diff options
Diffstat (limited to 'src/spdk/lib/env_dpdk/memory.c')
-rw-r--r-- | src/spdk/lib/env_dpdk/memory.c | 1442 |
1 files changed, 1442 insertions, 0 deletions
diff --git a/src/spdk/lib/env_dpdk/memory.c b/src/spdk/lib/env_dpdk/memory.c new file mode 100644 index 000000000..4c2205a46 --- /dev/null +++ b/src/spdk/lib/env_dpdk/memory.c @@ -0,0 +1,1442 @@ +/*- + * BSD LICENSE + * + * Copyright (c) Intel Corporation. + * All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "spdk/stdinc.h" + +#include "env_internal.h" + +#include <rte_config.h> +#include <rte_memory.h> +#include <rte_eal_memconfig.h> + +#include "spdk_internal/assert.h" + +#include "spdk/assert.h" +#include "spdk/likely.h" +#include "spdk/queue.h" +#include "spdk/util.h" +#include "spdk/memory.h" +#include "spdk/env_dpdk.h" + +#ifdef __FreeBSD__ +#define VFIO_ENABLED 0 +#else +#include <linux/version.h> +#if LINUX_VERSION_CODE >= KERNEL_VERSION(3, 6, 0) +#define VFIO_ENABLED 1 +#include <linux/vfio.h> +#include <rte_vfio.h> + +struct spdk_vfio_dma_map { + struct vfio_iommu_type1_dma_map map; + struct vfio_iommu_type1_dma_unmap unmap; + TAILQ_ENTRY(spdk_vfio_dma_map) tailq; +}; + +struct vfio_cfg { + int fd; + bool enabled; + bool noiommu_enabled; + unsigned device_ref; + TAILQ_HEAD(, spdk_vfio_dma_map) maps; + pthread_mutex_t mutex; +}; + +static struct vfio_cfg g_vfio = { + .fd = -1, + .enabled = false, + .noiommu_enabled = false, + .device_ref = 0, + .maps = TAILQ_HEAD_INITIALIZER(g_vfio.maps), + .mutex = PTHREAD_MUTEX_INITIALIZER +}; + +#else +#define VFIO_ENABLED 0 +#endif +#endif + +#if DEBUG +#define DEBUG_PRINT(...) fprintf(stderr, __VA_ARGS__) +#else +#define DEBUG_PRINT(...) +#endif + +#define FN_2MB_TO_4KB(fn) (fn << (SHIFT_2MB - SHIFT_4KB)) +#define FN_4KB_TO_2MB(fn) (fn >> (SHIFT_2MB - SHIFT_4KB)) + +#define MAP_256TB_IDX(vfn_2mb) ((vfn_2mb) >> (SHIFT_1GB - SHIFT_2MB)) +#define MAP_1GB_IDX(vfn_2mb) ((vfn_2mb) & ((1ULL << (SHIFT_1GB - SHIFT_2MB)) - 1)) + +/* Page is registered */ +#define REG_MAP_REGISTERED (1ULL << 62) + +/* A notification region barrier. The 2MB translation entry that's marked + * with this flag must be unregistered separately. This allows contiguous + * regions to be unregistered in the same chunks they were registered. + */ +#define REG_MAP_NOTIFY_START (1ULL << 63) + +/* Translation of a single 2MB page. */ +struct map_2mb { + uint64_t translation_2mb; +}; + +/* Second-level map table indexed by bits [21..29] of the virtual address. + * Each entry contains the address translation or error for entries that haven't + * been retrieved yet. + */ +struct map_1gb { + struct map_2mb map[1ULL << (SHIFT_1GB - SHIFT_2MB)]; +}; + +/* Top-level map table indexed by bits [30..47] of the virtual address. + * Each entry points to a second-level map table or NULL. + */ +struct map_256tb { + struct map_1gb *map[1ULL << (SHIFT_256TB - SHIFT_1GB)]; +}; + +/* Page-granularity memory address translation */ +struct spdk_mem_map { + struct map_256tb map_256tb; + pthread_mutex_t mutex; + uint64_t default_translation; + struct spdk_mem_map_ops ops; + void *cb_ctx; + TAILQ_ENTRY(spdk_mem_map) tailq; +}; + +/* Registrations map. The 64 bit translations are bit fields with the + * following layout (starting with the low bits): + * 0 - 61 : reserved + * 62 - 63 : flags + */ +static struct spdk_mem_map *g_mem_reg_map; +static TAILQ_HEAD(spdk_mem_map_head, spdk_mem_map) g_spdk_mem_maps = + TAILQ_HEAD_INITIALIZER(g_spdk_mem_maps); +static pthread_mutex_t g_spdk_mem_map_mutex = PTHREAD_MUTEX_INITIALIZER; + +static bool g_legacy_mem; + +/* + * Walk the currently registered memory via the main memory registration map + * and call the new map's notify callback for each virtually contiguous region. + */ +static int +mem_map_notify_walk(struct spdk_mem_map *map, enum spdk_mem_map_notify_action action) +{ + size_t idx_256tb; + uint64_t idx_1gb; + uint64_t contig_start = UINT64_MAX; + uint64_t contig_end = UINT64_MAX; + struct map_1gb *map_1gb; + int rc; + + if (!g_mem_reg_map) { + return -EINVAL; + } + + /* Hold the memory registration map mutex so no new registrations can be added while we are looping. */ + pthread_mutex_lock(&g_mem_reg_map->mutex); + + for (idx_256tb = 0; + idx_256tb < sizeof(g_mem_reg_map->map_256tb.map) / sizeof(g_mem_reg_map->map_256tb.map[0]); + idx_256tb++) { + map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; + + if (!map_1gb) { + if (contig_start != UINT64_MAX) { + /* End of of a virtually contiguous range */ + rc = map->ops.notify_cb(map->cb_ctx, map, action, + (void *)contig_start, + contig_end - contig_start + VALUE_2MB); + /* Don't bother handling unregister failures. It can't be any worse */ + if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { + goto err_unregister; + } + } + contig_start = UINT64_MAX; + continue; + } + + for (idx_1gb = 0; idx_1gb < sizeof(map_1gb->map) / sizeof(map_1gb->map[0]); idx_1gb++) { + if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && + (contig_start == UINT64_MAX || + (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { + /* Rebuild the virtual address from the indexes */ + uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); + + if (contig_start == UINT64_MAX) { + contig_start = vaddr; + } + + contig_end = vaddr; + } else { + if (contig_start != UINT64_MAX) { + /* End of of a virtually contiguous range */ + rc = map->ops.notify_cb(map->cb_ctx, map, action, + (void *)contig_start, + contig_end - contig_start + VALUE_2MB); + /* Don't bother handling unregister failures. It can't be any worse */ + if (rc != 0 && action == SPDK_MEM_MAP_NOTIFY_REGISTER) { + goto err_unregister; + } + + /* This page might be a part of a neighbour region, so process + * it again. The idx_1gb will be incremented immediately. + */ + idx_1gb--; + } + contig_start = UINT64_MAX; + } + } + } + + pthread_mutex_unlock(&g_mem_reg_map->mutex); + return 0; + +err_unregister: + /* Unwind to the first empty translation so we don't unregister + * a region that just failed to register. + */ + idx_256tb = MAP_256TB_IDX((contig_start >> SHIFT_2MB) - 1); + idx_1gb = MAP_1GB_IDX((contig_start >> SHIFT_2MB) - 1); + contig_start = UINT64_MAX; + contig_end = UINT64_MAX; + + /* Unregister any memory we managed to register before the failure */ + for (; idx_256tb < SIZE_MAX; idx_256tb--) { + map_1gb = g_mem_reg_map->map_256tb.map[idx_256tb]; + + if (!map_1gb) { + if (contig_end != UINT64_MAX) { + /* End of of a virtually contiguous range */ + map->ops.notify_cb(map->cb_ctx, map, + SPDK_MEM_MAP_NOTIFY_UNREGISTER, + (void *)contig_start, + contig_end - contig_start + VALUE_2MB); + } + contig_end = UINT64_MAX; + continue; + } + + for (; idx_1gb < UINT64_MAX; idx_1gb--) { + if ((map_1gb->map[idx_1gb].translation_2mb & REG_MAP_REGISTERED) && + (contig_end == UINT64_MAX || (map_1gb->map[idx_1gb].translation_2mb & REG_MAP_NOTIFY_START) == 0)) { + /* Rebuild the virtual address from the indexes */ + uint64_t vaddr = (idx_256tb << SHIFT_1GB) | (idx_1gb << SHIFT_2MB); + + if (contig_end == UINT64_MAX) { + contig_end = vaddr; + } + contig_start = vaddr; + } else { + if (contig_end != UINT64_MAX) { + /* End of of a virtually contiguous range */ + map->ops.notify_cb(map->cb_ctx, map, + SPDK_MEM_MAP_NOTIFY_UNREGISTER, + (void *)contig_start, + contig_end - contig_start + VALUE_2MB); + idx_1gb++; + } + contig_end = UINT64_MAX; + } + } + idx_1gb = sizeof(map_1gb->map) / sizeof(map_1gb->map[0]) - 1; + } + + pthread_mutex_unlock(&g_mem_reg_map->mutex); + return rc; +} + +struct spdk_mem_map * +spdk_mem_map_alloc(uint64_t default_translation, const struct spdk_mem_map_ops *ops, void *cb_ctx) +{ + struct spdk_mem_map *map; + int rc; + + map = calloc(1, sizeof(*map)); + if (map == NULL) { + return NULL; + } + + if (pthread_mutex_init(&map->mutex, NULL)) { + free(map); + return NULL; + } + + map->default_translation = default_translation; + map->cb_ctx = cb_ctx; + if (ops) { + map->ops = *ops; + } + + if (ops && ops->notify_cb) { + pthread_mutex_lock(&g_spdk_mem_map_mutex); + rc = mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_REGISTER); + if (rc != 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + DEBUG_PRINT("Initial mem_map notify failed\n"); + pthread_mutex_destroy(&map->mutex); + free(map); + return NULL; + } + TAILQ_INSERT_TAIL(&g_spdk_mem_maps, map, tailq); + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + } + + return map; +} + +void +spdk_mem_map_free(struct spdk_mem_map **pmap) +{ + struct spdk_mem_map *map; + size_t i; + + if (!pmap) { + return; + } + + map = *pmap; + + if (!map) { + return; + } + + if (map->ops.notify_cb) { + pthread_mutex_lock(&g_spdk_mem_map_mutex); + mem_map_notify_walk(map, SPDK_MEM_MAP_NOTIFY_UNREGISTER); + TAILQ_REMOVE(&g_spdk_mem_maps, map, tailq); + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + } + + for (i = 0; i < sizeof(map->map_256tb.map) / sizeof(map->map_256tb.map[0]); i++) { + free(map->map_256tb.map[i]); + } + + pthread_mutex_destroy(&map->mutex); + + free(map); + *pmap = NULL; +} + +int +spdk_mem_register(void *vaddr, size_t len) +{ + struct spdk_mem_map *map; + int rc; + void *seg_vaddr; + size_t seg_len; + uint64_t reg; + + if ((uintptr_t)vaddr & ~MASK_256TB) { + DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); + return -EINVAL; + } + + if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { + DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", + __func__, vaddr, len); + return -EINVAL; + } + + if (len == 0) { + return 0; + } + + pthread_mutex_lock(&g_spdk_mem_map_mutex); + + seg_vaddr = vaddr; + seg_len = len; + while (seg_len > 0) { + reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); + if (reg & REG_MAP_REGISTERED) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return -EBUSY; + } + seg_vaddr += VALUE_2MB; + seg_len -= VALUE_2MB; + } + + seg_vaddr = vaddr; + seg_len = 0; + while (len > 0) { + spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, + seg_len == 0 ? REG_MAP_REGISTERED | REG_MAP_NOTIFY_START : REG_MAP_REGISTERED); + seg_len += VALUE_2MB; + vaddr += VALUE_2MB; + len -= VALUE_2MB; + } + + TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { + rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_REGISTER, seg_vaddr, seg_len); + if (rc != 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return rc; + } + } + + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return 0; +} + +int +spdk_mem_unregister(void *vaddr, size_t len) +{ + struct spdk_mem_map *map; + int rc; + void *seg_vaddr; + size_t seg_len; + uint64_t reg, newreg; + + if ((uintptr_t)vaddr & ~MASK_256TB) { + DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); + return -EINVAL; + } + + if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { + DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", + __func__, vaddr, len); + return -EINVAL; + } + + pthread_mutex_lock(&g_spdk_mem_map_mutex); + + /* The first page must be a start of a region. Also check if it's + * registered to make sure we don't return -ERANGE for non-registered + * regions. + */ + reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); + if ((reg & REG_MAP_REGISTERED) && (reg & REG_MAP_NOTIFY_START) == 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return -ERANGE; + } + + seg_vaddr = vaddr; + seg_len = len; + while (seg_len > 0) { + reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); + if ((reg & REG_MAP_REGISTERED) == 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return -EINVAL; + } + seg_vaddr += VALUE_2MB; + seg_len -= VALUE_2MB; + } + + newreg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); + /* If the next page is registered, it must be a start of a region as well, + * otherwise we'd be unregistering only a part of a region. + */ + if ((newreg & REG_MAP_NOTIFY_START) == 0 && (newreg & REG_MAP_REGISTERED)) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return -ERANGE; + } + seg_vaddr = vaddr; + seg_len = 0; + + while (len > 0) { + reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)vaddr, NULL); + spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, VALUE_2MB, 0); + + if (seg_len > 0 && (reg & REG_MAP_NOTIFY_START)) { + TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { + rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); + if (rc != 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return rc; + } + } + + seg_vaddr = vaddr; + seg_len = VALUE_2MB; + } else { + seg_len += VALUE_2MB; + } + + vaddr += VALUE_2MB; + len -= VALUE_2MB; + } + + if (seg_len > 0) { + TAILQ_FOREACH_REVERSE(map, &g_spdk_mem_maps, spdk_mem_map_head, tailq) { + rc = map->ops.notify_cb(map->cb_ctx, map, SPDK_MEM_MAP_NOTIFY_UNREGISTER, seg_vaddr, seg_len); + if (rc != 0) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return rc; + } + } + } + + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return 0; +} + +int +spdk_mem_reserve(void *vaddr, size_t len) +{ + struct spdk_mem_map *map; + void *seg_vaddr; + size_t seg_len; + uint64_t reg; + + if ((uintptr_t)vaddr & ~MASK_256TB) { + DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); + return -EINVAL; + } + + if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { + DEBUG_PRINT("invalid %s parameters, vaddr=%p len=%ju\n", + __func__, vaddr, len); + return -EINVAL; + } + + if (len == 0) { + return 0; + } + + pthread_mutex_lock(&g_spdk_mem_map_mutex); + + /* Check if any part of this range is already registered */ + seg_vaddr = vaddr; + seg_len = len; + while (seg_len > 0) { + reg = spdk_mem_map_translate(g_mem_reg_map, (uint64_t)seg_vaddr, NULL); + if (reg & REG_MAP_REGISTERED) { + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return -EBUSY; + } + seg_vaddr += VALUE_2MB; + seg_len -= VALUE_2MB; + } + + /* Simply set the translation to the memory map's default. This allocates the space in the + * map but does not provide a valid translation. */ + spdk_mem_map_set_translation(g_mem_reg_map, (uint64_t)vaddr, len, + g_mem_reg_map->default_translation); + + TAILQ_FOREACH(map, &g_spdk_mem_maps, tailq) { + spdk_mem_map_set_translation(map, (uint64_t)vaddr, len, map->default_translation); + } + + pthread_mutex_unlock(&g_spdk_mem_map_mutex); + return 0; +} + +static struct map_1gb * +mem_map_get_map_1gb(struct spdk_mem_map *map, uint64_t vfn_2mb) +{ + struct map_1gb *map_1gb; + uint64_t idx_256tb = MAP_256TB_IDX(vfn_2mb); + size_t i; + + if (spdk_unlikely(idx_256tb >= SPDK_COUNTOF(map->map_256tb.map))) { + return NULL; + } + + map_1gb = map->map_256tb.map[idx_256tb]; + + if (!map_1gb) { + pthread_mutex_lock(&map->mutex); + + /* Recheck to make sure nobody else got the mutex first. */ + map_1gb = map->map_256tb.map[idx_256tb]; + if (!map_1gb) { + map_1gb = malloc(sizeof(struct map_1gb)); + if (map_1gb) { + /* initialize all entries to default translation */ + for (i = 0; i < SPDK_COUNTOF(map_1gb->map); i++) { + map_1gb->map[i].translation_2mb = map->default_translation; + } + map->map_256tb.map[idx_256tb] = map_1gb; + } + } + + pthread_mutex_unlock(&map->mutex); + + if (!map_1gb) { + DEBUG_PRINT("allocation failed\n"); + return NULL; + } + } + + return map_1gb; +} + +int +spdk_mem_map_set_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size, + uint64_t translation) +{ + uint64_t vfn_2mb; + struct map_1gb *map_1gb; + uint64_t idx_1gb; + struct map_2mb *map_2mb; + + if ((uintptr_t)vaddr & ~MASK_256TB) { + DEBUG_PRINT("invalid usermode virtual address %lu\n", vaddr); + return -EINVAL; + } + + /* For now, only 2 MB-aligned registrations are supported */ + if (((uintptr_t)vaddr & MASK_2MB) || (size & MASK_2MB)) { + DEBUG_PRINT("invalid %s parameters, vaddr=%lu len=%ju\n", + __func__, vaddr, size); + return -EINVAL; + } + + vfn_2mb = vaddr >> SHIFT_2MB; + + while (size) { + map_1gb = mem_map_get_map_1gb(map, vfn_2mb); + if (!map_1gb) { + DEBUG_PRINT("could not get %p map\n", (void *)vaddr); + return -ENOMEM; + } + + idx_1gb = MAP_1GB_IDX(vfn_2mb); + map_2mb = &map_1gb->map[idx_1gb]; + map_2mb->translation_2mb = translation; + + size -= VALUE_2MB; + vfn_2mb++; + } + + return 0; +} + +int +spdk_mem_map_clear_translation(struct spdk_mem_map *map, uint64_t vaddr, uint64_t size) +{ + return spdk_mem_map_set_translation(map, vaddr, size, map->default_translation); +} + +inline uint64_t +spdk_mem_map_translate(const struct spdk_mem_map *map, uint64_t vaddr, uint64_t *size) +{ + const struct map_1gb *map_1gb; + const struct map_2mb *map_2mb; + uint64_t idx_256tb; + uint64_t idx_1gb; + uint64_t vfn_2mb; + uint64_t cur_size; + uint64_t prev_translation; + uint64_t orig_translation; + + if (spdk_unlikely(vaddr & ~MASK_256TB)) { + DEBUG_PRINT("invalid usermode virtual address %p\n", (void *)vaddr); + return map->default_translation; + } + + vfn_2mb = vaddr >> SHIFT_2MB; + idx_256tb = MAP_256TB_IDX(vfn_2mb); + idx_1gb = MAP_1GB_IDX(vfn_2mb); + + map_1gb = map->map_256tb.map[idx_256tb]; + if (spdk_unlikely(!map_1gb)) { + return map->default_translation; + } + + cur_size = VALUE_2MB - _2MB_OFFSET(vaddr); + map_2mb = &map_1gb->map[idx_1gb]; + if (size == NULL || map->ops.are_contiguous == NULL || + map_2mb->translation_2mb == map->default_translation) { + if (size != NULL) { + *size = spdk_min(*size, cur_size); + } + return map_2mb->translation_2mb; + } + + orig_translation = map_2mb->translation_2mb; + prev_translation = orig_translation; + while (cur_size < *size) { + vfn_2mb++; + idx_256tb = MAP_256TB_IDX(vfn_2mb); + idx_1gb = MAP_1GB_IDX(vfn_2mb); + + map_1gb = map->map_256tb.map[idx_256tb]; + if (spdk_unlikely(!map_1gb)) { + break; + } + + map_2mb = &map_1gb->map[idx_1gb]; + if (!map->ops.are_contiguous(prev_translation, map_2mb->translation_2mb)) { + break; + } + + cur_size += VALUE_2MB; + prev_translation = map_2mb->translation_2mb; + } + + *size = spdk_min(*size, cur_size); + return orig_translation; +} + +static void +memory_hotplug_cb(enum rte_mem_event event_type, + const void *addr, size_t len, void *arg) +{ + if (event_type == RTE_MEM_EVENT_ALLOC) { + spdk_mem_register((void *)addr, len); + +#if RTE_VERSION >= RTE_VERSION_NUM(19, 02, 0, 0) + if (!spdk_env_dpdk_external_init()) { + return; + } +#endif + + /* Prior to DPDK 19.02, we have to worry about DPDK + * freeing memory in different units than it was allocated. + * That doesn't work with things like RDMA MRs. So for + * those versions of DPDK, mark each segment so that DPDK + * won't later free it. That ensures we don't have to deal + * with that scenario. + * + * DPDK 19.02 added the --match-allocations RTE flag to + * avoid this condition. + * + * Note: if the user initialized DPDK separately, we can't + * be sure that --match-allocations was specified, so need + * to still mark the segments so they aren't freed. + */ + while (len > 0) { + struct rte_memseg *seg; + + seg = rte_mem_virt2memseg(addr, NULL); + assert(seg != NULL); + seg->flags |= RTE_MEMSEG_FLAG_DO_NOT_FREE; + addr = (void *)((uintptr_t)addr + seg->hugepage_sz); + len -= seg->hugepage_sz; + } + } else if (event_type == RTE_MEM_EVENT_FREE) { + spdk_mem_unregister((void *)addr, len); + } +} + +static int +memory_iter_cb(const struct rte_memseg_list *msl, + const struct rte_memseg *ms, size_t len, void *arg) +{ + return spdk_mem_register(ms->addr, len); +} + +int +mem_map_init(bool legacy_mem) +{ + g_legacy_mem = legacy_mem; + + g_mem_reg_map = spdk_mem_map_alloc(0, NULL, NULL); + if (g_mem_reg_map == NULL) { + DEBUG_PRINT("memory registration map allocation failed\n"); + return -ENOMEM; + } + + /* + * Walk all DPDK memory segments and register them + * with the master memory map + */ + rte_mem_event_callback_register("spdk", memory_hotplug_cb, NULL); + rte_memseg_contig_walk(memory_iter_cb, NULL); + return 0; +} + +bool +spdk_iommu_is_enabled(void) +{ +#if VFIO_ENABLED + return g_vfio.enabled && !g_vfio.noiommu_enabled; +#else + return false; +#endif +} + +struct spdk_vtophys_pci_device { + struct rte_pci_device *pci_device; + TAILQ_ENTRY(spdk_vtophys_pci_device) tailq; +}; + +static pthread_mutex_t g_vtophys_pci_devices_mutex = PTHREAD_MUTEX_INITIALIZER; +static TAILQ_HEAD(, spdk_vtophys_pci_device) g_vtophys_pci_devices = + TAILQ_HEAD_INITIALIZER(g_vtophys_pci_devices); + +static struct spdk_mem_map *g_vtophys_map; +static struct spdk_mem_map *g_phys_ref_map; + +#if VFIO_ENABLED +static int +vtophys_iommu_map_dma(uint64_t vaddr, uint64_t iova, uint64_t size) +{ + struct spdk_vfio_dma_map *dma_map; + uint64_t refcount; + int ret; + + refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); + assert(refcount < UINT64_MAX); + if (refcount > 0) { + spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); + return 0; + } + + dma_map = calloc(1, sizeof(*dma_map)); + if (dma_map == NULL) { + return -ENOMEM; + } + + dma_map->map.argsz = sizeof(dma_map->map); + dma_map->map.flags = VFIO_DMA_MAP_FLAG_READ | VFIO_DMA_MAP_FLAG_WRITE; + dma_map->map.vaddr = vaddr; + dma_map->map.iova = iova; + dma_map->map.size = size; + + dma_map->unmap.argsz = sizeof(dma_map->unmap); + dma_map->unmap.flags = 0; + dma_map->unmap.iova = iova; + dma_map->unmap.size = size; + + pthread_mutex_lock(&g_vfio.mutex); + if (g_vfio.device_ref == 0) { + /* VFIO requires at least one device (IOMMU group) to be added to + * a VFIO container before it is possible to perform any IOMMU + * operations on that container. This memory will be mapped once + * the first device (IOMMU group) is hotplugged. + * + * Since the vfio container is managed internally by DPDK, it is + * also possible that some device is already in that container, but + * it's not managed by SPDK - e.g. an NIC attached internally + * inside DPDK. We could map the memory straight away in such + * scenario, but there's no need to do it. DPDK devices clearly + * don't need our mappings and hence we defer the mapping + * unconditionally until the first SPDK-managed device is + * hotplugged. + */ + goto out_insert; + } + + ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); + if (ret) { + DEBUG_PRINT("Cannot set up DMA mapping, error %d\n", errno); + pthread_mutex_unlock(&g_vfio.mutex); + free(dma_map); + return ret; + } + +out_insert: + TAILQ_INSERT_TAIL(&g_vfio.maps, dma_map, tailq); + pthread_mutex_unlock(&g_vfio.mutex); + spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount + 1); + return 0; +} + +static int +vtophys_iommu_unmap_dma(uint64_t iova, uint64_t size) +{ + struct spdk_vfio_dma_map *dma_map; + uint64_t refcount; + int ret; + + pthread_mutex_lock(&g_vfio.mutex); + TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { + if (dma_map->map.iova == iova) { + break; + } + } + + if (dma_map == NULL) { + DEBUG_PRINT("Cannot clear DMA mapping for IOVA %"PRIx64" - it's not mapped\n", iova); + pthread_mutex_unlock(&g_vfio.mutex); + return -ENXIO; + } + + refcount = spdk_mem_map_translate(g_phys_ref_map, iova, NULL); + assert(refcount < UINT64_MAX); + if (refcount > 0) { + spdk_mem_map_set_translation(g_phys_ref_map, iova, size, refcount - 1); + } + + /* We still have outstanding references, don't clear it. */ + if (refcount > 1) { + pthread_mutex_unlock(&g_vfio.mutex); + return 0; + } + + /** don't support partial or multiple-page unmap for now */ + assert(dma_map->map.size == size); + + if (g_vfio.device_ref == 0) { + /* Memory is not mapped anymore, just remove it's references */ + goto out_remove; + } + + + ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); + if (ret) { + DEBUG_PRINT("Cannot clear DMA mapping, error %d\n", errno); + pthread_mutex_unlock(&g_vfio.mutex); + return ret; + } + +out_remove: + TAILQ_REMOVE(&g_vfio.maps, dma_map, tailq); + pthread_mutex_unlock(&g_vfio.mutex); + free(dma_map); + return 0; +} +#endif + +static uint64_t +vtophys_get_paddr_memseg(uint64_t vaddr) +{ + uintptr_t paddr; + struct rte_memseg *seg; + + seg = rte_mem_virt2memseg((void *)(uintptr_t)vaddr, NULL); + if (seg != NULL) { + paddr = seg->phys_addr; + if (paddr == RTE_BAD_IOVA) { + return SPDK_VTOPHYS_ERROR; + } + paddr += (vaddr - (uintptr_t)seg->addr); + return paddr; + } + + return SPDK_VTOPHYS_ERROR; +} + +/* Try to get the paddr from /proc/self/pagemap */ +static uint64_t +vtophys_get_paddr_pagemap(uint64_t vaddr) +{ + uintptr_t paddr; + + /* Silence static analyzers */ + assert(vaddr != 0); + paddr = rte_mem_virt2iova((void *)vaddr); + if (paddr == RTE_BAD_IOVA) { + /* + * The vaddr may be valid but doesn't have a backing page + * assigned yet. Touch the page to ensure a backing page + * gets assigned, then try to translate again. + */ + rte_atomic64_read((rte_atomic64_t *)vaddr); + paddr = rte_mem_virt2iova((void *)vaddr); + } + if (paddr == RTE_BAD_IOVA) { + /* Unable to get to the physical address. */ + return SPDK_VTOPHYS_ERROR; + } + + return paddr; +} + +/* Try to get the paddr from pci devices */ +static uint64_t +vtophys_get_paddr_pci(uint64_t vaddr) +{ + struct spdk_vtophys_pci_device *vtophys_dev; + uintptr_t paddr; + struct rte_pci_device *dev; + struct rte_mem_resource *res; + unsigned r; + + pthread_mutex_lock(&g_vtophys_pci_devices_mutex); + TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { + dev = vtophys_dev->pci_device; + + for (r = 0; r < PCI_MAX_RESOURCE; r++) { + res = &dev->mem_resource[r]; + if (res->phys_addr && vaddr >= (uint64_t)res->addr && + vaddr < (uint64_t)res->addr + res->len) { + paddr = res->phys_addr + (vaddr - (uint64_t)res->addr); + DEBUG_PRINT("%s: %p -> %p\n", __func__, (void *)vaddr, + (void *)paddr); + pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); + return paddr; + } + } + } + pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); + + return SPDK_VTOPHYS_ERROR; +} + +static int +vtophys_notify(void *cb_ctx, struct spdk_mem_map *map, + enum spdk_mem_map_notify_action action, + void *vaddr, size_t len) +{ + int rc = 0, pci_phys = 0; + uint64_t paddr; + + if ((uintptr_t)vaddr & ~MASK_256TB) { + DEBUG_PRINT("invalid usermode virtual address %p\n", vaddr); + return -EINVAL; + } + + if (((uintptr_t)vaddr & MASK_2MB) || (len & MASK_2MB)) { + DEBUG_PRINT("invalid parameters, vaddr=%p len=%ju\n", + vaddr, len); + return -EINVAL; + } + + /* Get the physical address from the DPDK memsegs */ + paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); + + switch (action) { + case SPDK_MEM_MAP_NOTIFY_REGISTER: + if (paddr == SPDK_VTOPHYS_ERROR) { + /* This is not an address that DPDK is managing. */ +#if VFIO_ENABLED + enum rte_iova_mode iova_mode; + +#if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) + iova_mode = rte_eal_iova_mode(); +#else + iova_mode = rte_eal_get_configuration()->iova_mode; +#endif + + if (spdk_iommu_is_enabled() && iova_mode == RTE_IOVA_VA) { + /* We'll use the virtual address as the iova to match DPDK. */ + paddr = (uint64_t)vaddr; + rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, len); + if (rc) { + return -EFAULT; + } + while (len > 0) { + rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); + if (rc != 0) { + return rc; + } + vaddr += VALUE_2MB; + paddr += VALUE_2MB; + len -= VALUE_2MB; + } + } else +#endif + { + /* Get the physical address from /proc/self/pagemap. */ + paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); + if (paddr == SPDK_VTOPHYS_ERROR) { + /* Get the physical address from PCI devices */ + paddr = vtophys_get_paddr_pci((uint64_t)vaddr); + if (paddr == SPDK_VTOPHYS_ERROR) { + DEBUG_PRINT("could not get phys addr for %p\n", vaddr); + return -EFAULT; + } + /* The beginning of this address range points to a PCI resource, + * so the rest must point to a PCI resource as well. + */ + pci_phys = 1; + } + + /* Get paddr for each 2MB chunk in this address range */ + while (len > 0) { + /* Get the physical address from /proc/self/pagemap. */ + if (pci_phys) { + paddr = vtophys_get_paddr_pci((uint64_t)vaddr); + } else { + paddr = vtophys_get_paddr_pagemap((uint64_t)vaddr); + } + + if (paddr == SPDK_VTOPHYS_ERROR) { + DEBUG_PRINT("could not get phys addr for %p\n", vaddr); + return -EFAULT; + } + + /* Since PCI paddr can break the 2MiB physical alignment skip this check for that. */ + if (!pci_phys && (paddr & MASK_2MB)) { + DEBUG_PRINT("invalid paddr 0x%" PRIx64 " - must be 2MB aligned\n", paddr); + return -EINVAL; + } +#if VFIO_ENABLED + /* If the IOMMU is on, but DPDK is using iova-mode=pa, we want to register this memory + * with the IOMMU using the physical address to match. */ + if (spdk_iommu_is_enabled()) { + rc = vtophys_iommu_map_dma((uint64_t)vaddr, paddr, VALUE_2MB); + if (rc) { + DEBUG_PRINT("Unable to assign vaddr %p to paddr 0x%" PRIx64 "\n", vaddr, paddr); + return -EFAULT; + } + } +#endif + + rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); + if (rc != 0) { + return rc; + } + + vaddr += VALUE_2MB; + len -= VALUE_2MB; + } + } + } else { + /* This is an address managed by DPDK. Just setup the translations. */ + while (len > 0) { + paddr = vtophys_get_paddr_memseg((uint64_t)vaddr); + if (paddr == SPDK_VTOPHYS_ERROR) { + DEBUG_PRINT("could not get phys addr for %p\n", vaddr); + return -EFAULT; + } + + rc = spdk_mem_map_set_translation(map, (uint64_t)vaddr, VALUE_2MB, paddr); + if (rc != 0) { + return rc; + } + + vaddr += VALUE_2MB; + len -= VALUE_2MB; + } + } + + break; + case SPDK_MEM_MAP_NOTIFY_UNREGISTER: +#if VFIO_ENABLED + if (paddr == SPDK_VTOPHYS_ERROR) { + /* + * This is not an address that DPDK is managing. If vfio is enabled, + * we need to unmap the range from the IOMMU + */ + if (spdk_iommu_is_enabled()) { + uint64_t buffer_len = len; + uint8_t *va = vaddr; + enum rte_iova_mode iova_mode; + +#if RTE_VERSION >= RTE_VERSION_NUM(19, 11, 0, 0) + iova_mode = rte_eal_iova_mode(); +#else + iova_mode = rte_eal_get_configuration()->iova_mode; +#endif + /* + * In virtual address mode, the region is contiguous and can be done in + * one unmap. + */ + if (iova_mode == RTE_IOVA_VA) { + paddr = spdk_mem_map_translate(map, (uint64_t)va, &buffer_len); + if (buffer_len != len || paddr != (uintptr_t)va) { + DEBUG_PRINT("Unmapping %p with length %lu failed because " + "translation had address 0x%" PRIx64 " and length %lu\n", + va, len, paddr, buffer_len); + return -EINVAL; + } + rc = vtophys_iommu_unmap_dma(paddr, len); + if (rc) { + DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); + return -EFAULT; + } + } else if (iova_mode == RTE_IOVA_PA) { + /* Get paddr for each 2MB chunk in this address range */ + while (buffer_len > 0) { + paddr = spdk_mem_map_translate(map, (uint64_t)va, NULL); + + if (paddr == SPDK_VTOPHYS_ERROR || buffer_len < VALUE_2MB) { + DEBUG_PRINT("could not get phys addr for %p\n", va); + return -EFAULT; + } + + rc = vtophys_iommu_unmap_dma(paddr, VALUE_2MB); + if (rc) { + DEBUG_PRINT("Failed to iommu unmap paddr 0x%" PRIx64 "\n", paddr); + return -EFAULT; + } + + va += VALUE_2MB; + buffer_len -= VALUE_2MB; + } + } + } + } +#endif + while (len > 0) { + rc = spdk_mem_map_clear_translation(map, (uint64_t)vaddr, VALUE_2MB); + if (rc != 0) { + return rc; + } + + vaddr += VALUE_2MB; + len -= VALUE_2MB; + } + + break; + default: + SPDK_UNREACHABLE(); + } + + return rc; +} + +static int +vtophys_check_contiguous_entries(uint64_t paddr1, uint64_t paddr2) +{ + /* This function is always called with paddrs for two subsequent + * 2MB chunks in virtual address space, so those chunks will be only + * physically contiguous if the physical addresses are 2MB apart + * from each other as well. + */ + return (paddr2 - paddr1 == VALUE_2MB); +} + +#if VFIO_ENABLED + +static bool +vfio_enabled(void) +{ + return rte_vfio_is_enabled("vfio_pci"); +} + +/* Check if IOMMU is enabled on the system */ +static bool +has_iommu_groups(void) +{ + struct dirent *d; + int count = 0; + DIR *dir = opendir("/sys/kernel/iommu_groups"); + + if (dir == NULL) { + return false; + } + + while (count < 3 && (d = readdir(dir)) != NULL) { + count++; + } + + closedir(dir); + /* there will always be ./ and ../ entries */ + return count > 2; +} + +static bool +vfio_noiommu_enabled(void) +{ + return rte_vfio_noiommu_is_enabled(); +} + +static void +vtophys_iommu_init(void) +{ + char proc_fd_path[PATH_MAX + 1]; + char link_path[PATH_MAX + 1]; + const char vfio_path[] = "/dev/vfio/vfio"; + DIR *dir; + struct dirent *d; + + if (!vfio_enabled()) { + return; + } + + if (vfio_noiommu_enabled()) { + g_vfio.noiommu_enabled = true; + } else if (!has_iommu_groups()) { + return; + } + + dir = opendir("/proc/self/fd"); + if (!dir) { + DEBUG_PRINT("Failed to open /proc/self/fd (%d)\n", errno); + return; + } + + while ((d = readdir(dir)) != NULL) { + if (d->d_type != DT_LNK) { + continue; + } + + snprintf(proc_fd_path, sizeof(proc_fd_path), "/proc/self/fd/%s", d->d_name); + if (readlink(proc_fd_path, link_path, sizeof(link_path)) != (sizeof(vfio_path) - 1)) { + continue; + } + + if (memcmp(link_path, vfio_path, sizeof(vfio_path) - 1) == 0) { + sscanf(d->d_name, "%d", &g_vfio.fd); + break; + } + } + + closedir(dir); + + if (g_vfio.fd < 0) { + DEBUG_PRINT("Failed to discover DPDK VFIO container fd.\n"); + return; + } + + g_vfio.enabled = true; + + return; +} +#endif + +void +vtophys_pci_device_added(struct rte_pci_device *pci_device) +{ + struct spdk_vtophys_pci_device *vtophys_dev; + + pthread_mutex_lock(&g_vtophys_pci_devices_mutex); + + vtophys_dev = calloc(1, sizeof(*vtophys_dev)); + if (vtophys_dev) { + vtophys_dev->pci_device = pci_device; + TAILQ_INSERT_TAIL(&g_vtophys_pci_devices, vtophys_dev, tailq); + } else { + DEBUG_PRINT("Memory allocation error\n"); + } + pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); + +#if VFIO_ENABLED + struct spdk_vfio_dma_map *dma_map; + int ret; + + if (!g_vfio.enabled) { + return; + } + + pthread_mutex_lock(&g_vfio.mutex); + g_vfio.device_ref++; + if (g_vfio.device_ref > 1) { + pthread_mutex_unlock(&g_vfio.mutex); + return; + } + + /* This is the first SPDK device using DPDK vfio. This means that the first + * IOMMU group might have been just been added to the DPDK vfio container. + * From this point it is certain that the memory can be mapped now. + */ + TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { + ret = ioctl(g_vfio.fd, VFIO_IOMMU_MAP_DMA, &dma_map->map); + if (ret) { + DEBUG_PRINT("Cannot update DMA mapping, error %d\n", errno); + break; + } + } + pthread_mutex_unlock(&g_vfio.mutex); +#endif +} + +void +vtophys_pci_device_removed(struct rte_pci_device *pci_device) +{ + struct spdk_vtophys_pci_device *vtophys_dev; + + pthread_mutex_lock(&g_vtophys_pci_devices_mutex); + TAILQ_FOREACH(vtophys_dev, &g_vtophys_pci_devices, tailq) { + if (vtophys_dev->pci_device == pci_device) { + TAILQ_REMOVE(&g_vtophys_pci_devices, vtophys_dev, tailq); + free(vtophys_dev); + break; + } + } + pthread_mutex_unlock(&g_vtophys_pci_devices_mutex); + +#if VFIO_ENABLED + struct spdk_vfio_dma_map *dma_map; + int ret; + + if (!g_vfio.enabled) { + return; + } + + pthread_mutex_lock(&g_vfio.mutex); + assert(g_vfio.device_ref > 0); + g_vfio.device_ref--; + if (g_vfio.device_ref > 0) { + pthread_mutex_unlock(&g_vfio.mutex); + return; + } + + /* This is the last SPDK device using DPDK vfio. If DPDK doesn't have + * any additional devices using it's vfio container, all the mappings + * will be automatically removed by the Linux vfio driver. We unmap + * the memory manually to be able to easily re-map it later regardless + * of other, external factors. + */ + TAILQ_FOREACH(dma_map, &g_vfio.maps, tailq) { + ret = ioctl(g_vfio.fd, VFIO_IOMMU_UNMAP_DMA, &dma_map->unmap); + if (ret) { + DEBUG_PRINT("Cannot unmap DMA memory, error %d\n", errno); + break; + } + } + pthread_mutex_unlock(&g_vfio.mutex); +#endif +} + +int +vtophys_init(void) +{ + const struct spdk_mem_map_ops vtophys_map_ops = { + .notify_cb = vtophys_notify, + .are_contiguous = vtophys_check_contiguous_entries, + }; + + const struct spdk_mem_map_ops phys_ref_map_ops = { + .notify_cb = NULL, + .are_contiguous = NULL, + }; + +#if VFIO_ENABLED + vtophys_iommu_init(); +#endif + + g_phys_ref_map = spdk_mem_map_alloc(0, &phys_ref_map_ops, NULL); + if (g_phys_ref_map == NULL) { + DEBUG_PRINT("phys_ref map allocation failed.\n"); + return -ENOMEM; + } + + g_vtophys_map = spdk_mem_map_alloc(SPDK_VTOPHYS_ERROR, &vtophys_map_ops, NULL); + if (g_vtophys_map == NULL) { + DEBUG_PRINT("vtophys map allocation failed\n"); + return -ENOMEM; + } + return 0; +} + +uint64_t +spdk_vtophys(void *buf, uint64_t *size) +{ + uint64_t vaddr, paddr_2mb; + + vaddr = (uint64_t)buf; + paddr_2mb = spdk_mem_map_translate(g_vtophys_map, vaddr, size); + + /* + * SPDK_VTOPHYS_ERROR has all bits set, so if the lookup returned SPDK_VTOPHYS_ERROR, + * we will still bitwise-or it with the buf offset below, but the result will still be + * SPDK_VTOPHYS_ERROR. However now that we do + rather than | (due to PCI vtophys being + * unaligned) we must now check the return value before addition. + */ + SPDK_STATIC_ASSERT(SPDK_VTOPHYS_ERROR == UINT64_C(-1), "SPDK_VTOPHYS_ERROR should be all 1s"); + if (paddr_2mb == SPDK_VTOPHYS_ERROR) { + return SPDK_VTOPHYS_ERROR; + } else { + return paddr_2mb + (vaddr & MASK_2MB); + } +} |