$filtered_rows)) {
+ filter_string <- x$filtered_rows$ToString()
+ cat("* Filter: ", filter_string, "\n", sep = "")
+ }
+ if (length(x$group_by_vars)) {
+ cat("* Grouped by ", paste(x$group_by_vars, collapse = ", "), "\n", sep = "")
+ }
+ if (length(x$arrange_vars)) {
+ arrange_strings <- map_chr(x$arrange_vars, function(x) x$ToString())
+ cat(
+ "* Sorted by ",
+ paste(
+ paste0(
+ arrange_strings,
+ " [", ifelse(x$arrange_desc, "desc", "asc"), "]"
+ ),
+ collapse = ", "
+ ),
+ "\n",
+ sep = ""
+ )
+ }
+ cat("See $.data for the source Arrow object\n")
+ invisible(x)
+}
+
+# These are the names reflecting all select/rename, not what is in Arrow
+#' @export
+names.arrow_dplyr_query <- function(x) names(x$selected_columns)
+
+#' @export
+dim.arrow_dplyr_query <- function(x) {
+ cols <- length(names(x))
+
+ if (is_collapsed(x)) {
+ # Don't evaluate just for nrow
+ rows <- NA_integer_
+ } else if (isTRUE(x$filtered_rows)) {
+ rows <- x$.data$num_rows
+ } else {
+ rows <- Scanner$create(x)$CountRows()
+ }
+ c(rows, cols)
+}
+
+#' @export
+as.data.frame.arrow_dplyr_query <- function(x, row.names = NULL, optional = FALSE, ...) {
+ collect.arrow_dplyr_query(x, as_data_frame = TRUE, ...)
+}
+
+#' @export
+head.arrow_dplyr_query <- function(x, n = 6L, ...) {
+ x$head <- n
+ collapse.arrow_dplyr_query(x)
+}
+
+#' @export
+tail.arrow_dplyr_query <- function(x, n = 6L, ...) {
+ x$tail <- n
+ collapse.arrow_dplyr_query(x)
+}
+
+#' @export
+`[.arrow_dplyr_query` <- function(x, i, j, ..., drop = FALSE) {
+ x <- ensure_group_vars(x)
+ if (nargs() == 2L) {
+ # List-like column extraction (x[i])
+ return(x[, i])
+ }
+ if (!missing(j)) {
+ x <- select.arrow_dplyr_query(x, all_of(j))
+ }
+
+ if (!missing(i)) {
+ out <- take_dataset_rows(x, i)
+ x <- restore_dplyr_features(out, x)
+ }
+ x
+}
+
+ensure_group_vars <- function(x) {
+ if (inherits(x, "arrow_dplyr_query")) {
+ # Before pulling data from Arrow, make sure all group vars are in the projection
+ gv <- set_names(setdiff(dplyr::group_vars(x), names(x)))
+ if (length(gv)) {
+ # Add them back
+ x$selected_columns <- c(
+ x$selected_columns,
+ make_field_refs(gv)
+ )
+ }
+ }
+ x
+}
+
+ensure_arrange_vars <- function(x) {
+ # The arrange() operation is not performed until later, because:
+ # - It must be performed after mutate(), to enable sorting by new columns.
+ # - It should be performed after filter() and select(), for efficiency.
+ # However, we need users to be able to arrange() by columns and expressions
+ # that are *not* returned in the query result. To enable this, we must
+ # *temporarily* include these columns and expressions in the projection. We
+ # use x$temp_columns to store these. Later, after the arrange() operation has
+ # been performed, these are omitted from the result. This differs from the
+ # columns in x$group_by_vars which *are* returned in the result.
+ x$temp_columns <- x$arrange_vars[!names(x$arrange_vars) %in% names(x$selected_columns)]
+ x
+}
+
+# Helper to handle unsupported dplyr features
+# * For Table/RecordBatch, we collect() and then call the dplyr method in R
+# * For Dataset, we just error
+abandon_ship <- function(call, .data, msg) {
+ msg <- trimws(msg)
+ dplyr_fun_name <- sub("^(.*?)\\..*", "\\1", as.character(call[[1]]))
+ if (query_on_dataset(.data)) {
+ stop(msg, "\nCall collect() first to pull data into R.", call. = FALSE)
+ }
+ # else, collect and call dplyr method
+ warning(msg, "; pulling data into R", immediate. = TRUE, call. = FALSE)
+ call$.data <- dplyr::collect(.data)
+ call[[1]] <- get(dplyr_fun_name, envir = asNamespace("dplyr"))
+ eval.parent(call, 2)
+}
+
+query_on_dataset <- function(x) !inherits(source_data(x), "InMemoryDataset")
+
+source_data <- function(x) {
+ if (is_collapsed(x)) {
+ source_data(x$.data)
+ } else {
+ x$.data
+ }
+}
+
+is_collapsed <- function(x) inherits(x$.data, "arrow_dplyr_query")
+
+has_aggregation <- function(x) {
+ # TODO: update with joins (check right side data too)
+ !is.null(x$aggregations) || (is_collapsed(x) && has_aggregation(x$.data))
+}
+
+has_head_tail <- function(x) {
+ !is.null(x$head) || !is.null(x$tail) || (is_collapsed(x) && has_head_tail(x$.data))
+}