diff options
Diffstat (limited to 'src/spdk/lib/nvme/nvme_ctrlr.c')
-rw-r--r-- | src/spdk/lib/nvme/nvme_ctrlr.c | 3639 |
1 files changed, 3639 insertions, 0 deletions
diff --git a/src/spdk/lib/nvme/nvme_ctrlr.c b/src/spdk/lib/nvme/nvme_ctrlr.c new file mode 100644 index 000000000..ced02e9bb --- /dev/null +++ b/src/spdk/lib/nvme/nvme_ctrlr.c @@ -0,0 +1,3639 @@ +/*- + * BSD LICENSE + * + * Copyright (c) Intel Corporation. All rights reserved. + * Copyright (c) 2019, 2020 Mellanox Technologies LTD. All rights reserved. + * + * Redistribution and use in source and binary forms, with or without + * modification, are permitted provided that the following conditions + * are met: + * + * * Redistributions of source code must retain the above copyright + * notice, this list of conditions and the following disclaimer. + * * Redistributions in binary form must reproduce the above copyright + * notice, this list of conditions and the following disclaimer in + * the documentation and/or other materials provided with the + * distribution. + * * Neither the name of Intel Corporation nor the names of its + * contributors may be used to endorse or promote products derived + * from this software without specific prior written permission. + * + * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS + * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT + * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR + * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT + * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, + * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT + * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, + * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY + * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT + * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE + * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + */ + +#include "spdk/stdinc.h" + +#include "nvme_internal.h" +#include "nvme_io_msg.h" + +#include "spdk/env.h" +#include "spdk/string.h" + +struct nvme_active_ns_ctx; + +static void nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr); +static int nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, + struct nvme_async_event_request *aer); +static void nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx); +static int nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns); +static int nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns); + +static int +nvme_ctrlr_get_cc(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cc_register *cc) +{ + return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), + &cc->raw); +} + +static int +nvme_ctrlr_get_csts(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_csts_register *csts) +{ + return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, csts.raw), + &csts->raw); +} + +int +nvme_ctrlr_get_cap(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cap_register *cap) +{ + return nvme_transport_ctrlr_get_reg_8(ctrlr, offsetof(struct spdk_nvme_registers, cap.raw), + &cap->raw); +} + +int +nvme_ctrlr_get_vs(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_vs_register *vs) +{ + return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, vs.raw), + &vs->raw); +} + +static int +nvme_ctrlr_set_cc(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cc_register *cc) +{ + return nvme_transport_ctrlr_set_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cc.raw), + cc->raw); +} + +int +nvme_ctrlr_get_cmbsz(struct spdk_nvme_ctrlr *ctrlr, union spdk_nvme_cmbsz_register *cmbsz) +{ + return nvme_transport_ctrlr_get_reg_4(ctrlr, offsetof(struct spdk_nvme_registers, cmbsz.raw), + &cmbsz->raw); +} + +/* When the field in spdk_nvme_ctrlr_opts are changed and you change this function, please + * also update the nvme_ctrl_opts_init function in nvme_ctrlr.c + */ +void +spdk_nvme_ctrlr_get_default_ctrlr_opts(struct spdk_nvme_ctrlr_opts *opts, size_t opts_size) +{ + char host_id_str[SPDK_UUID_STRING_LEN]; + + assert(opts); + + opts->opts_size = opts_size; + +#define FIELD_OK(field) \ + offsetof(struct spdk_nvme_ctrlr_opts, field) + sizeof(opts->field) <= opts_size + + if (FIELD_OK(num_io_queues)) { + opts->num_io_queues = DEFAULT_MAX_IO_QUEUES; + } + + if (FIELD_OK(use_cmb_sqs)) { + opts->use_cmb_sqs = true; + } + + if (FIELD_OK(no_shn_notification)) { + opts->no_shn_notification = false; + } + + if (FIELD_OK(arb_mechanism)) { + opts->arb_mechanism = SPDK_NVME_CC_AMS_RR; + } + + if (FIELD_OK(arbitration_burst)) { + opts->arbitration_burst = 0; + } + + if (FIELD_OK(low_priority_weight)) { + opts->low_priority_weight = 0; + } + + if (FIELD_OK(medium_priority_weight)) { + opts->medium_priority_weight = 0; + } + + if (FIELD_OK(high_priority_weight)) { + opts->high_priority_weight = 0; + } + + if (FIELD_OK(keep_alive_timeout_ms)) { + opts->keep_alive_timeout_ms = MIN_KEEP_ALIVE_TIMEOUT_IN_MS; + } + + if (FIELD_OK(transport_retry_count)) { + opts->transport_retry_count = SPDK_NVME_DEFAULT_RETRY_COUNT; + } + + if (FIELD_OK(io_queue_size)) { + opts->io_queue_size = DEFAULT_IO_QUEUE_SIZE; + } + + if (nvme_driver_init() == 0) { + if (FIELD_OK(hostnqn)) { + spdk_uuid_fmt_lower(host_id_str, sizeof(host_id_str), + &g_spdk_nvme_driver->default_extended_host_id); + snprintf(opts->hostnqn, sizeof(opts->hostnqn), "2014-08.org.nvmexpress:uuid:%s", host_id_str); + } + + if (FIELD_OK(extended_host_id)) { + memcpy(opts->extended_host_id, &g_spdk_nvme_driver->default_extended_host_id, + sizeof(opts->extended_host_id)); + } + + } + + if (FIELD_OK(io_queue_requests)) { + opts->io_queue_requests = DEFAULT_IO_QUEUE_REQUESTS; + } + + if (FIELD_OK(src_addr)) { + memset(opts->src_addr, 0, sizeof(opts->src_addr)); + } + + if (FIELD_OK(src_svcid)) { + memset(opts->src_svcid, 0, sizeof(opts->src_svcid)); + } + + if (FIELD_OK(host_id)) { + memset(opts->host_id, 0, sizeof(opts->host_id)); + } + + if (FIELD_OK(command_set)) { + opts->command_set = SPDK_NVME_CC_CSS_NVM; + } + + if (FIELD_OK(admin_timeout_ms)) { + opts->admin_timeout_ms = NVME_MAX_ADMIN_TIMEOUT_IN_SECS * 1000; + } + + if (FIELD_OK(header_digest)) { + opts->header_digest = false; + } + + if (FIELD_OK(data_digest)) { + opts->data_digest = false; + } + + if (FIELD_OK(disable_error_logging)) { + opts->disable_error_logging = false; + } + + if (FIELD_OK(transport_ack_timeout)) { + opts->transport_ack_timeout = SPDK_NVME_DEFAULT_TRANSPORT_ACK_TIMEOUT; + } + + if (FIELD_OK(admin_queue_size)) { + opts->admin_queue_size = DEFAULT_ADMIN_QUEUE_SIZE; + } +#undef FIELD_OK +} + +/** + * This function will be called when the process allocates the IO qpair. + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_ctrlr_proc_add_io_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr_process *active_proc; + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + TAILQ_INSERT_TAIL(&active_proc->allocated_io_qpairs, qpair, per_process_tailq); + qpair->active_proc = active_proc; + } +} + +/** + * This function will be called when the process frees the IO qpair. + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_ctrlr_proc_remove_io_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr_process *active_proc; + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + struct spdk_nvme_qpair *active_qpair, *tmp_qpair; + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (!active_proc) { + return; + } + + TAILQ_FOREACH_SAFE(active_qpair, &active_proc->allocated_io_qpairs, + per_process_tailq, tmp_qpair) { + if (active_qpair == qpair) { + TAILQ_REMOVE(&active_proc->allocated_io_qpairs, + active_qpair, per_process_tailq); + + break; + } + } +} + +void +spdk_nvme_ctrlr_get_default_io_qpair_opts(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_io_qpair_opts *opts, + size_t opts_size) +{ + assert(ctrlr); + + assert(opts); + + memset(opts, 0, opts_size); + +#define FIELD_OK(field) \ + offsetof(struct spdk_nvme_io_qpair_opts, field) + sizeof(opts->field) <= opts_size + + if (FIELD_OK(qprio)) { + opts->qprio = SPDK_NVME_QPRIO_URGENT; + } + + if (FIELD_OK(io_queue_size)) { + opts->io_queue_size = ctrlr->opts.io_queue_size; + } + + if (FIELD_OK(io_queue_requests)) { + opts->io_queue_requests = ctrlr->opts.io_queue_requests; + } + + if (FIELD_OK(delay_cmd_submit)) { + opts->delay_cmd_submit = false; + } + + if (FIELD_OK(sq.vaddr)) { + opts->sq.vaddr = NULL; + } + + if (FIELD_OK(sq.paddr)) { + opts->sq.paddr = 0; + } + + if (FIELD_OK(sq.buffer_size)) { + opts->sq.buffer_size = 0; + } + + if (FIELD_OK(cq.vaddr)) { + opts->cq.vaddr = NULL; + } + + if (FIELD_OK(cq.paddr)) { + opts->cq.paddr = 0; + } + + if (FIELD_OK(cq.buffer_size)) { + opts->cq.buffer_size = 0; + } + + if (FIELD_OK(create_only)) { + opts->create_only = false; + } + +#undef FIELD_OK +} + +static struct spdk_nvme_qpair * +nvme_ctrlr_create_io_qpair(struct spdk_nvme_ctrlr *ctrlr, + const struct spdk_nvme_io_qpair_opts *opts) +{ + uint32_t qid; + struct spdk_nvme_qpair *qpair; + union spdk_nvme_cc_register cc; + + if (!ctrlr) { + return NULL; + } + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + if (nvme_ctrlr_get_cc(ctrlr, &cc)) { + SPDK_ERRLOG("get_cc failed\n"); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return NULL; + } + + if (opts->qprio & ~SPDK_NVME_CREATE_IO_SQ_QPRIO_MASK) { + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return NULL; + } + + /* + * Only value SPDK_NVME_QPRIO_URGENT(0) is valid for the + * default round robin arbitration method. + */ + if ((cc.bits.ams == SPDK_NVME_CC_AMS_RR) && (opts->qprio != SPDK_NVME_QPRIO_URGENT)) { + SPDK_ERRLOG("invalid queue priority for default round robin arbitration method\n"); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return NULL; + } + + /* + * Get the first available I/O queue ID. + */ + qid = spdk_bit_array_find_first_set(ctrlr->free_io_qids, 1); + if (qid > ctrlr->opts.num_io_queues) { + SPDK_ERRLOG("No free I/O queue IDs\n"); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return NULL; + } + + qpair = nvme_transport_ctrlr_create_io_qpair(ctrlr, qid, opts); + if (qpair == NULL) { + SPDK_ERRLOG("nvme_transport_ctrlr_create_io_qpair() failed\n"); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return NULL; + } + + spdk_bit_array_clear(ctrlr->free_io_qids, qid); + TAILQ_INSERT_TAIL(&ctrlr->active_io_qpairs, qpair, tailq); + + nvme_ctrlr_proc_add_io_qpair(qpair); + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + return qpair; +} + +int +spdk_nvme_ctrlr_connect_io_qpair(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_qpair *qpair) +{ + int rc; + + if (nvme_qpair_get_state(qpair) != NVME_QPAIR_DISCONNECTED) { + return -EISCONN; + } + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + if (ctrlr->quirks & NVME_QUIRK_DELAY_AFTER_QUEUE_ALLOC) { + spdk_delay_us(100); + } + + return rc; +} + +void +spdk_nvme_ctrlr_disconnect_io_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +struct spdk_nvme_qpair * +spdk_nvme_ctrlr_alloc_io_qpair(struct spdk_nvme_ctrlr *ctrlr, + const struct spdk_nvme_io_qpair_opts *user_opts, + size_t opts_size) +{ + + struct spdk_nvme_qpair *qpair; + struct spdk_nvme_io_qpair_opts opts; + int rc; + + /* + * Get the default options, then overwrite them with the user-provided options + * up to opts_size. + * + * This allows for extensions of the opts structure without breaking + * ABI compatibility. + */ + spdk_nvme_ctrlr_get_default_io_qpair_opts(ctrlr, &opts, sizeof(opts)); + if (user_opts) { + memcpy(&opts, user_opts, spdk_min(sizeof(opts), opts_size)); + + /* If user passes buffers, make sure they're big enough for the requested queue size */ + if (opts.sq.vaddr) { + if (opts.sq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))) { + SPDK_ERRLOG("sq buffer size %lx is too small for sq size %lx\n", + opts.sq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cmd))); + return NULL; + } + } + if (opts.cq.vaddr) { + if (opts.cq.buffer_size < (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))) { + SPDK_ERRLOG("cq buffer size %lx is too small for cq size %lx\n", + opts.cq.buffer_size, (opts.io_queue_size * sizeof(struct spdk_nvme_cpl))); + return NULL; + } + } + } + + qpair = nvme_ctrlr_create_io_qpair(ctrlr, &opts); + + if (qpair == NULL || opts.create_only == true) { + return qpair; + } + + rc = spdk_nvme_ctrlr_connect_io_qpair(ctrlr, qpair); + if (rc != 0) { + SPDK_ERRLOG("nvme_transport_ctrlr_connect_io_qpair() failed\n"); + nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair); + return NULL; + } + + return qpair; +} + +int +spdk_nvme_ctrlr_reconnect_io_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr; + enum nvme_qpair_state qpair_state; + int rc; + + assert(qpair != NULL); + assert(nvme_qpair_is_admin_queue(qpair) == false); + assert(qpair->ctrlr != NULL); + + ctrlr = qpair->ctrlr; + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + qpair_state = nvme_qpair_get_state(qpair); + + if (ctrlr->is_removed) { + rc = -ENODEV; + goto out; + } + + if (ctrlr->is_resetting || qpair_state == NVME_QPAIR_DISCONNECTING) { + rc = -EAGAIN; + goto out; + } + + if (ctrlr->is_failed || qpair_state == NVME_QPAIR_DESTROYING) { + rc = -ENXIO; + goto out; + } + + if (qpair_state != NVME_QPAIR_DISCONNECTED) { + rc = 0; + goto out; + } + + rc = nvme_transport_ctrlr_connect_qpair(ctrlr, qpair); + if (rc) { + rc = -EAGAIN; + goto out; + } + +out: + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return rc; +} + +spdk_nvme_qp_failure_reason +spdk_nvme_ctrlr_get_admin_qp_failure_reason(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->adminq->transport_failure_reason; +} + +/* + * This internal function will attempt to take the controller + * lock before calling disconnect on a controller qpair. + * Functions already holding the controller lock should + * call nvme_transport_ctrlr_disconnect_qpair directly. + */ +void +nvme_ctrlr_disconnect_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr = qpair->ctrlr; + + assert(ctrlr != NULL); + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + nvme_transport_ctrlr_disconnect_qpair(ctrlr, qpair); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +int +spdk_nvme_ctrlr_free_io_qpair(struct spdk_nvme_qpair *qpair) +{ + struct spdk_nvme_ctrlr *ctrlr; + + if (qpair == NULL) { + return 0; + } + + ctrlr = qpair->ctrlr; + + if (qpair->in_completion_context) { + /* + * There are many cases where it is convenient to delete an io qpair in the context + * of that qpair's completion routine. To handle this properly, set a flag here + * so that the completion routine will perform an actual delete after the context + * unwinds. + */ + qpair->delete_after_completion_context = 1; + return 0; + } + + if (qpair->poll_group && qpair->poll_group->in_completion_context) { + /* Same as above, but in a poll group. */ + qpair->poll_group->num_qpairs_to_delete++; + qpair->delete_after_completion_context = 1; + return 0; + } + + if (qpair->poll_group) { + spdk_nvme_poll_group_remove(qpair->poll_group->group, qpair); + } + + /* Do not retry. */ + nvme_qpair_set_state(qpair, NVME_QPAIR_DESTROYING); + + /* In the multi-process case, a process may call this function on a foreign + * I/O qpair (i.e. one that this process did not create) when that qpairs process + * exits unexpectedly. In that case, we must not try to abort any reqs associated + * with that qpair, since the callbacks will also be foreign to this process. + */ + if (qpair->active_proc == nvme_ctrlr_get_current_process(ctrlr)) { + nvme_qpair_abort_reqs(qpair, 1); + } + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + nvme_ctrlr_proc_remove_io_qpair(qpair); + + TAILQ_REMOVE(&ctrlr->active_io_qpairs, qpair, tailq); + spdk_bit_array_set(ctrlr->free_io_qids, qpair->id); + + if (nvme_transport_ctrlr_delete_io_qpair(ctrlr, qpair)) { + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return -1; + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return 0; +} + +static void +nvme_ctrlr_construct_intel_support_log_page_list(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_intel_log_page_directory *log_page_directory) +{ + if (log_page_directory == NULL) { + return; + } + + if (ctrlr->cdata.vid != SPDK_PCI_VID_INTEL) { + return; + } + + ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY] = true; + + if (log_page_directory->read_latency_log_len || + (ctrlr->quirks & NVME_INTEL_QUIRK_READ_LATENCY)) { + ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_READ_CMD_LATENCY] = true; + } + if (log_page_directory->write_latency_log_len || + (ctrlr->quirks & NVME_INTEL_QUIRK_WRITE_LATENCY)) { + ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_WRITE_CMD_LATENCY] = true; + } + if (log_page_directory->temperature_statistics_log_len) { + ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_TEMPERATURE] = true; + } + if (log_page_directory->smart_log_len) { + ctrlr->log_page_supported[SPDK_NVME_INTEL_LOG_SMART] = true; + } + if (log_page_directory->marketing_description_log_len) { + ctrlr->log_page_supported[SPDK_NVME_INTEL_MARKETING_DESCRIPTION] = true; + } +} + +static int nvme_ctrlr_set_intel_support_log_pages(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc = 0; + struct nvme_completion_poll_status *status; + struct spdk_nvme_intel_log_page_directory *log_page_directory; + + log_page_directory = spdk_zmalloc(sizeof(struct spdk_nvme_intel_log_page_directory), + 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_DMA); + if (log_page_directory == NULL) { + SPDK_ERRLOG("could not allocate log_page_directory\n"); + return -ENXIO; + } + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + spdk_free(log_page_directory); + return -ENOMEM; + } + + rc = spdk_nvme_ctrlr_cmd_get_log_page(ctrlr, SPDK_NVME_INTEL_LOG_PAGE_DIRECTORY, + SPDK_NVME_GLOBAL_NS_TAG, log_page_directory, + sizeof(struct spdk_nvme_intel_log_page_directory), + 0, nvme_completion_poll_cb, status); + if (rc != 0) { + spdk_free(log_page_directory); + free(status); + return rc; + } + + if (nvme_wait_for_completion_timeout(ctrlr->adminq, status, + ctrlr->opts.admin_timeout_ms / 1000)) { + spdk_free(log_page_directory); + SPDK_WARNLOG("Intel log pages not supported on Intel drive!\n"); + if (!status->timed_out) { + free(status); + } + return 0; + } + + nvme_ctrlr_construct_intel_support_log_page_list(ctrlr, log_page_directory); + spdk_free(log_page_directory); + free(status); + return 0; +} + +static int +nvme_ctrlr_set_supported_log_pages(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc = 0; + + memset(ctrlr->log_page_supported, 0, sizeof(ctrlr->log_page_supported)); + /* Mandatory pages */ + ctrlr->log_page_supported[SPDK_NVME_LOG_ERROR] = true; + ctrlr->log_page_supported[SPDK_NVME_LOG_HEALTH_INFORMATION] = true; + ctrlr->log_page_supported[SPDK_NVME_LOG_FIRMWARE_SLOT] = true; + if (ctrlr->cdata.lpa.celp) { + ctrlr->log_page_supported[SPDK_NVME_LOG_COMMAND_EFFECTS_LOG] = true; + } + if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL && !(ctrlr->quirks & NVME_INTEL_QUIRK_NO_LOG_PAGES)) { + rc = nvme_ctrlr_set_intel_support_log_pages(ctrlr); + } + + return rc; +} + +static void +nvme_ctrlr_set_intel_supported_features(struct spdk_nvme_ctrlr *ctrlr) +{ + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_MAX_LBA] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_NATIVE_MAX_LBA] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_POWER_GOVERNOR_SETTING] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_SMBUS_ADDRESS] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LED_PATTERN] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_RESET_TIMED_WORKLOAD_COUNTERS] = true; + ctrlr->feature_supported[SPDK_NVME_INTEL_FEAT_LATENCY_TRACKING] = true; +} + +static void +nvme_ctrlr_set_arbitration_feature(struct spdk_nvme_ctrlr *ctrlr) +{ + uint32_t cdw11; + struct nvme_completion_poll_status *status; + + if (ctrlr->opts.arbitration_burst == 0) { + return; + } + + if (ctrlr->opts.arbitration_burst > 7) { + SPDK_WARNLOG("Valid arbitration burst values is from 0-7\n"); + return; + } + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return; + } + + cdw11 = ctrlr->opts.arbitration_burst; + + if (spdk_nvme_ctrlr_get_flags(ctrlr) & SPDK_NVME_CTRLR_WRR_SUPPORTED) { + cdw11 |= (uint32_t)ctrlr->opts.low_priority_weight << 8; + cdw11 |= (uint32_t)ctrlr->opts.medium_priority_weight << 16; + cdw11 |= (uint32_t)ctrlr->opts.high_priority_weight << 24; + } + + if (spdk_nvme_ctrlr_cmd_set_feature(ctrlr, SPDK_NVME_FEAT_ARBITRATION, + cdw11, 0, NULL, 0, + nvme_completion_poll_cb, status) < 0) { + SPDK_ERRLOG("Set arbitration feature failed\n"); + free(status); + return; + } + + if (nvme_wait_for_completion_timeout(ctrlr->adminq, status, + ctrlr->opts.admin_timeout_ms / 1000)) { + SPDK_ERRLOG("Timeout to set arbitration feature\n"); + } + + if (!status->timed_out) { + free(status); + } +} + +static void +nvme_ctrlr_set_supported_features(struct spdk_nvme_ctrlr *ctrlr) +{ + memset(ctrlr->feature_supported, 0, sizeof(ctrlr->feature_supported)); + /* Mandatory features */ + ctrlr->feature_supported[SPDK_NVME_FEAT_ARBITRATION] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_POWER_MANAGEMENT] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_TEMPERATURE_THRESHOLD] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_ERROR_RECOVERY] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_NUMBER_OF_QUEUES] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_COALESCING] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_INTERRUPT_VECTOR_CONFIGURATION] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_WRITE_ATOMICITY] = true; + ctrlr->feature_supported[SPDK_NVME_FEAT_ASYNC_EVENT_CONFIGURATION] = true; + /* Optional features */ + if (ctrlr->cdata.vwc.present) { + ctrlr->feature_supported[SPDK_NVME_FEAT_VOLATILE_WRITE_CACHE] = true; + } + if (ctrlr->cdata.apsta.supported) { + ctrlr->feature_supported[SPDK_NVME_FEAT_AUTONOMOUS_POWER_STATE_TRANSITION] = true; + } + if (ctrlr->cdata.hmpre) { + ctrlr->feature_supported[SPDK_NVME_FEAT_HOST_MEM_BUFFER] = true; + } + if (ctrlr->cdata.vid == SPDK_PCI_VID_INTEL) { + nvme_ctrlr_set_intel_supported_features(ctrlr); + } + + nvme_ctrlr_set_arbitration_feature(ctrlr); +} + +bool +spdk_nvme_ctrlr_is_failed(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->is_failed; +} + +void +nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr, bool hot_remove) +{ + /* + * Set the flag here and leave the work failure of qpairs to + * spdk_nvme_qpair_process_completions(). + */ + if (hot_remove) { + ctrlr->is_removed = true; + } + ctrlr->is_failed = true; + nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq); + SPDK_ERRLOG("ctrlr %s in failed state.\n", ctrlr->trid.traddr); +} + +/** + * This public API function will try to take the controller lock. + * Any private functions being called from a thread already holding + * the ctrlr lock should call nvme_ctrlr_fail directly. + */ +void +spdk_nvme_ctrlr_fail(struct spdk_nvme_ctrlr *ctrlr) +{ + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + nvme_ctrlr_fail(ctrlr, false); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +static void +nvme_ctrlr_shutdown(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_cc_register cc; + union spdk_nvme_csts_register csts; + uint32_t ms_waited = 0; + uint32_t shutdown_timeout_ms; + + if (ctrlr->is_removed) { + return; + } + + if (nvme_ctrlr_get_cc(ctrlr, &cc)) { + SPDK_ERRLOG("ctrlr %s get_cc() failed\n", ctrlr->trid.traddr); + return; + } + + cc.bits.shn = SPDK_NVME_SHN_NORMAL; + + if (nvme_ctrlr_set_cc(ctrlr, &cc)) { + SPDK_ERRLOG("ctrlr %s set_cc() failed\n", ctrlr->trid.traddr); + return; + } + + /* + * The NVMe specification defines RTD3E to be the time between + * setting SHN = 1 until the controller will set SHST = 10b. + * If the device doesn't report RTD3 entry latency, or if it + * reports RTD3 entry latency less than 10 seconds, pick + * 10 seconds as a reasonable amount of time to + * wait before proceeding. + */ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "RTD3E = %" PRIu32 " us\n", ctrlr->cdata.rtd3e); + shutdown_timeout_ms = (ctrlr->cdata.rtd3e + 999) / 1000; + shutdown_timeout_ms = spdk_max(shutdown_timeout_ms, 10000); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "shutdown timeout = %" PRIu32 " ms\n", shutdown_timeout_ms); + + do { + if (nvme_ctrlr_get_csts(ctrlr, &csts)) { + SPDK_ERRLOG("ctrlr %s get_csts() failed\n", ctrlr->trid.traddr); + return; + } + + if (csts.bits.shst == SPDK_NVME_SHST_COMPLETE) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "ctrlr %s shutdown complete in %u milliseconds\n", + ctrlr->trid.traddr, ms_waited); + return; + } + + nvme_delay(1000); + ms_waited++; + } while (ms_waited < shutdown_timeout_ms); + + SPDK_ERRLOG("ctrlr %s did not shutdown within %u milliseconds\n", + ctrlr->trid.traddr, shutdown_timeout_ms); + if (ctrlr->quirks & NVME_QUIRK_SHST_COMPLETE) { + SPDK_ERRLOG("likely due to shutdown handling in the VMWare emulated NVMe SSD\n"); + } +} + +static int +nvme_ctrlr_enable(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_cc_register cc; + int rc; + + rc = nvme_transport_ctrlr_enable(ctrlr); + if (rc != 0) { + SPDK_ERRLOG("transport ctrlr_enable failed\n"); + return rc; + } + + if (nvme_ctrlr_get_cc(ctrlr, &cc)) { + SPDK_ERRLOG("get_cc() failed\n"); + return -EIO; + } + + if (cc.bits.en != 0) { + SPDK_ERRLOG("called with CC.EN = 1\n"); + return -EINVAL; + } + + cc.bits.en = 1; + cc.bits.css = 0; + cc.bits.shn = 0; + cc.bits.iosqes = 6; /* SQ entry size == 64 == 2^6 */ + cc.bits.iocqes = 4; /* CQ entry size == 16 == 2^4 */ + + /* Page size is 2 ^ (12 + mps). */ + cc.bits.mps = spdk_u32log2(ctrlr->page_size) - 12; + + if (ctrlr->cap.bits.css == 0) { + SPDK_INFOLOG(SPDK_LOG_NVME, + "Drive reports no command sets supported. Assuming NVM is supported.\n"); + ctrlr->cap.bits.css = SPDK_NVME_CAP_CSS_NVM; + } + + if (!(ctrlr->cap.bits.css & (1u << ctrlr->opts.command_set))) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Requested I/O command set %u but supported mask is 0x%x\n", + ctrlr->opts.command_set, ctrlr->cap.bits.css); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Falling back to NVM. Assuming NVM is supported.\n"); + ctrlr->opts.command_set = SPDK_NVME_CC_CSS_NVM; + } + + cc.bits.css = ctrlr->opts.command_set; + + switch (ctrlr->opts.arb_mechanism) { + case SPDK_NVME_CC_AMS_RR: + break; + case SPDK_NVME_CC_AMS_WRR: + if (SPDK_NVME_CAP_AMS_WRR & ctrlr->cap.bits.ams) { + break; + } + return -EINVAL; + case SPDK_NVME_CC_AMS_VS: + if (SPDK_NVME_CAP_AMS_VS & ctrlr->cap.bits.ams) { + break; + } + return -EINVAL; + default: + return -EINVAL; + } + + cc.bits.ams = ctrlr->opts.arb_mechanism; + + if (nvme_ctrlr_set_cc(ctrlr, &cc)) { + SPDK_ERRLOG("set_cc() failed\n"); + return -EIO; + } + + return 0; +} + +static int +nvme_ctrlr_disable(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_cc_register cc; + + if (nvme_ctrlr_get_cc(ctrlr, &cc)) { + SPDK_ERRLOG("get_cc() failed\n"); + return -EIO; + } + + if (cc.bits.en == 0) { + return 0; + } + + cc.bits.en = 0; + + if (nvme_ctrlr_set_cc(ctrlr, &cc)) { + SPDK_ERRLOG("set_cc() failed\n"); + return -EIO; + } + + return 0; +} + +#ifdef DEBUG +static const char * +nvme_ctrlr_state_string(enum nvme_ctrlr_state state) +{ + switch (state) { + case NVME_CTRLR_STATE_INIT_DELAY: + return "delay init"; + case NVME_CTRLR_STATE_INIT: + return "init"; + case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: + return "disable and wait for CSTS.RDY = 1"; + case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: + return "disable and wait for CSTS.RDY = 0"; + case NVME_CTRLR_STATE_ENABLE: + return "enable controller by writing CC.EN = 1"; + case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: + return "wait for CSTS.RDY = 1"; + case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE: + return "reset admin queue"; + case NVME_CTRLR_STATE_IDENTIFY: + return "identify controller"; + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY: + return "wait for identify controller"; + case NVME_CTRLR_STATE_SET_NUM_QUEUES: + return "set number of queues"; + case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES: + return "wait for set number of queues"; + case NVME_CTRLR_STATE_CONSTRUCT_NS: + return "construct namespaces"; + case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS: + return "identify active ns"; + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS: + return "wait for identify active ns"; + case NVME_CTRLR_STATE_IDENTIFY_NS: + return "identify ns"; + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS: + return "wait for identify ns"; + case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS: + return "identify namespace id descriptors"; + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS: + return "wait for identify namespace id descriptors"; + case NVME_CTRLR_STATE_CONFIGURE_AER: + return "configure AER"; + case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER: + return "wait for configure aer"; + case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES: + return "set supported log pages"; + case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES: + return "set supported features"; + case NVME_CTRLR_STATE_SET_DB_BUF_CFG: + return "set doorbell buffer config"; + case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG: + return "wait for doorbell buffer config"; + case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT: + return "set keep alive timeout"; + case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT: + return "wait for set keep alive timeout"; + case NVME_CTRLR_STATE_SET_HOST_ID: + return "set host ID"; + case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID: + return "wait for set host ID"; + case NVME_CTRLR_STATE_READY: + return "ready"; + case NVME_CTRLR_STATE_ERROR: + return "error"; + } + return "unknown"; +}; +#endif /* DEBUG */ + +static void +nvme_ctrlr_set_state(struct spdk_nvme_ctrlr *ctrlr, enum nvme_ctrlr_state state, + uint64_t timeout_in_ms) +{ + uint64_t ticks_per_ms, timeout_in_ticks, now_ticks; + + ctrlr->state = state; + if (timeout_in_ms == NVME_TIMEOUT_INFINITE) { + goto inf; + } + + ticks_per_ms = spdk_get_ticks_hz() / 1000; + if (timeout_in_ms > UINT64_MAX / ticks_per_ms) { + SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n"); + goto inf; + } + + now_ticks = spdk_get_ticks(); + timeout_in_ticks = timeout_in_ms * ticks_per_ms; + if (timeout_in_ticks > UINT64_MAX - now_ticks) { + SPDK_ERRLOG("Specified timeout would cause integer overflow. Defaulting to no timeout.\n"); + goto inf; + } + + ctrlr->state_timeout_tsc = timeout_in_ticks + now_ticks; + SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (timeout %" PRIu64 " ms)\n", + nvme_ctrlr_state_string(ctrlr->state), timeout_in_ms); + return; +inf: + SPDK_DEBUGLOG(SPDK_LOG_NVME, "setting state to %s (no timeout)\n", + nvme_ctrlr_state_string(ctrlr->state)); + ctrlr->state_timeout_tsc = NVME_TIMEOUT_INFINITE; +} + +static void +nvme_ctrlr_free_doorbell_buffer(struct spdk_nvme_ctrlr *ctrlr) +{ + if (ctrlr->shadow_doorbell) { + spdk_free(ctrlr->shadow_doorbell); + ctrlr->shadow_doorbell = NULL; + } + + if (ctrlr->eventidx) { + spdk_free(ctrlr->eventidx); + ctrlr->eventidx = NULL; + } +} + +static void +nvme_ctrlr_set_doorbell_buffer_config_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + SPDK_WARNLOG("Doorbell buffer config failed\n"); + } else { + SPDK_INFOLOG(SPDK_LOG_NVME, "NVMe controller: %s doorbell buffer config enabled\n", + ctrlr->trid.traddr); + } + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, + ctrlr->opts.admin_timeout_ms); +} + +static int +nvme_ctrlr_set_doorbell_buffer_config(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc = 0; + uint64_t prp1, prp2, len; + + if (!ctrlr->cdata.oacs.doorbell_buffer_config) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + /* only 1 page size for doorbell buffer */ + ctrlr->shadow_doorbell = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size, + NULL, SPDK_ENV_LCORE_ID_ANY, + SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE); + if (ctrlr->shadow_doorbell == NULL) { + rc = -ENOMEM; + goto error; + } + + len = ctrlr->page_size; + prp1 = spdk_vtophys(ctrlr->shadow_doorbell, &len); + if (prp1 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) { + rc = -EFAULT; + goto error; + } + + ctrlr->eventidx = spdk_zmalloc(ctrlr->page_size, ctrlr->page_size, + NULL, SPDK_ENV_LCORE_ID_ANY, + SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE); + if (ctrlr->eventidx == NULL) { + rc = -ENOMEM; + goto error; + } + + len = ctrlr->page_size; + prp2 = spdk_vtophys(ctrlr->eventidx, &len); + if (prp2 == SPDK_VTOPHYS_ERROR || len != ctrlr->page_size) { + rc = -EFAULT; + goto error; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG, + ctrlr->opts.admin_timeout_ms); + + rc = nvme_ctrlr_cmd_doorbell_buffer_config(ctrlr, prp1, prp2, + nvme_ctrlr_set_doorbell_buffer_config_done, ctrlr); + if (rc != 0) { + goto error; + } + + return 0; + +error: + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + nvme_ctrlr_free_doorbell_buffer(ctrlr); + return rc; +} + +static void +nvme_ctrlr_abort_queued_aborts(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_request *req, *tmp; + struct spdk_nvme_cpl cpl = {}; + + cpl.status.sc = SPDK_NVME_SC_ABORTED_SQ_DELETION; + cpl.status.sct = SPDK_NVME_SCT_GENERIC; + + STAILQ_FOREACH_SAFE(req, &ctrlr->queued_aborts, stailq, tmp) { + STAILQ_REMOVE_HEAD(&ctrlr->queued_aborts, stailq); + + nvme_complete_request(req->cb_fn, req->cb_arg, req->qpair, req, &cpl); + nvme_free_request(req); + } +} + +int +spdk_nvme_ctrlr_reset(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc = 0; + struct spdk_nvme_qpair *qpair; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + if (ctrlr->is_resetting || ctrlr->is_removed) { + /* + * Controller is already resetting or has been removed. Return + * immediately since there is no need to kick off another + * reset in these cases. + */ + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return ctrlr->is_resetting ? 0 : -ENXIO; + } + + ctrlr->is_resetting = true; + ctrlr->is_failed = false; + + SPDK_NOTICELOG("resetting controller\n"); + + /* Abort all of the queued abort requests */ + nvme_ctrlr_abort_queued_aborts(ctrlr); + + nvme_transport_admin_qpair_abort_aers(ctrlr->adminq); + + /* Disable all queues before disabling the controller hardware. */ + TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { + qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; + } + + ctrlr->adminq->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; + nvme_transport_ctrlr_disconnect_qpair(ctrlr, ctrlr->adminq); + if (nvme_transport_ctrlr_connect_qpair(ctrlr, ctrlr->adminq) != 0) { + SPDK_ERRLOG("Controller reinitialization failed.\n"); + rc = -1; + goto out; + } + + /* Doorbell buffer config is invalid during reset */ + nvme_ctrlr_free_doorbell_buffer(ctrlr); + + /* Set the state back to INIT to cause a full hardware reset. */ + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); + + nvme_qpair_set_state(ctrlr->adminq, NVME_QPAIR_ENABLED); + while (ctrlr->state != NVME_CTRLR_STATE_READY) { + if (nvme_ctrlr_process_init(ctrlr) != 0) { + SPDK_ERRLOG("controller reinitialization failed\n"); + rc = -1; + break; + } + } + + /* + * For PCIe controllers, the memory locations of the tranpsort qpair + * don't change when the controller is reset. They simply need to be + * re-enabled with admin commands to the controller. For fabric + * controllers we need to disconnect and reconnect the qpair on its + * own thread outside of the context of the reset. + */ + if (rc == 0 && ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { + /* Reinitialize qpairs */ + TAILQ_FOREACH(qpair, &ctrlr->active_io_qpairs, tailq) { + if (nvme_transport_ctrlr_connect_qpair(ctrlr, qpair) != 0) { + qpair->transport_failure_reason = SPDK_NVME_QPAIR_FAILURE_LOCAL; + rc = -1; + continue; + } + } + } + +out: + if (rc) { + nvme_ctrlr_fail(ctrlr, false); + } + ctrlr->is_resetting = false; + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + if (!ctrlr->cdata.oaes.ns_attribute_notices) { + /* + * If controller doesn't support ns_attribute_notices and + * namespace attributes change (e.g. number of namespaces) + * we need to update system handling device reset. + */ + nvme_io_msg_ctrlr_update(ctrlr); + } + + return rc; +} + +int +spdk_nvme_ctrlr_set_trid(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_transport_id *trid) +{ + int rc = 0; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + if (ctrlr->is_failed == false) { + rc = -EPERM; + goto out; + } + + if (trid->trtype != ctrlr->trid.trtype) { + rc = -EINVAL; + goto out; + } + + if (strncmp(trid->subnqn, ctrlr->trid.subnqn, SPDK_NVMF_NQN_MAX_LEN)) { + rc = -EINVAL; + goto out; + } + + ctrlr->trid = *trid; + +out: + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return rc; +} + +static void +nvme_ctrlr_identify_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + SPDK_ERRLOG("nvme_identify_controller failed!\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + + /* + * Use MDTS to ensure our default max_xfer_size doesn't exceed what the + * controller supports. + */ + ctrlr->max_xfer_size = nvme_transport_ctrlr_get_max_xfer_size(ctrlr); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport max_xfer_size %u\n", ctrlr->max_xfer_size); + if (ctrlr->cdata.mdts > 0) { + ctrlr->max_xfer_size = spdk_min(ctrlr->max_xfer_size, + ctrlr->min_page_size * (1 << (ctrlr->cdata.mdts))); + SPDK_DEBUGLOG(SPDK_LOG_NVME, "MDTS max_xfer_size %u\n", ctrlr->max_xfer_size); + } + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CNTLID 0x%04" PRIx16 "\n", ctrlr->cdata.cntlid); + if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { + ctrlr->cntlid = ctrlr->cdata.cntlid; + } else { + /* + * Fabrics controllers should already have CNTLID from the Connect command. + * + * If CNTLID from Connect doesn't match CNTLID in the Identify Controller data, + * trust the one from Connect. + */ + if (ctrlr->cntlid != ctrlr->cdata.cntlid) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, + "Identify CNTLID 0x%04" PRIx16 " != Connect CNTLID 0x%04" PRIx16 "\n", + ctrlr->cdata.cntlid, ctrlr->cntlid); + } + } + + if (ctrlr->cdata.sgls.supported) { + assert(ctrlr->cdata.sgls.supported != 0x3); + ctrlr->flags |= SPDK_NVME_CTRLR_SGL_SUPPORTED; + if (ctrlr->cdata.sgls.supported == 0x2) { + ctrlr->flags |= SPDK_NVME_CTRLR_SGL_REQUIRES_DWORD_ALIGNMENT; + } + /* + * Use MSDBD to ensure our max_sges doesn't exceed what the + * controller supports. + */ + ctrlr->max_sges = nvme_transport_ctrlr_get_max_sges(ctrlr); + if (ctrlr->cdata.nvmf_specific.msdbd != 0) { + ctrlr->max_sges = spdk_min(ctrlr->cdata.nvmf_specific.msdbd, ctrlr->max_sges); + } else { + /* A value 0 indicates no limit. */ + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "transport max_sges %u\n", ctrlr->max_sges); + } + + if (ctrlr->cdata.oacs.security && !(ctrlr->quirks & NVME_QUIRK_OACS_SECURITY)) { + ctrlr->flags |= SPDK_NVME_CTRLR_SECURITY_SEND_RECV_SUPPORTED; + } + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "fuses compare and write: %d\n", ctrlr->cdata.fuses.compare_and_write); + if (ctrlr->cdata.fuses.compare_and_write) { + ctrlr->flags |= SPDK_NVME_CTRLR_COMPARE_AND_WRITE_SUPPORTED; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_NUM_QUEUES, + ctrlr->opts.admin_timeout_ms); +} + +static int +nvme_ctrlr_identify(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc; + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY, + ctrlr->opts.admin_timeout_ms); + + rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_CTRLR, 0, 0, + &ctrlr->cdata, sizeof(ctrlr->cdata), + nvme_ctrlr_identify_done, ctrlr); + if (rc != 0) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return rc; + } + + return 0; +} + +enum nvme_active_ns_state { + NVME_ACTIVE_NS_STATE_IDLE, + NVME_ACTIVE_NS_STATE_PROCESSING, + NVME_ACTIVE_NS_STATE_DONE, + NVME_ACTIVE_NS_STATE_ERROR +}; + +typedef void (*nvme_active_ns_ctx_deleter)(struct nvme_active_ns_ctx *); + +struct nvme_active_ns_ctx { + struct spdk_nvme_ctrlr *ctrlr; + uint32_t page; + uint32_t num_pages; + uint32_t next_nsid; + uint32_t *new_ns_list; + nvme_active_ns_ctx_deleter deleter; + + enum nvme_active_ns_state state; +}; + +static struct nvme_active_ns_ctx * +nvme_active_ns_ctx_create(struct spdk_nvme_ctrlr *ctrlr, nvme_active_ns_ctx_deleter deleter) +{ + struct nvme_active_ns_ctx *ctx; + uint32_t num_pages = 0; + uint32_t *new_ns_list = NULL; + + ctx = calloc(1, sizeof(*ctx)); + if (!ctx) { + SPDK_ERRLOG("Failed to allocate nvme_active_ns_ctx!\n"); + return NULL; + } + + if (ctrlr->num_ns) { + /* The allocated size must be a multiple of sizeof(struct spdk_nvme_ns_list) */ + num_pages = (ctrlr->num_ns * sizeof(new_ns_list[0]) - 1) / sizeof(struct spdk_nvme_ns_list) + 1; + new_ns_list = spdk_zmalloc(num_pages * sizeof(struct spdk_nvme_ns_list), ctrlr->page_size, + NULL, SPDK_ENV_LCORE_ID_ANY, SPDK_MALLOC_DMA | SPDK_MALLOC_SHARE); + if (!new_ns_list) { + SPDK_ERRLOG("Failed to allocate active_ns_list!\n"); + free(ctx); + return NULL; + } + } + + ctx->num_pages = num_pages; + ctx->new_ns_list = new_ns_list; + ctx->ctrlr = ctrlr; + ctx->deleter = deleter; + + return ctx; +} + +static void +nvme_active_ns_ctx_destroy(struct nvme_active_ns_ctx *ctx) +{ + spdk_free(ctx->new_ns_list); + free(ctx); +} + +static void +nvme_ctrlr_identify_active_ns_swap(struct spdk_nvme_ctrlr *ctrlr, uint32_t **new_ns_list) +{ + spdk_free(ctrlr->active_ns_list); + ctrlr->active_ns_list = *new_ns_list; + *new_ns_list = NULL; +} + +static void +nvme_ctrlr_identify_active_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct nvme_active_ns_ctx *ctx = arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + ctx->state = NVME_ACTIVE_NS_STATE_ERROR; + goto out; + } + + ctx->next_nsid = ctx->new_ns_list[1024 * ctx->page + 1023]; + if (ctx->next_nsid == 0 || ++ctx->page == ctx->num_pages) { + ctx->state = NVME_ACTIVE_NS_STATE_DONE; + goto out; + } + + nvme_ctrlr_identify_active_ns_async(ctx); + return; + +out: + if (ctx->deleter) { + ctx->deleter(ctx); + } +} + +static void +nvme_ctrlr_identify_active_ns_async(struct nvme_active_ns_ctx *ctx) +{ + struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; + uint32_t i; + int rc; + + if (ctrlr->num_ns == 0) { + ctx->state = NVME_ACTIVE_NS_STATE_DONE; + goto out; + } + + /* + * If controller doesn't support active ns list CNS 0x02 dummy up + * an active ns list, i.e. all namespaces report as active + */ + if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 1, 0) || ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS) { + for (i = 0; i < ctrlr->num_ns; i++) { + ctx->new_ns_list[i] = i + 1; + } + + ctx->state = NVME_ACTIVE_NS_STATE_DONE; + goto out; + } + + ctx->state = NVME_ACTIVE_NS_STATE_PROCESSING; + rc = nvme_ctrlr_cmd_identify(ctrlr, SPDK_NVME_IDENTIFY_ACTIVE_NS_LIST, 0, ctx->next_nsid, + &ctx->new_ns_list[1024 * ctx->page], sizeof(struct spdk_nvme_ns_list), + nvme_ctrlr_identify_active_ns_async_done, ctx); + if (rc != 0) { + ctx->state = NVME_ACTIVE_NS_STATE_ERROR; + goto out; + } + + return; + +out: + if (ctx->deleter) { + ctx->deleter(ctx); + } +} + +static void +_nvme_active_ns_ctx_deleter(struct nvme_active_ns_ctx *ctx) +{ + struct spdk_nvme_ctrlr *ctrlr = ctx->ctrlr; + + if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) { + nvme_ctrlr_destruct_namespaces(ctrlr); + nvme_active_ns_ctx_destroy(ctx); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + + assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE); + nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list); + nvme_active_ns_ctx_destroy(ctx); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_NS, ctrlr->opts.admin_timeout_ms); +} + +static void +_nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_active_ns_ctx *ctx; + + ctx = nvme_active_ns_ctx_create(ctrlr, _nvme_active_ns_ctx_deleter); + if (!ctx) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS, + ctrlr->opts.admin_timeout_ms); + nvme_ctrlr_identify_active_ns_async(ctx); +} + +int +nvme_ctrlr_identify_active_ns(struct spdk_nvme_ctrlr *ctrlr) +{ + struct nvme_active_ns_ctx *ctx; + int rc; + + ctx = nvme_active_ns_ctx_create(ctrlr, NULL); + if (!ctx) { + return -ENOMEM; + } + + nvme_ctrlr_identify_active_ns_async(ctx); + while (ctx->state == NVME_ACTIVE_NS_STATE_PROCESSING) { + rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + if (rc < 0) { + ctx->state = NVME_ACTIVE_NS_STATE_ERROR; + break; + } + } + + if (ctx->state == NVME_ACTIVE_NS_STATE_ERROR) { + nvme_active_ns_ctx_destroy(ctx); + return -ENXIO; + } + + assert(ctx->state == NVME_ACTIVE_NS_STATE_DONE); + nvme_ctrlr_identify_active_ns_swap(ctrlr, &ctx->new_ns_list); + nvme_active_ns_ctx_destroy(ctx); + + return 0; +} + +static void +nvme_ctrlr_identify_ns_async_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; + struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; + uint32_t nsid; + int rc; + + if (spdk_nvme_cpl_is_error(cpl)) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } else { + nvme_ns_set_identify_data(ns); + } + + /* move on to the next active NS */ + nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id); + ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); + if (ns == NULL) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ID_DESCS, + ctrlr->opts.admin_timeout_ms); + return; + } + ns->ctrlr = ctrlr; + ns->id = nsid; + + rc = nvme_ctrlr_identify_ns_async(ns); + if (rc) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + } +} + +static int +nvme_ctrlr_identify_ns_async(struct spdk_nvme_ns *ns) +{ + struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; + struct spdk_nvme_ns_data *nsdata; + + nsdata = &ctrlr->nsdata[ns->id - 1]; + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS, + ctrlr->opts.admin_timeout_ms); + return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS, 0, ns->id, + nsdata, sizeof(*nsdata), + nvme_ctrlr_identify_ns_async_done, ns); +} + +static int +nvme_ctrlr_identify_namespaces(struct spdk_nvme_ctrlr *ctrlr) +{ + uint32_t nsid; + struct spdk_nvme_ns *ns; + int rc; + + nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); + ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); + if (ns == NULL) { + /* No active NS, move on to the next state */ + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + ns->ctrlr = ctrlr; + ns->id = nsid; + + rc = nvme_ctrlr_identify_ns_async(ns); + if (rc) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + } + + return rc; +} + +static void +nvme_ctrlr_identify_id_desc_async_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ns *ns = (struct spdk_nvme_ns *)arg; + struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; + uint32_t nsid; + int rc; + + if (spdk_nvme_cpl_is_error(cpl)) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + return; + } + + /* move on to the next active NS */ + nsid = spdk_nvme_ctrlr_get_next_active_ns(ctrlr, ns->id); + ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); + if (ns == NULL) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + return; + } + + rc = nvme_ctrlr_identify_id_desc_async(ns); + if (rc) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + } +} + +static int +nvme_ctrlr_identify_id_desc_async(struct spdk_nvme_ns *ns) +{ + struct spdk_nvme_ctrlr *ctrlr = ns->ctrlr; + + memset(ns->id_desc_list, 0, sizeof(ns->id_desc_list)); + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS, + ctrlr->opts.admin_timeout_ms); + return nvme_ctrlr_cmd_identify(ns->ctrlr, SPDK_NVME_IDENTIFY_NS_ID_DESCRIPTOR_LIST, + 0, ns->id, ns->id_desc_list, sizeof(ns->id_desc_list), + nvme_ctrlr_identify_id_desc_async_done, ns); +} + +static int +nvme_ctrlr_identify_id_desc_namespaces(struct spdk_nvme_ctrlr *ctrlr) +{ + uint32_t nsid; + struct spdk_nvme_ns *ns; + int rc; + + if (ctrlr->vs.raw < SPDK_NVME_VERSION(1, 3, 0) || + (ctrlr->quirks & NVME_QUIRK_IDENTIFY_CNS)) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Version < 1.3; not attempting to retrieve NS ID Descriptor List\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + nsid = spdk_nvme_ctrlr_get_first_active_ns(ctrlr); + ns = spdk_nvme_ctrlr_get_ns(ctrlr, nsid); + if (ns == NULL) { + /* No active NS, move on to the next state */ + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + rc = nvme_ctrlr_identify_id_desc_async(ns); + if (rc) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + } + + return rc; +} + +static void +nvme_ctrlr_update_nvmf_ioccsz(struct spdk_nvme_ctrlr *ctrlr) +{ + if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_RDMA || + ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_TCP || + ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_FC) { + if (ctrlr->cdata.nvmf_specific.ioccsz < 4) { + SPDK_ERRLOG("Incorrect IOCCSZ %u, the minimum value should be 4\n", + ctrlr->cdata.nvmf_specific.ioccsz); + ctrlr->cdata.nvmf_specific.ioccsz = 4; + assert(0); + } + ctrlr->ioccsz_bytes = ctrlr->cdata.nvmf_specific.ioccsz * 16 - sizeof(struct spdk_nvme_cmd); + ctrlr->icdoff = ctrlr->cdata.nvmf_specific.icdoff; + } +} + +static void +nvme_ctrlr_set_num_queues_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + uint32_t cq_allocated, sq_allocated, min_allocated, i; + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + SPDK_ERRLOG("Set Features - Number of Queues failed!\n"); + ctrlr->opts.num_io_queues = 0; + } else { + /* + * Data in cdw0 is 0-based. + * Lower 16-bits indicate number of submission queues allocated. + * Upper 16-bits indicate number of completion queues allocated. + */ + sq_allocated = (cpl->cdw0 & 0xFFFF) + 1; + cq_allocated = (cpl->cdw0 >> 16) + 1; + + /* + * For 1:1 queue mapping, set number of allocated queues to be minimum of + * submission and completion queues. + */ + min_allocated = spdk_min(sq_allocated, cq_allocated); + + /* Set number of queues to be minimum of requested and actually allocated. */ + ctrlr->opts.num_io_queues = spdk_min(min_allocated, ctrlr->opts.num_io_queues); + } + + ctrlr->free_io_qids = spdk_bit_array_create(ctrlr->opts.num_io_queues + 1); + if (ctrlr->free_io_qids == NULL) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + + /* Initialize list of free I/O queue IDs. QID 0 is the admin queue. */ + spdk_bit_array_clear(ctrlr->free_io_qids, 0); + for (i = 1; i <= ctrlr->opts.num_io_queues; i++) { + spdk_bit_array_set(ctrlr->free_io_qids, i); + } + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_CONSTRUCT_NS, + ctrlr->opts.admin_timeout_ms); +} + +static int +nvme_ctrlr_set_num_queues(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc; + + if (ctrlr->opts.num_io_queues > SPDK_NVME_MAX_IO_QUEUES) { + SPDK_NOTICELOG("Limiting requested num_io_queues %u to max %d\n", + ctrlr->opts.num_io_queues, SPDK_NVME_MAX_IO_QUEUES); + ctrlr->opts.num_io_queues = SPDK_NVME_MAX_IO_QUEUES; + } else if (ctrlr->opts.num_io_queues < 1) { + SPDK_NOTICELOG("Requested num_io_queues 0, increasing to 1\n"); + ctrlr->opts.num_io_queues = 1; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES, + ctrlr->opts.admin_timeout_ms); + + rc = nvme_ctrlr_cmd_set_num_queues(ctrlr, ctrlr->opts.num_io_queues, + nvme_ctrlr_set_num_queues_done, ctrlr); + if (rc != 0) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return rc; + } + + return 0; +} + +static void +nvme_ctrlr_set_keep_alive_timeout_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + uint32_t keep_alive_interval_ms; + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + if ((cpl->status.sct == SPDK_NVME_SCT_GENERIC) && + (cpl->status.sc == SPDK_NVME_SC_INVALID_FIELD)) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Keep alive timeout Get Feature is not supported\n"); + } else { + SPDK_ERRLOG("Keep alive timeout Get Feature failed: SC %x SCT %x\n", + cpl->status.sc, cpl->status.sct); + ctrlr->opts.keep_alive_timeout_ms = 0; + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + } else { + if (ctrlr->opts.keep_alive_timeout_ms != cpl->cdw0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller adjusted keep alive timeout to %u ms\n", + cpl->cdw0); + } + + ctrlr->opts.keep_alive_timeout_ms = cpl->cdw0; + } + + keep_alive_interval_ms = ctrlr->opts.keep_alive_timeout_ms / 2; + if (keep_alive_interval_ms == 0) { + keep_alive_interval_ms = 1; + } + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Sending keep alive every %u ms\n", keep_alive_interval_ms); + + ctrlr->keep_alive_interval_ticks = (keep_alive_interval_ms * spdk_get_ticks_hz()) / UINT64_C(1000); + + /* Schedule the first Keep Alive to be sent as soon as possible. */ + ctrlr->next_keep_alive_tick = spdk_get_ticks(); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, + ctrlr->opts.admin_timeout_ms); +} + +static int +nvme_ctrlr_set_keep_alive_timeout(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc; + + if (ctrlr->opts.keep_alive_timeout_ms == 0) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + if (ctrlr->cdata.kas == 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Controller KAS is 0 - not enabling Keep Alive\n"); + ctrlr->opts.keep_alive_timeout_ms = 0; + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_HOST_ID, + ctrlr->opts.admin_timeout_ms); + return 0; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT, + ctrlr->opts.admin_timeout_ms); + + /* Retrieve actual keep alive timeout, since the controller may have adjusted it. */ + rc = spdk_nvme_ctrlr_cmd_get_feature(ctrlr, SPDK_NVME_FEAT_KEEP_ALIVE_TIMER, 0, NULL, 0, + nvme_ctrlr_set_keep_alive_timeout_done, ctrlr); + if (rc != 0) { + SPDK_ERRLOG("Keep alive timeout Get Feature failed: %d\n", rc); + ctrlr->opts.keep_alive_timeout_ms = 0; + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return rc; + } + + return 0; +} + +static void +nvme_ctrlr_set_host_id_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + /* + * Treat Set Features - Host ID failure as non-fatal, since the Host ID feature + * is optional. + */ + SPDK_WARNLOG("Set Features - Host ID failed: SC 0x%x SCT 0x%x\n", + cpl->status.sc, cpl->status.sct); + } else { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Set Features - Host ID was successful\n"); + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); +} + +static int +nvme_ctrlr_set_host_id(struct spdk_nvme_ctrlr *ctrlr) +{ + uint8_t *host_id; + uint32_t host_id_size; + int rc; + + if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { + /* + * NVMe-oF sends the host ID during Connect and doesn't allow + * Set Features - Host Identifier after Connect, so we don't need to do anything here. + */ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "NVMe-oF transport - not sending Set Features - Host ID\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); + return 0; + } + + if (ctrlr->cdata.ctratt.host_id_exhid_supported) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 128-bit extended host identifier\n"); + host_id = ctrlr->opts.extended_host_id; + host_id_size = sizeof(ctrlr->opts.extended_host_id); + } else { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Using 64-bit host identifier\n"); + host_id = ctrlr->opts.host_id; + host_id_size = sizeof(ctrlr->opts.host_id); + } + + /* If the user specified an all-zeroes host identifier, don't send the command. */ + if (spdk_mem_all_zero(host_id, host_id_size)) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, + "User did not specify host ID - not sending Set Features - Host ID\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_READY, NVME_TIMEOUT_INFINITE); + return 0; + } + + SPDK_LOGDUMP(SPDK_LOG_NVME, "host_id", host_id, host_id_size); + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_HOST_ID, + ctrlr->opts.admin_timeout_ms); + + rc = nvme_ctrlr_cmd_set_host_id(ctrlr, host_id, host_id_size, nvme_ctrlr_set_host_id_done, ctrlr); + if (rc != 0) { + SPDK_ERRLOG("Set Features - Host ID failed: %d\n", rc); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return rc; + } + + return 0; +} + +static void +nvme_ctrlr_destruct_namespaces(struct spdk_nvme_ctrlr *ctrlr) +{ + if (ctrlr->ns) { + uint32_t i, num_ns = ctrlr->num_ns; + + for (i = 0; i < num_ns; i++) { + nvme_ns_destruct(&ctrlr->ns[i]); + } + + spdk_free(ctrlr->ns); + ctrlr->ns = NULL; + ctrlr->num_ns = 0; + } + + if (ctrlr->nsdata) { + spdk_free(ctrlr->nsdata); + ctrlr->nsdata = NULL; + } + + spdk_free(ctrlr->active_ns_list); + ctrlr->active_ns_list = NULL; +} + +static void +nvme_ctrlr_update_namespaces(struct spdk_nvme_ctrlr *ctrlr) +{ + uint32_t i, nn = ctrlr->cdata.nn; + struct spdk_nvme_ns_data *nsdata; + bool ns_is_active; + + for (i = 0; i < nn; i++) { + struct spdk_nvme_ns *ns = &ctrlr->ns[i]; + uint32_t nsid = i + 1; + + nsdata = &ctrlr->nsdata[nsid - 1]; + ns_is_active = spdk_nvme_ctrlr_is_active_ns(ctrlr, nsid); + + if (nsdata->ncap && ns_is_active) { + if (nvme_ns_update(ns) != 0) { + SPDK_ERRLOG("Failed to update active NS %u\n", nsid); + continue; + } + } + + if ((nsdata->ncap == 0) && ns_is_active) { + if (nvme_ns_construct(ns, nsid, ctrlr) != 0) { + continue; + } + } + + if (nsdata->ncap && !ns_is_active) { + nvme_ns_destruct(ns); + } + } +} + +static int +nvme_ctrlr_construct_namespaces(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc = 0; + uint32_t nn = ctrlr->cdata.nn; + + /* ctrlr->num_ns may be 0 (startup) or a different number of namespaces (reset), + * so check if we need to reallocate. + */ + if (nn != ctrlr->num_ns) { + nvme_ctrlr_destruct_namespaces(ctrlr); + + if (nn == 0) { + SPDK_WARNLOG("controller has 0 namespaces\n"); + return 0; + } + + ctrlr->ns = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns), 64, NULL, + SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (ctrlr->ns == NULL) { + rc = -ENOMEM; + goto fail; + } + + ctrlr->nsdata = spdk_zmalloc(nn * sizeof(struct spdk_nvme_ns_data), 64, + NULL, SPDK_ENV_SOCKET_ID_ANY, + SPDK_MALLOC_SHARE | SPDK_MALLOC_DMA); + if (ctrlr->nsdata == NULL) { + rc = -ENOMEM; + goto fail; + } + + ctrlr->num_ns = nn; + } + + return 0; + +fail: + nvme_ctrlr_destruct_namespaces(ctrlr); + return rc; +} + +static void +nvme_ctrlr_async_event_cb(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct nvme_async_event_request *aer = arg; + struct spdk_nvme_ctrlr *ctrlr = aer->ctrlr; + struct spdk_nvme_ctrlr_process *active_proc; + union spdk_nvme_async_event_completion event; + int rc; + + if (cpl->status.sct == SPDK_NVME_SCT_GENERIC && + cpl->status.sc == SPDK_NVME_SC_ABORTED_SQ_DELETION) { + /* + * This is simulated when controller is being shut down, to + * effectively abort outstanding asynchronous event requests + * and make sure all memory is freed. Do not repost the + * request in this case. + */ + return; + } + + if (cpl->status.sct == SPDK_NVME_SCT_COMMAND_SPECIFIC && + cpl->status.sc == SPDK_NVME_SC_ASYNC_EVENT_REQUEST_LIMIT_EXCEEDED) { + /* + * SPDK will only send as many AERs as the device says it supports, + * so this status code indicates an out-of-spec device. Do not repost + * the request in this case. + */ + SPDK_ERRLOG("Controller appears out-of-spec for asynchronous event request\n" + "handling. Do not repost this AER.\n"); + return; + } + + event.raw = cpl->cdw0; + if ((event.bits.async_event_type == SPDK_NVME_ASYNC_EVENT_TYPE_NOTICE) && + (event.bits.async_event_info == SPDK_NVME_ASYNC_EVENT_NS_ATTR_CHANGED)) { + rc = nvme_ctrlr_identify_active_ns(ctrlr); + if (rc) { + return; + } + nvme_ctrlr_update_namespaces(ctrlr); + nvme_io_msg_ctrlr_update(ctrlr); + } + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc && active_proc->aer_cb_fn) { + active_proc->aer_cb_fn(active_proc->aer_cb_arg, cpl); + } + + /* If the ctrlr was removed or in the destruct state, we should not send aer again */ + if (ctrlr->is_removed || ctrlr->is_destructed) { + return; + } + + /* + * Repost another asynchronous event request to replace the one + * that just completed. + */ + if (nvme_ctrlr_construct_and_submit_aer(ctrlr, aer)) { + /* + * We can't do anything to recover from a failure here, + * so just print a warning message and leave the AER unsubmitted. + */ + SPDK_ERRLOG("resubmitting AER failed!\n"); + } +} + +static int +nvme_ctrlr_construct_and_submit_aer(struct spdk_nvme_ctrlr *ctrlr, + struct nvme_async_event_request *aer) +{ + struct nvme_request *req; + + aer->ctrlr = ctrlr; + req = nvme_allocate_request_null(ctrlr->adminq, nvme_ctrlr_async_event_cb, aer); + aer->req = req; + if (req == NULL) { + return -1; + } + + req->cmd.opc = SPDK_NVME_OPC_ASYNC_EVENT_REQUEST; + return nvme_ctrlr_submit_admin_request(ctrlr, req); +} + +static void +nvme_ctrlr_configure_aer_done(void *arg, const struct spdk_nvme_cpl *cpl) +{ + struct nvme_async_event_request *aer; + int rc; + uint32_t i; + struct spdk_nvme_ctrlr *ctrlr = (struct spdk_nvme_ctrlr *)arg; + + if (spdk_nvme_cpl_is_error(cpl)) { + SPDK_NOTICELOG("nvme_ctrlr_configure_aer failed!\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, + ctrlr->opts.admin_timeout_ms); + return; + } + + /* aerl is a zero-based value, so we need to add 1 here. */ + ctrlr->num_aers = spdk_min(NVME_MAX_ASYNC_EVENTS, (ctrlr->cdata.aerl + 1)); + + for (i = 0; i < ctrlr->num_aers; i++) { + aer = &ctrlr->aer[i]; + rc = nvme_ctrlr_construct_and_submit_aer(ctrlr, aer); + if (rc) { + SPDK_ERRLOG("nvme_ctrlr_construct_and_submit_aer failed!\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return; + } + } + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES, + ctrlr->opts.admin_timeout_ms); +} + +static int +nvme_ctrlr_configure_aer(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_feat_async_event_configuration config; + int rc; + + config.raw = 0; + config.bits.crit_warn.bits.available_spare = 1; + config.bits.crit_warn.bits.temperature = 1; + config.bits.crit_warn.bits.device_reliability = 1; + config.bits.crit_warn.bits.read_only = 1; + config.bits.crit_warn.bits.volatile_memory_backup = 1; + + if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 2, 0)) { + if (ctrlr->cdata.oaes.ns_attribute_notices) { + config.bits.ns_attr_notice = 1; + } + if (ctrlr->cdata.oaes.fw_activation_notices) { + config.bits.fw_activation_notice = 1; + } + } + if (ctrlr->vs.raw >= SPDK_NVME_VERSION(1, 3, 0) && ctrlr->cdata.lpa.telemetry) { + config.bits.telemetry_log_notice = 1; + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER, + ctrlr->opts.admin_timeout_ms); + + rc = nvme_ctrlr_cmd_set_async_event_config(ctrlr, config, + nvme_ctrlr_configure_aer_done, + ctrlr); + if (rc != 0) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ERROR, NVME_TIMEOUT_INFINITE); + return rc; + } + + return 0; +} + +struct spdk_nvme_ctrlr_process * +nvme_ctrlr_get_process(struct spdk_nvme_ctrlr *ctrlr, pid_t pid) +{ + struct spdk_nvme_ctrlr_process *active_proc; + + TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { + if (active_proc->pid == pid) { + return active_proc; + } + } + + return NULL; +} + +struct spdk_nvme_ctrlr_process * +nvme_ctrlr_get_current_process(struct spdk_nvme_ctrlr *ctrlr) +{ + return nvme_ctrlr_get_process(ctrlr, getpid()); +} + +/** + * This function will be called when a process is using the controller. + * 1. For the primary process, it is called when constructing the controller. + * 2. For the secondary process, it is called at probing the controller. + * Note: will check whether the process is already added for the same process. + */ +int +nvme_ctrlr_add_process(struct spdk_nvme_ctrlr *ctrlr, void *devhandle) +{ + struct spdk_nvme_ctrlr_process *ctrlr_proc; + pid_t pid = getpid(); + + /* Check whether the process is already added or not */ + if (nvme_ctrlr_get_process(ctrlr, pid)) { + return 0; + } + + /* Initialize the per process properties for this ctrlr */ + ctrlr_proc = spdk_zmalloc(sizeof(struct spdk_nvme_ctrlr_process), + 64, NULL, SPDK_ENV_SOCKET_ID_ANY, SPDK_MALLOC_SHARE); + if (ctrlr_proc == NULL) { + SPDK_ERRLOG("failed to allocate memory to track the process props\n"); + + return -1; + } + + ctrlr_proc->is_primary = spdk_process_is_primary(); + ctrlr_proc->pid = pid; + STAILQ_INIT(&ctrlr_proc->active_reqs); + ctrlr_proc->devhandle = devhandle; + ctrlr_proc->ref = 0; + TAILQ_INIT(&ctrlr_proc->allocated_io_qpairs); + + TAILQ_INSERT_TAIL(&ctrlr->active_procs, ctrlr_proc, tailq); + + return 0; +} + +/** + * This function will be called when the process detaches the controller. + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_ctrlr_remove_process(struct spdk_nvme_ctrlr *ctrlr, + struct spdk_nvme_ctrlr_process *proc) +{ + struct spdk_nvme_qpair *qpair, *tmp_qpair; + + assert(STAILQ_EMPTY(&proc->active_reqs)); + + TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { + spdk_nvme_ctrlr_free_io_qpair(qpair); + } + + TAILQ_REMOVE(&ctrlr->active_procs, proc, tailq); + + if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { + spdk_pci_device_detach(proc->devhandle); + } + + spdk_free(proc); +} + +/** + * This function will be called when the process exited unexpectedly + * in order to free any incomplete nvme request, allocated IO qpairs + * and allocated memory. + * Note: the ctrlr_lock must be held when calling this function. + */ +static void +nvme_ctrlr_cleanup_process(struct spdk_nvme_ctrlr_process *proc) +{ + struct nvme_request *req, *tmp_req; + struct spdk_nvme_qpair *qpair, *tmp_qpair; + + STAILQ_FOREACH_SAFE(req, &proc->active_reqs, stailq, tmp_req) { + STAILQ_REMOVE(&proc->active_reqs, req, nvme_request, stailq); + + assert(req->pid == proc->pid); + + nvme_free_request(req); + } + + TAILQ_FOREACH_SAFE(qpair, &proc->allocated_io_qpairs, per_process_tailq, tmp_qpair) { + TAILQ_REMOVE(&proc->allocated_io_qpairs, qpair, per_process_tailq); + + /* + * The process may have been killed while some qpairs were in their + * completion context. Clear that flag here to allow these IO + * qpairs to be deleted. + */ + qpair->in_completion_context = 0; + + qpair->no_deletion_notification_needed = 1; + + spdk_nvme_ctrlr_free_io_qpair(qpair); + } + + spdk_free(proc); +} + +/** + * This function will be called when destructing the controller. + * 1. There is no more admin request on this controller. + * 2. Clean up any left resource allocation when its associated process is gone. + */ +void +nvme_ctrlr_free_processes(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc, *tmp; + + /* Free all the processes' properties and make sure no pending admin IOs */ + TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { + TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); + + assert(STAILQ_EMPTY(&active_proc->active_reqs)); + + spdk_free(active_proc); + } +} + +/** + * This function will be called when any other process attaches or + * detaches the controller in order to cleanup those unexpectedly + * terminated processes. + * Note: the ctrlr_lock must be held when calling this function. + */ +static int +nvme_ctrlr_remove_inactive_proc(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc, *tmp; + int active_proc_count = 0; + + TAILQ_FOREACH_SAFE(active_proc, &ctrlr->active_procs, tailq, tmp) { + if ((kill(active_proc->pid, 0) == -1) && (errno == ESRCH)) { + SPDK_ERRLOG("process %d terminated unexpected\n", active_proc->pid); + + TAILQ_REMOVE(&ctrlr->active_procs, active_proc, tailq); + + nvme_ctrlr_cleanup_process(active_proc); + } else { + active_proc_count++; + } + } + + return active_proc_count; +} + +void +nvme_ctrlr_proc_get_ref(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + nvme_ctrlr_remove_inactive_proc(ctrlr); + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + active_proc->ref++; + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +void +nvme_ctrlr_proc_put_ref(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc; + int proc_count; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + proc_count = nvme_ctrlr_remove_inactive_proc(ctrlr); + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + active_proc->ref--; + assert(active_proc->ref >= 0); + + /* + * The last active process will be removed at the end of + * the destruction of the controller. + */ + if (active_proc->ref == 0 && proc_count != 1) { + nvme_ctrlr_remove_process(ctrlr, active_proc); + } + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +int +nvme_ctrlr_get_ref_count(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc; + int ref = 0; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + nvme_ctrlr_remove_inactive_proc(ctrlr); + + TAILQ_FOREACH(active_proc, &ctrlr->active_procs, tailq) { + ref += active_proc->ref; + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + return ref; +} + +/** + * Get the PCI device handle which is only visible to its associated process. + */ +struct spdk_pci_device * +nvme_ctrlr_proc_get_devhandle(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_ctrlr_process *active_proc; + struct spdk_pci_device *devhandle = NULL; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + devhandle = active_proc->devhandle; + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + return devhandle; +} + +/** + * This function will be called repeatedly during initialization until the controller is ready. + */ +int +nvme_ctrlr_process_init(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_cc_register cc; + union spdk_nvme_csts_register csts; + uint32_t ready_timeout_in_ms; + int rc = 0; + + /* + * May need to avoid accessing any register on the target controller + * for a while. Return early without touching the FSM. + * Check sleep_timeout_tsc > 0 for unit test. + */ + if ((ctrlr->sleep_timeout_tsc > 0) && + (spdk_get_ticks() <= ctrlr->sleep_timeout_tsc)) { + return 0; + } + ctrlr->sleep_timeout_tsc = 0; + + if (nvme_ctrlr_get_cc(ctrlr, &cc) || + nvme_ctrlr_get_csts(ctrlr, &csts)) { + if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE) { + /* While a device is resetting, it may be unable to service MMIO reads + * temporarily. Allow for this case. + */ + SPDK_ERRLOG("Get registers failed while waiting for CSTS.RDY == 0\n"); + goto init_timeout; + } + SPDK_ERRLOG("Failed to read CC and CSTS in state %d\n", ctrlr->state); + return -EIO; + } + + ready_timeout_in_ms = 500 * ctrlr->cap.bits.to; + + /* + * Check if the current initialization step is done or has timed out. + */ + switch (ctrlr->state) { + case NVME_CTRLR_STATE_INIT_DELAY: + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, ready_timeout_in_ms); + if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_INIT) { + /* + * Controller may need some delay before it's enabled. + * + * This is a workaround for an issue where the PCIe-attached NVMe controller + * is not ready after VFIO reset. We delay the initialization rather than the + * enabling itself, because this is required only for the very first enabling + * - directly after a VFIO reset. + */ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Adding 2 second delay before initializing the controller\n"); + ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2000 * spdk_get_ticks_hz() / 1000); + } + break; + + case NVME_CTRLR_STATE_INIT: + /* Begin the hardware initialization by making sure the controller is disabled. */ + if (cc.bits.en) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1\n"); + /* + * Controller is currently enabled. We need to disable it to cause a reset. + * + * If CC.EN = 1 && CSTS.RDY = 0, the controller is in the process of becoming ready. + * Wait for the ready bit to be 1 before disabling the controller. + */ + if (csts.bits.rdy == 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 0 - waiting for reset to complete\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); + return 0; + } + + /* CC.EN = 1 && CSTS.RDY == 1, so we can immediately disable the controller. */ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n"); + cc.bits.en = 0; + if (nvme_ctrlr_set_cc(ctrlr, &cc)) { + SPDK_ERRLOG("set_cc() failed\n"); + return -EIO; + } + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); + + /* + * Wait 2.5 seconds before accessing PCI registers. + * Not using sleep() to avoid blocking other controller's initialization. + */ + if (ctrlr->quirks & NVME_QUIRK_DELAY_BEFORE_CHK_RDY) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Applying quirk: delay 2.5 seconds before reading registers\n"); + ctrlr->sleep_timeout_tsc = spdk_get_ticks() + (2500 * spdk_get_ticks_hz() / 1000); + } + return 0; + } else { + if (csts.bits.rdy == 1) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 1 - waiting for shutdown to complete\n"); + } + + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); + return 0; + } + break; + + case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_1: + if (csts.bits.rdy == 1) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - disabling controller\n"); + /* CC.EN = 1 && CSTS.RDY = 1, so we can set CC.EN = 0 now. */ + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 0\n"); + cc.bits.en = 0; + if (nvme_ctrlr_set_cc(ctrlr, &cc)) { + SPDK_ERRLOG("set_cc() failed\n"); + return -EIO; + } + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0, ready_timeout_in_ms); + return 0; + } + break; + + case NVME_CTRLR_STATE_DISABLE_WAIT_FOR_READY_0: + if (csts.bits.rdy == 0) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 0 && CSTS.RDY = 0\n"); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE, ready_timeout_in_ms); + /* + * Delay 100us before setting CC.EN = 1. Some NVMe SSDs miss CC.EN getting + * set to 1 if it is too soon after CSTS.RDY is reported as 0. + */ + spdk_delay_us(100); + return 0; + } + break; + + case NVME_CTRLR_STATE_ENABLE: + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Setting CC.EN = 1\n"); + rc = nvme_ctrlr_enable(ctrlr); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1, ready_timeout_in_ms); + return rc; + + case NVME_CTRLR_STATE_ENABLE_WAIT_FOR_READY_1: + if (csts.bits.rdy == 1) { + SPDK_DEBUGLOG(SPDK_LOG_NVME, "CC.EN = 1 && CSTS.RDY = 1 - controller is ready\n"); + /* + * The controller has been enabled. + * Perform the rest of initialization serially. + */ + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_RESET_ADMIN_QUEUE, + ctrlr->opts.admin_timeout_ms); + return 0; + } + break; + + case NVME_CTRLR_STATE_RESET_ADMIN_QUEUE: + nvme_transport_qpair_reset(ctrlr->adminq); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY, + ctrlr->opts.admin_timeout_ms); + break; + + case NVME_CTRLR_STATE_IDENTIFY: + rc = nvme_ctrlr_identify(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_SET_NUM_QUEUES: + nvme_ctrlr_update_nvmf_ioccsz(ctrlr); + rc = nvme_ctrlr_set_num_queues(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_SET_NUM_QUEUES: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_CONSTRUCT_NS: + rc = nvme_ctrlr_construct_namespaces(ctrlr); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS, + ctrlr->opts.admin_timeout_ms); + break; + + case NVME_CTRLR_STATE_IDENTIFY_ACTIVE_NS: + _nvme_ctrlr_identify_active_ns(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ACTIVE_NS: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_IDENTIFY_NS: + rc = nvme_ctrlr_identify_namespaces(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_NS: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_IDENTIFY_ID_DESCS: + rc = nvme_ctrlr_identify_id_desc_namespaces(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_IDENTIFY_ID_DESCS: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_CONFIGURE_AER: + rc = nvme_ctrlr_configure_aer(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_CONFIGURE_AER: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_SET_SUPPORTED_LOG_PAGES: + rc = nvme_ctrlr_set_supported_log_pages(ctrlr); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES, + ctrlr->opts.admin_timeout_ms); + break; + + case NVME_CTRLR_STATE_SET_SUPPORTED_FEATURES: + nvme_ctrlr_set_supported_features(ctrlr); + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_SET_DB_BUF_CFG, + ctrlr->opts.admin_timeout_ms); + break; + + case NVME_CTRLR_STATE_SET_DB_BUF_CFG: + rc = nvme_ctrlr_set_doorbell_buffer_config(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_DB_BUF_CFG: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_SET_KEEP_ALIVE_TIMEOUT: + rc = nvme_ctrlr_set_keep_alive_timeout(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_KEEP_ALIVE_TIMEOUT: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_SET_HOST_ID: + rc = nvme_ctrlr_set_host_id(ctrlr); + break; + + case NVME_CTRLR_STATE_WAIT_FOR_HOST_ID: + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + break; + + case NVME_CTRLR_STATE_READY: + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Ctrlr already in ready state\n"); + return 0; + + case NVME_CTRLR_STATE_ERROR: + SPDK_ERRLOG("Ctrlr %s is in error state\n", ctrlr->trid.traddr); + return -1; + + default: + assert(0); + return -1; + } + +init_timeout: + if (ctrlr->state_timeout_tsc != NVME_TIMEOUT_INFINITE && + spdk_get_ticks() > ctrlr->state_timeout_tsc) { + SPDK_ERRLOG("Initialization timed out in state %d\n", ctrlr->state); + return -1; + } + + return rc; +} + +int +nvme_robust_mutex_init_recursive_shared(pthread_mutex_t *mtx) +{ + pthread_mutexattr_t attr; + int rc = 0; + + if (pthread_mutexattr_init(&attr)) { + return -1; + } + if (pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE) || +#ifndef __FreeBSD__ + pthread_mutexattr_setrobust(&attr, PTHREAD_MUTEX_ROBUST) || + pthread_mutexattr_setpshared(&attr, PTHREAD_PROCESS_SHARED) || +#endif + pthread_mutex_init(mtx, &attr)) { + rc = -1; + } + pthread_mutexattr_destroy(&attr); + return rc; +} + +int +nvme_ctrlr_construct(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc; + + if (ctrlr->trid.trtype == SPDK_NVME_TRANSPORT_PCIE) { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT_DELAY, NVME_TIMEOUT_INFINITE); + } else { + nvme_ctrlr_set_state(ctrlr, NVME_CTRLR_STATE_INIT, NVME_TIMEOUT_INFINITE); + } + + if (ctrlr->opts.admin_queue_size > SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES) { + SPDK_ERRLOG("admin_queue_size %u exceeds max defined by NVMe spec, use max value\n", + ctrlr->opts.admin_queue_size); + ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MAX_ENTRIES; + } + + if (ctrlr->opts.admin_queue_size < SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES) { + SPDK_ERRLOG("admin_queue_size %u is less than minimum defined by NVMe spec, use min value\n", + ctrlr->opts.admin_queue_size); + ctrlr->opts.admin_queue_size = SPDK_NVME_ADMIN_QUEUE_MIN_ENTRIES; + } + + ctrlr->flags = 0; + ctrlr->free_io_qids = NULL; + ctrlr->is_resetting = false; + ctrlr->is_failed = false; + ctrlr->is_destructed = false; + + TAILQ_INIT(&ctrlr->active_io_qpairs); + STAILQ_INIT(&ctrlr->queued_aborts); + ctrlr->outstanding_aborts = 0; + + rc = nvme_robust_mutex_init_recursive_shared(&ctrlr->ctrlr_lock); + if (rc != 0) { + return rc; + } + + TAILQ_INIT(&ctrlr->active_procs); + + return rc; +} + +/* This function should be called once at ctrlr initialization to set up constant properties. */ +void +nvme_ctrlr_init_cap(struct spdk_nvme_ctrlr *ctrlr, const union spdk_nvme_cap_register *cap, + const union spdk_nvme_vs_register *vs) +{ + ctrlr->cap = *cap; + ctrlr->vs = *vs; + + if (ctrlr->cap.bits.ams & SPDK_NVME_CAP_AMS_WRR) { + ctrlr->flags |= SPDK_NVME_CTRLR_WRR_SUPPORTED; + } + + ctrlr->min_page_size = 1u << (12 + ctrlr->cap.bits.mpsmin); + + /* For now, always select page_size == min_page_size. */ + ctrlr->page_size = ctrlr->min_page_size; + + ctrlr->opts.io_queue_size = spdk_max(ctrlr->opts.io_queue_size, SPDK_NVME_IO_QUEUE_MIN_ENTRIES); + ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, MAX_IO_QUEUE_ENTRIES); + ctrlr->opts.io_queue_size = spdk_min(ctrlr->opts.io_queue_size, ctrlr->cap.bits.mqes + 1u); + + ctrlr->opts.io_queue_requests = spdk_max(ctrlr->opts.io_queue_requests, ctrlr->opts.io_queue_size); +} + +void +nvme_ctrlr_destruct_finish(struct spdk_nvme_ctrlr *ctrlr) +{ + pthread_mutex_destroy(&ctrlr->ctrlr_lock); +} + +void +nvme_ctrlr_destruct(struct spdk_nvme_ctrlr *ctrlr) +{ + struct spdk_nvme_qpair *qpair, *tmp; + + SPDK_DEBUGLOG(SPDK_LOG_NVME, "Prepare to destruct SSD: %s\n", ctrlr->trid.traddr); + + ctrlr->is_destructed = true; + + spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + + nvme_ctrlr_abort_queued_aborts(ctrlr); + nvme_transport_admin_qpair_abort_aers(ctrlr->adminq); + + TAILQ_FOREACH_SAFE(qpair, &ctrlr->active_io_qpairs, tailq, tmp) { + spdk_nvme_ctrlr_free_io_qpair(qpair); + } + + nvme_ctrlr_free_doorbell_buffer(ctrlr); + + if (ctrlr->opts.no_shn_notification) { + SPDK_INFOLOG(SPDK_LOG_NVME, "Disable SSD: %s without shutdown notification\n", + ctrlr->trid.traddr); + nvme_ctrlr_disable(ctrlr); + } else { + nvme_ctrlr_shutdown(ctrlr); + } + + nvme_ctrlr_destruct_namespaces(ctrlr); + + spdk_bit_array_free(&ctrlr->free_io_qids); + + nvme_transport_ctrlr_destruct(ctrlr); +} + +int +nvme_ctrlr_submit_admin_request(struct spdk_nvme_ctrlr *ctrlr, + struct nvme_request *req) +{ + return nvme_qpair_submit_request(ctrlr->adminq, req); +} + +static void +nvme_keep_alive_completion(void *cb_ctx, const struct spdk_nvme_cpl *cpl) +{ + /* Do nothing */ +} + +/* + * Check if we need to send a Keep Alive command. + * Caller must hold ctrlr->ctrlr_lock. + */ +static void +nvme_ctrlr_keep_alive(struct spdk_nvme_ctrlr *ctrlr) +{ + uint64_t now; + struct nvme_request *req; + struct spdk_nvme_cmd *cmd; + int rc; + + now = spdk_get_ticks(); + if (now < ctrlr->next_keep_alive_tick) { + return; + } + + req = nvme_allocate_request_null(ctrlr->adminq, nvme_keep_alive_completion, NULL); + if (req == NULL) { + return; + } + + cmd = &req->cmd; + cmd->opc = SPDK_NVME_OPC_KEEP_ALIVE; + + rc = nvme_ctrlr_submit_admin_request(ctrlr, req); + if (rc != 0) { + SPDK_ERRLOG("Submitting Keep Alive failed\n"); + } + + ctrlr->next_keep_alive_tick = now + ctrlr->keep_alive_interval_ticks; +} + +int32_t +spdk_nvme_ctrlr_process_admin_completions(struct spdk_nvme_ctrlr *ctrlr) +{ + int32_t num_completions; + int32_t rc; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + if (ctrlr->keep_alive_interval_ticks) { + nvme_ctrlr_keep_alive(ctrlr); + } + + rc = nvme_io_msg_process(ctrlr); + if (rc < 0) { + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + return rc; + } + num_completions = rc; + + rc = spdk_nvme_qpair_process_completions(ctrlr->adminq, 0); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + if (rc < 0) { + num_completions = rc; + } else { + num_completions += rc; + } + + return num_completions; +} + +const struct spdk_nvme_ctrlr_data * +spdk_nvme_ctrlr_get_data(struct spdk_nvme_ctrlr *ctrlr) +{ + return &ctrlr->cdata; +} + +union spdk_nvme_csts_register spdk_nvme_ctrlr_get_regs_csts(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_csts_register csts; + + if (nvme_ctrlr_get_csts(ctrlr, &csts)) { + csts.raw = 0xFFFFFFFFu; + } + return csts; +} + +union spdk_nvme_cap_register spdk_nvme_ctrlr_get_regs_cap(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->cap; +} + +union spdk_nvme_vs_register spdk_nvme_ctrlr_get_regs_vs(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->vs; +} + +union spdk_nvme_cmbsz_register spdk_nvme_ctrlr_get_regs_cmbsz(struct spdk_nvme_ctrlr *ctrlr) +{ + union spdk_nvme_cmbsz_register cmbsz; + + if (nvme_ctrlr_get_cmbsz(ctrlr, &cmbsz)) { + cmbsz.raw = 0; + } + + return cmbsz; +} + +uint32_t +spdk_nvme_ctrlr_get_num_ns(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->num_ns; +} + +static int32_t +nvme_ctrlr_active_ns_idx(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) +{ + int32_t result = -1; + + if (ctrlr->active_ns_list == NULL || nsid == 0 || nsid > ctrlr->num_ns) { + return result; + } + + int32_t lower = 0; + int32_t upper = ctrlr->num_ns - 1; + int32_t mid; + + while (lower <= upper) { + mid = lower + (upper - lower) / 2; + if (ctrlr->active_ns_list[mid] == nsid) { + result = mid; + break; + } else { + if (ctrlr->active_ns_list[mid] != 0 && ctrlr->active_ns_list[mid] < nsid) { + lower = mid + 1; + } else { + upper = mid - 1; + } + + } + } + + return result; +} + +bool +spdk_nvme_ctrlr_is_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) +{ + return nvme_ctrlr_active_ns_idx(ctrlr, nsid) != -1; +} + +uint32_t +spdk_nvme_ctrlr_get_first_active_ns(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->active_ns_list ? ctrlr->active_ns_list[0] : 0; +} + +uint32_t +spdk_nvme_ctrlr_get_next_active_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t prev_nsid) +{ + int32_t nsid_idx = nvme_ctrlr_active_ns_idx(ctrlr, prev_nsid); + if (ctrlr->active_ns_list && nsid_idx >= 0 && (uint32_t)nsid_idx < ctrlr->num_ns - 1) { + return ctrlr->active_ns_list[nsid_idx + 1]; + } + return 0; +} + +struct spdk_nvme_ns * +spdk_nvme_ctrlr_get_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) +{ + if (nsid < 1 || nsid > ctrlr->num_ns) { + return NULL; + } + + return &ctrlr->ns[nsid - 1]; +} + +struct spdk_pci_device * +spdk_nvme_ctrlr_get_pci_device(struct spdk_nvme_ctrlr *ctrlr) +{ + if (ctrlr == NULL) { + return NULL; + } + + if (ctrlr->trid.trtype != SPDK_NVME_TRANSPORT_PCIE) { + return NULL; + } + + return nvme_ctrlr_proc_get_devhandle(ctrlr); +} + +uint32_t +spdk_nvme_ctrlr_get_max_xfer_size(const struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->max_xfer_size; +} + +void +spdk_nvme_ctrlr_register_aer_callback(struct spdk_nvme_ctrlr *ctrlr, + spdk_nvme_aer_cb aer_cb_fn, + void *aer_cb_arg) +{ + struct spdk_nvme_ctrlr_process *active_proc; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + active_proc->aer_cb_fn = aer_cb_fn; + active_proc->aer_cb_arg = aer_cb_arg; + } + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +void +spdk_nvme_ctrlr_register_timeout_callback(struct spdk_nvme_ctrlr *ctrlr, + uint64_t timeout_us, spdk_nvme_timeout_cb cb_fn, void *cb_arg) +{ + struct spdk_nvme_ctrlr_process *active_proc; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + + active_proc = nvme_ctrlr_get_current_process(ctrlr); + if (active_proc) { + active_proc->timeout_ticks = timeout_us * spdk_get_ticks_hz() / 1000000ULL; + active_proc->timeout_cb_fn = cb_fn; + active_proc->timeout_cb_arg = cb_arg; + } + + ctrlr->timeout_enabled = true; + + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +bool +spdk_nvme_ctrlr_is_log_page_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t log_page) +{ + /* No bounds check necessary, since log_page is uint8_t and log_page_supported has 256 entries */ + SPDK_STATIC_ASSERT(sizeof(ctrlr->log_page_supported) == 256, "log_page_supported size mismatch"); + return ctrlr->log_page_supported[log_page]; +} + +bool +spdk_nvme_ctrlr_is_feature_supported(struct spdk_nvme_ctrlr *ctrlr, uint8_t feature_code) +{ + /* No bounds check necessary, since feature_code is uint8_t and feature_supported has 256 entries */ + SPDK_STATIC_ASSERT(sizeof(ctrlr->feature_supported) == 256, "feature_supported size mismatch"); + return ctrlr->feature_supported[feature_code]; +} + +int +spdk_nvme_ctrlr_attach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, + struct spdk_nvme_ctrlr_list *payload) +{ + struct nvme_completion_poll_status *status; + int res; + struct spdk_nvme_ns *ns; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = nvme_ctrlr_cmd_attach_ns(ctrlr, nsid, payload, + nvme_completion_poll_cb, status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_attach_ns failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + free(status); + + res = nvme_ctrlr_identify_active_ns(ctrlr); + if (res) { + return res; + } + + ns = &ctrlr->ns[nsid - 1]; + return nvme_ns_construct(ns, nsid, ctrlr); +} + +int +spdk_nvme_ctrlr_detach_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, + struct spdk_nvme_ctrlr_list *payload) +{ + struct nvme_completion_poll_status *status; + int res; + struct spdk_nvme_ns *ns; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = nvme_ctrlr_cmd_detach_ns(ctrlr, nsid, payload, + nvme_completion_poll_cb, status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_detach_ns failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + free(status); + + res = nvme_ctrlr_identify_active_ns(ctrlr); + if (res) { + return res; + } + + ns = &ctrlr->ns[nsid - 1]; + /* Inactive NS */ + nvme_ns_destruct(ns); + + return 0; +} + +uint32_t +spdk_nvme_ctrlr_create_ns(struct spdk_nvme_ctrlr *ctrlr, struct spdk_nvme_ns_data *payload) +{ + struct nvme_completion_poll_status *status; + int res; + uint32_t nsid; + struct spdk_nvme_ns *ns; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return 0; + } + + res = nvme_ctrlr_cmd_create_ns(ctrlr, payload, nvme_completion_poll_cb, status); + if (res) { + free(status); + return 0; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_create_ns failed!\n"); + if (!status->timed_out) { + free(status); + } + return 0; + } + + nsid = status->cpl.cdw0; + ns = &ctrlr->ns[nsid - 1]; + free(status); + /* Inactive NS */ + res = nvme_ns_construct(ns, nsid, ctrlr); + if (res) { + return 0; + } + + /* Return the namespace ID that was created */ + return nsid; +} + +int +spdk_nvme_ctrlr_delete_ns(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid) +{ + struct nvme_completion_poll_status *status; + int res; + struct spdk_nvme_ns *ns; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = nvme_ctrlr_cmd_delete_ns(ctrlr, nsid, nvme_completion_poll_cb, status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_delete_ns failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + free(status); + + res = nvme_ctrlr_identify_active_ns(ctrlr); + if (res) { + return res; + } + + ns = &ctrlr->ns[nsid - 1]; + nvme_ns_destruct(ns); + + return 0; +} + +int +spdk_nvme_ctrlr_format(struct spdk_nvme_ctrlr *ctrlr, uint32_t nsid, + struct spdk_nvme_format *format) +{ + struct nvme_completion_poll_status *status; + int res; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = nvme_ctrlr_cmd_format(ctrlr, nsid, format, nvme_completion_poll_cb, + status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_format failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + free(status); + + return spdk_nvme_ctrlr_reset(ctrlr); +} + +int +spdk_nvme_ctrlr_update_firmware(struct spdk_nvme_ctrlr *ctrlr, void *payload, uint32_t size, + int slot, enum spdk_nvme_fw_commit_action commit_action, struct spdk_nvme_status *completion_status) +{ + struct spdk_nvme_fw_commit fw_commit; + struct nvme_completion_poll_status *status; + int res; + unsigned int size_remaining; + unsigned int offset; + unsigned int transfer; + void *p; + + if (!completion_status) { + return -EINVAL; + } + memset(completion_status, 0, sizeof(struct spdk_nvme_status)); + if (size % 4) { + SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid size!\n"); + return -1; + } + + /* Current support only for SPDK_NVME_FW_COMMIT_REPLACE_IMG + * and SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG + */ + if ((commit_action != SPDK_NVME_FW_COMMIT_REPLACE_IMG) && + (commit_action != SPDK_NVME_FW_COMMIT_REPLACE_AND_ENABLE_IMG)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_update_firmware invalid command!\n"); + return -1; + } + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + /* Firmware download */ + size_remaining = size; + offset = 0; + p = payload; + + while (size_remaining > 0) { + transfer = spdk_min(size_remaining, ctrlr->min_page_size); + + memset(status, 0, sizeof(*status)); + res = nvme_ctrlr_cmd_fw_image_download(ctrlr, transfer, offset, p, + nvme_completion_poll_cb, + status); + if (res) { + free(status); + return res; + } + + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_fw_image_download failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + p += transfer; + offset += transfer; + size_remaining -= transfer; + } + + /* Firmware commit */ + memset(&fw_commit, 0, sizeof(struct spdk_nvme_fw_commit)); + fw_commit.fs = slot; + fw_commit.ca = commit_action; + + memset(status, 0, sizeof(*status)); + res = nvme_ctrlr_cmd_fw_commit(ctrlr, &fw_commit, nvme_completion_poll_cb, + status); + if (res) { + free(status); + return res; + } + + res = nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock); + + memcpy(completion_status, &status->cpl.status, sizeof(struct spdk_nvme_status)); + + if (!status->timed_out) { + free(status); + } + + if (res) { + if (completion_status->sct != SPDK_NVME_SCT_COMMAND_SPECIFIC || + completion_status->sc != SPDK_NVME_SC_FIRMWARE_REQ_NVM_RESET) { + if (completion_status->sct == SPDK_NVME_SCT_COMMAND_SPECIFIC && + completion_status->sc == SPDK_NVME_SC_FIRMWARE_REQ_CONVENTIONAL_RESET) { + SPDK_NOTICELOG("firmware activation requires conventional reset to be performed. !\n"); + } else { + SPDK_ERRLOG("nvme_ctrlr_cmd_fw_commit failed!\n"); + } + return -ENXIO; + } + } + + return spdk_nvme_ctrlr_reset(ctrlr); +} + +int +spdk_nvme_ctrlr_reserve_cmb(struct spdk_nvme_ctrlr *ctrlr) +{ + int rc, size; + union spdk_nvme_cmbsz_register cmbsz; + + cmbsz = spdk_nvme_ctrlr_get_regs_cmbsz(ctrlr); + + if (cmbsz.bits.rds == 0 || cmbsz.bits.wds == 0) { + return -ENOTSUP; + } + + size = cmbsz.bits.sz * (0x1000 << (cmbsz.bits.szu * 4)); + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + rc = nvme_transport_ctrlr_reserve_cmb(ctrlr); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + if (rc < 0) { + return rc; + } + + return size; +} + +void * +spdk_nvme_ctrlr_map_cmb(struct spdk_nvme_ctrlr *ctrlr, size_t *size) +{ + void *buf; + + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + buf = nvme_transport_ctrlr_map_cmb(ctrlr, size); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); + + return buf; +} + +void +spdk_nvme_ctrlr_unmap_cmb(struct spdk_nvme_ctrlr *ctrlr) +{ + nvme_robust_mutex_lock(&ctrlr->ctrlr_lock); + nvme_transport_ctrlr_unmap_cmb(ctrlr); + nvme_robust_mutex_unlock(&ctrlr->ctrlr_lock); +} + +bool +spdk_nvme_ctrlr_is_discovery(struct spdk_nvme_ctrlr *ctrlr) +{ + assert(ctrlr); + + return !strncmp(ctrlr->trid.subnqn, SPDK_NVMF_DISCOVERY_NQN, + strlen(SPDK_NVMF_DISCOVERY_NQN)); +} + +int +spdk_nvme_ctrlr_security_receive(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, + uint16_t spsp, uint8_t nssf, void *payload, size_t size) +{ + struct nvme_completion_poll_status *status; + int res; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = spdk_nvme_ctrlr_cmd_security_receive(ctrlr, secp, spsp, nssf, payload, size, + nvme_completion_poll_cb, status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_receive failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + free(status); + + return 0; +} + +int +spdk_nvme_ctrlr_security_send(struct spdk_nvme_ctrlr *ctrlr, uint8_t secp, + uint16_t spsp, uint8_t nssf, void *payload, size_t size) +{ + struct nvme_completion_poll_status *status; + int res; + + status = calloc(1, sizeof(*status)); + if (!status) { + SPDK_ERRLOG("Failed to allocate status tracker\n"); + return -ENOMEM; + } + + res = spdk_nvme_ctrlr_cmd_security_send(ctrlr, secp, spsp, nssf, payload, size, + nvme_completion_poll_cb, + status); + if (res) { + free(status); + return res; + } + if (nvme_wait_for_completion_robust_lock(ctrlr->adminq, status, &ctrlr->ctrlr_lock)) { + SPDK_ERRLOG("spdk_nvme_ctrlr_cmd_security_send failed!\n"); + if (!status->timed_out) { + free(status); + } + return -ENXIO; + } + + free(status); + + return 0; +} + +uint64_t +spdk_nvme_ctrlr_get_flags(struct spdk_nvme_ctrlr *ctrlr) +{ + return ctrlr->flags; +} + +const struct spdk_nvme_transport_id * +spdk_nvme_ctrlr_get_transport_id(struct spdk_nvme_ctrlr *ctrlr) +{ + return &ctrlr->trid; +} + +/* FIXME need to specify max number of iovs */ +int +spdk_nvme_map_prps(void *prv, struct spdk_nvme_cmd *cmd, struct iovec *iovs, + uint32_t len, size_t mps, + void *(*gpa_to_vva)(void *prv, uint64_t addr, uint64_t len)) +{ + uint64_t prp1, prp2; + void *vva; + uint32_t i; + uint32_t residue_len, nents; + uint64_t *prp_list; + int iovcnt; + + prp1 = cmd->dptr.prp.prp1; + prp2 = cmd->dptr.prp.prp2; + + /* PRP1 may started with unaligned page address */ + residue_len = mps - (prp1 % mps); + residue_len = spdk_min(len, residue_len); + + vva = gpa_to_vva(prv, prp1, residue_len); + if (spdk_unlikely(vva == NULL)) { + SPDK_ERRLOG("GPA to VVA failed\n"); + return -1; + } + iovs[0].iov_base = vva; + iovs[0].iov_len = residue_len; + len -= residue_len; + + if (len) { + if (spdk_unlikely(prp2 == 0)) { + SPDK_ERRLOG("no PRP2, %d remaining\n", len); + return -1; + } + + if (len <= mps) { + /* 2 PRP used */ + iovcnt = 2; + vva = gpa_to_vva(prv, prp2, len); + if (spdk_unlikely(vva == NULL)) { + SPDK_ERRLOG("no VVA for %#lx, len%#x\n", + prp2, len); + return -1; + } + iovs[1].iov_base = vva; + iovs[1].iov_len = len; + } else { + /* PRP list used */ + nents = (len + mps - 1) / mps; + vva = gpa_to_vva(prv, prp2, nents * sizeof(*prp_list)); + if (spdk_unlikely(vva == NULL)) { + SPDK_ERRLOG("no VVA for %#lx, nents=%#x\n", + prp2, nents); + return -1; + } + prp_list = vva; + i = 0; + while (len != 0) { + residue_len = spdk_min(len, mps); + vva = gpa_to_vva(prv, prp_list[i], residue_len); + if (spdk_unlikely(vva == NULL)) { + SPDK_ERRLOG("no VVA for %#lx, residue_len=%#x\n", + prp_list[i], residue_len); + return -1; + } + iovs[i + 1].iov_base = vva; + iovs[i + 1].iov_len = residue_len; + len -= residue_len; + i++; + } + iovcnt = i + 1; + } + } else { + /* 1 PRP used */ + iovcnt = 1; + } + + return iovcnt; +} |