1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#include "arrow/python/serialize.h"
#include "arrow/python/numpy_interop.h"
#include <cstdint>
#include <limits>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
#include <numpy/arrayobject.h>
#include <numpy/arrayscalars.h>
#include "arrow/array.h"
#include "arrow/array/builder_binary.h"
#include "arrow/array/builder_nested.h"
#include "arrow/array/builder_primitive.h"
#include "arrow/array/builder_union.h"
#include "arrow/io/interfaces.h"
#include "arrow/io/memory.h"
#include "arrow/ipc/util.h"
#include "arrow/ipc/writer.h"
#include "arrow/record_batch.h"
#include "arrow/result.h"
#include "arrow/tensor.h"
#include "arrow/util/logging.h"
#include "arrow/python/common.h"
#include "arrow/python/datetime.h"
#include "arrow/python/helpers.h"
#include "arrow/python/iterators.h"
#include "arrow/python/numpy_convert.h"
#include "arrow/python/platform.h"
#include "arrow/python/pyarrow.h"
constexpr int32_t kMaxRecursionDepth = 100;
namespace arrow {
using internal::checked_cast;
namespace py {
class SequenceBuilder;
class DictBuilder;
Status Append(PyObject* context, PyObject* elem, SequenceBuilder* builder,
int32_t recursion_depth, SerializedPyObject* blobs_out);
// A Sequence is a heterogeneous collections of elements. It can contain
// scalar Python types, lists, tuples, dictionaries, tensors and sparse tensors.
class SequenceBuilder {
public:
explicit SequenceBuilder(MemoryPool* pool = default_memory_pool())
: pool_(pool),
types_(::arrow::int8(), pool),
offsets_(::arrow::int32(), pool),
type_map_(PythonType::NUM_PYTHON_TYPES, -1) {
auto null_builder = std::make_shared<NullBuilder>(pool);
auto initial_ty = dense_union({field("0", null())});
builder_.reset(new DenseUnionBuilder(pool, {null_builder}, initial_ty));
}
// Appending a none to the sequence
Status AppendNone() { return builder_->AppendNull(); }
template <typename BuilderType, typename MakeBuilderFn>
Status CreateAndUpdate(std::shared_ptr<BuilderType>* child_builder, int8_t tag,
MakeBuilderFn make_builder) {
if (!*child_builder) {
child_builder->reset(make_builder());
std::ostringstream convert;
convert.imbue(std::locale::classic());
convert << static_cast<int>(tag);
type_map_[tag] = builder_->AppendChild(*child_builder, convert.str());
}
return builder_->Append(type_map_[tag]);
}
template <typename BuilderType, typename T>
Status AppendPrimitive(std::shared_ptr<BuilderType>* child_builder, const T val,
int8_t tag) {
RETURN_NOT_OK(
CreateAndUpdate(child_builder, tag, [this]() { return new BuilderType(pool_); }));
return (*child_builder)->Append(val);
}
// Appending a boolean to the sequence
Status AppendBool(const bool data) {
return AppendPrimitive(&bools_, data, PythonType::BOOL);
}
// Appending an int64_t to the sequence
Status AppendInt64(const int64_t data) {
return AppendPrimitive(&ints_, data, PythonType::INT);
}
// Append a list of bytes to the sequence
Status AppendBytes(const uint8_t* data, int32_t length) {
RETURN_NOT_OK(CreateAndUpdate(&bytes_, PythonType::BYTES,
[this]() { return new BinaryBuilder(pool_); }));
return bytes_->Append(data, length);
}
// Appending a string to the sequence
Status AppendString(const char* data, int32_t length) {
RETURN_NOT_OK(CreateAndUpdate(&strings_, PythonType::STRING,
[this]() { return new StringBuilder(pool_); }));
return strings_->Append(data, length);
}
// Appending a half_float to the sequence
Status AppendHalfFloat(const npy_half data) {
return AppendPrimitive(&half_floats_, data, PythonType::HALF_FLOAT);
}
// Appending a float to the sequence
Status AppendFloat(const float data) {
return AppendPrimitive(&floats_, data, PythonType::FLOAT);
}
// Appending a double to the sequence
Status AppendDouble(const double data) {
return AppendPrimitive(&doubles_, data, PythonType::DOUBLE);
}
// Appending a Date64 timestamp to the sequence
Status AppendDate64(const int64_t timestamp) {
return AppendPrimitive(&date64s_, timestamp, PythonType::DATE64);
}
// Appending a tensor to the sequence
//
// \param tensor_index Index of the tensor in the object.
Status AppendTensor(const int32_t tensor_index) {
RETURN_NOT_OK(CreateAndUpdate(&tensor_indices_, PythonType::TENSOR,
[this]() { return new Int32Builder(pool_); }));
return tensor_indices_->Append(tensor_index);
}
// Appending a sparse coo tensor to the sequence
//
// \param sparse_coo_tensor_index Index of the sparse coo tensor in the object.
Status AppendSparseCOOTensor(const int32_t sparse_coo_tensor_index) {
RETURN_NOT_OK(CreateAndUpdate(&sparse_coo_tensor_indices_,
PythonType::SPARSECOOTENSOR,
[this]() { return new Int32Builder(pool_); }));
return sparse_coo_tensor_indices_->Append(sparse_coo_tensor_index);
}
// Appending a sparse csr matrix to the sequence
//
// \param sparse_csr_matrix_index Index of the sparse csr matrix in the object.
Status AppendSparseCSRMatrix(const int32_t sparse_csr_matrix_index) {
RETURN_NOT_OK(CreateAndUpdate(&sparse_csr_matrix_indices_,
PythonType::SPARSECSRMATRIX,
[this]() { return new Int32Builder(pool_); }));
return sparse_csr_matrix_indices_->Append(sparse_csr_matrix_index);
}
// Appending a sparse csc matrix to the sequence
//
// \param sparse_csc_matrix_index Index of the sparse csc matrix in the object.
Status AppendSparseCSCMatrix(const int32_t sparse_csc_matrix_index) {
RETURN_NOT_OK(CreateAndUpdate(&sparse_csc_matrix_indices_,
PythonType::SPARSECSCMATRIX,
[this]() { return new Int32Builder(pool_); }));
return sparse_csc_matrix_indices_->Append(sparse_csc_matrix_index);
}
// Appending a sparse csf tensor to the sequence
//
// \param sparse_csf_tensor_index Index of the sparse csf tensor in the object.
Status AppendSparseCSFTensor(const int32_t sparse_csf_tensor_index) {
RETURN_NOT_OK(CreateAndUpdate(&sparse_csf_tensor_indices_,
PythonType::SPARSECSFTENSOR,
[this]() { return new Int32Builder(pool_); }));
return sparse_csf_tensor_indices_->Append(sparse_csf_tensor_index);
}
// Appending a numpy ndarray to the sequence
//
// \param tensor_index Index of the tensor in the object.
Status AppendNdarray(const int32_t ndarray_index) {
RETURN_NOT_OK(CreateAndUpdate(&ndarray_indices_, PythonType::NDARRAY,
[this]() { return new Int32Builder(pool_); }));
return ndarray_indices_->Append(ndarray_index);
}
// Appending a buffer to the sequence
//
// \param buffer_index Index of the buffer in the object.
Status AppendBuffer(const int32_t buffer_index) {
RETURN_NOT_OK(CreateAndUpdate(&buffer_indices_, PythonType::BUFFER,
[this]() { return new Int32Builder(pool_); }));
return buffer_indices_->Append(buffer_index);
}
Status AppendSequence(PyObject* context, PyObject* sequence, int8_t tag,
std::shared_ptr<ListBuilder>& target_sequence,
std::unique_ptr<SequenceBuilder>& values, int32_t recursion_depth,
SerializedPyObject* blobs_out) {
if (recursion_depth >= kMaxRecursionDepth) {
return Status::NotImplemented(
"This object exceeds the maximum recursion depth. It may contain itself "
"recursively.");
}
RETURN_NOT_OK(CreateAndUpdate(&target_sequence, tag, [this, &values]() {
values.reset(new SequenceBuilder(pool_));
return new ListBuilder(pool_, values->builder());
}));
RETURN_NOT_OK(target_sequence->Append());
return internal::VisitIterable(
sequence, [&](PyObject* obj, bool* keep_going /* unused */) {
return Append(context, obj, values.get(), recursion_depth, blobs_out);
});
}
Status AppendList(PyObject* context, PyObject* list, int32_t recursion_depth,
SerializedPyObject* blobs_out) {
return AppendSequence(context, list, PythonType::LIST, lists_, list_values_,
recursion_depth + 1, blobs_out);
}
Status AppendTuple(PyObject* context, PyObject* tuple, int32_t recursion_depth,
SerializedPyObject* blobs_out) {
return AppendSequence(context, tuple, PythonType::TUPLE, tuples_, tuple_values_,
recursion_depth + 1, blobs_out);
}
Status AppendSet(PyObject* context, PyObject* set, int32_t recursion_depth,
SerializedPyObject* blobs_out) {
return AppendSequence(context, set, PythonType::SET, sets_, set_values_,
recursion_depth + 1, blobs_out);
}
Status AppendDict(PyObject* context, PyObject* dict, int32_t recursion_depth,
SerializedPyObject* blobs_out);
// Finish building the sequence and return the result.
// Input arrays may be nullptr
Status Finish(std::shared_ptr<Array>* out) { return builder_->Finish(out); }
std::shared_ptr<DenseUnionBuilder> builder() { return builder_; }
private:
MemoryPool* pool_;
Int8Builder types_;
Int32Builder offsets_;
/// Mapping from PythonType to child index
std::vector<int8_t> type_map_;
std::shared_ptr<BooleanBuilder> bools_;
std::shared_ptr<Int64Builder> ints_;
std::shared_ptr<BinaryBuilder> bytes_;
std::shared_ptr<StringBuilder> strings_;
std::shared_ptr<HalfFloatBuilder> half_floats_;
std::shared_ptr<FloatBuilder> floats_;
std::shared_ptr<DoubleBuilder> doubles_;
std::shared_ptr<Date64Builder> date64s_;
std::unique_ptr<SequenceBuilder> list_values_;
std::shared_ptr<ListBuilder> lists_;
std::unique_ptr<DictBuilder> dict_values_;
std::shared_ptr<ListBuilder> dicts_;
std::unique_ptr<SequenceBuilder> tuple_values_;
std::shared_ptr<ListBuilder> tuples_;
std::unique_ptr<SequenceBuilder> set_values_;
std::shared_ptr<ListBuilder> sets_;
std::shared_ptr<Int32Builder> tensor_indices_;
std::shared_ptr<Int32Builder> sparse_coo_tensor_indices_;
std::shared_ptr<Int32Builder> sparse_csr_matrix_indices_;
std::shared_ptr<Int32Builder> sparse_csc_matrix_indices_;
std::shared_ptr<Int32Builder> sparse_csf_tensor_indices_;
std::shared_ptr<Int32Builder> ndarray_indices_;
std::shared_ptr<Int32Builder> buffer_indices_;
std::shared_ptr<DenseUnionBuilder> builder_;
};
// Constructing dictionaries of key/value pairs. Sequences of
// keys and values are built separately using a pair of
// SequenceBuilders. The resulting Arrow representation
// can be obtained via the Finish method.
class DictBuilder {
public:
explicit DictBuilder(MemoryPool* pool = nullptr) : keys_(pool), vals_(pool) {
builder_.reset(new StructBuilder(struct_({field("keys", dense_union(FieldVector{})),
field("vals", dense_union(FieldVector{}))}),
pool, {keys_.builder(), vals_.builder()}));
}
// Builder for the keys of the dictionary
SequenceBuilder& keys() { return keys_; }
// Builder for the values of the dictionary
SequenceBuilder& vals() { return vals_; }
// Construct an Arrow StructArray representing the dictionary.
// Contains a field "keys" for the keys and "vals" for the values.
Status Finish(std::shared_ptr<Array>* out) { return builder_->Finish(out); }
std::shared_ptr<StructBuilder> builder() { return builder_; }
private:
SequenceBuilder keys_;
SequenceBuilder vals_;
std::shared_ptr<StructBuilder> builder_;
};
Status SequenceBuilder::AppendDict(PyObject* context, PyObject* dict,
int32_t recursion_depth,
SerializedPyObject* blobs_out) {
if (recursion_depth >= kMaxRecursionDepth) {
return Status::NotImplemented(
"This object exceeds the maximum recursion depth. It may contain itself "
"recursively.");
}
RETURN_NOT_OK(CreateAndUpdate(&dicts_, PythonType::DICT, [this]() {
dict_values_.reset(new DictBuilder(pool_));
return new ListBuilder(pool_, dict_values_->builder());
}));
RETURN_NOT_OK(dicts_->Append());
PyObject* key;
PyObject* value;
Py_ssize_t pos = 0;
while (PyDict_Next(dict, &pos, &key, &value)) {
RETURN_NOT_OK(dict_values_->builder()->Append());
RETURN_NOT_OK(
Append(context, key, &dict_values_->keys(), recursion_depth + 1, blobs_out));
RETURN_NOT_OK(
Append(context, value, &dict_values_->vals(), recursion_depth + 1, blobs_out));
}
// This block is used to decrement the reference counts of the results
// returned by the serialization callback, which is called in AppendArray,
// in DeserializeDict and in Append
static PyObject* py_type = PyUnicode_FromString("_pytype_");
if (PyDict_Contains(dict, py_type)) {
// If the dictionary contains the key "_pytype_", then the user has to
// have registered a callback.
if (context == Py_None) {
return Status::Invalid("No serialization callback set");
}
Py_XDECREF(dict);
}
return Status::OK();
}
Status CallCustomCallback(PyObject* context, PyObject* method_name, PyObject* elem,
PyObject** result) {
if (context == Py_None) {
*result = NULL;
return Status::SerializationError("error while calling callback on ",
internal::PyObject_StdStringRepr(elem),
": handler not registered");
} else {
*result = PyObject_CallMethodObjArgs(context, method_name, elem, NULL);
return CheckPyError();
}
}
Status CallSerializeCallback(PyObject* context, PyObject* value,
PyObject** serialized_object) {
OwnedRef method_name(PyUnicode_FromString("_serialize_callback"));
RETURN_NOT_OK(CallCustomCallback(context, method_name.obj(), value, serialized_object));
if (!PyDict_Check(*serialized_object)) {
return Status::TypeError("serialization callback must return a valid dictionary");
}
return Status::OK();
}
Status CallDeserializeCallback(PyObject* context, PyObject* value,
PyObject** deserialized_object) {
OwnedRef method_name(PyUnicode_FromString("_deserialize_callback"));
return CallCustomCallback(context, method_name.obj(), value, deserialized_object);
}
Status AppendArray(PyObject* context, PyArrayObject* array, SequenceBuilder* builder,
int32_t recursion_depth, SerializedPyObject* blobs_out);
template <typename NumpyScalarObject>
Status AppendIntegerScalar(PyObject* obj, SequenceBuilder* builder) {
int64_t value = reinterpret_cast<NumpyScalarObject*>(obj)->obval;
return builder->AppendInt64(value);
}
// Append a potentially 64-bit wide unsigned Numpy scalar.
// Must check for overflow as we reinterpret it as signed int64.
template <typename NumpyScalarObject>
Status AppendLargeUnsignedScalar(PyObject* obj, SequenceBuilder* builder) {
constexpr uint64_t max_value = std::numeric_limits<int64_t>::max();
uint64_t value = reinterpret_cast<NumpyScalarObject*>(obj)->obval;
if (value > max_value) {
return Status::Invalid("cannot serialize Numpy uint64 scalar >= 2**63");
}
return builder->AppendInt64(static_cast<int64_t>(value));
}
Status AppendScalar(PyObject* obj, SequenceBuilder* builder) {
if (PyArray_IsScalar(obj, Bool)) {
return builder->AppendBool(reinterpret_cast<PyBoolScalarObject*>(obj)->obval != 0);
} else if (PyArray_IsScalar(obj, Half)) {
return builder->AppendHalfFloat(reinterpret_cast<PyHalfScalarObject*>(obj)->obval);
} else if (PyArray_IsScalar(obj, Float)) {
return builder->AppendFloat(reinterpret_cast<PyFloatScalarObject*>(obj)->obval);
} else if (PyArray_IsScalar(obj, Double)) {
return builder->AppendDouble(reinterpret_cast<PyDoubleScalarObject*>(obj)->obval);
}
if (PyArray_IsScalar(obj, Byte)) {
return AppendIntegerScalar<PyByteScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, Short)) {
return AppendIntegerScalar<PyShortScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, Int)) {
return AppendIntegerScalar<PyIntScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, Long)) {
return AppendIntegerScalar<PyLongScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, LongLong)) {
return AppendIntegerScalar<PyLongLongScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, Int64)) {
return AppendIntegerScalar<PyInt64ScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, UByte)) {
return AppendIntegerScalar<PyUByteScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, UShort)) {
return AppendIntegerScalar<PyUShortScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, UInt)) {
return AppendIntegerScalar<PyUIntScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, ULong)) {
return AppendLargeUnsignedScalar<PyULongScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, ULongLong)) {
return AppendLargeUnsignedScalar<PyULongLongScalarObject>(obj, builder);
} else if (PyArray_IsScalar(obj, UInt64)) {
return AppendLargeUnsignedScalar<PyUInt64ScalarObject>(obj, builder);
}
return Status::NotImplemented("Numpy scalar type not recognized");
}
Status Append(PyObject* context, PyObject* elem, SequenceBuilder* builder,
int32_t recursion_depth, SerializedPyObject* blobs_out) {
// The bool case must precede the int case (PyInt_Check passes for bools)
if (PyBool_Check(elem)) {
RETURN_NOT_OK(builder->AppendBool(elem == Py_True));
} else if (PyArray_DescrFromScalar(elem)->type_num == NPY_HALF) {
npy_half halffloat = reinterpret_cast<PyHalfScalarObject*>(elem)->obval;
RETURN_NOT_OK(builder->AppendHalfFloat(halffloat));
} else if (PyFloat_Check(elem)) {
RETURN_NOT_OK(builder->AppendDouble(PyFloat_AS_DOUBLE(elem)));
} else if (PyLong_Check(elem)) {
int overflow = 0;
int64_t data = PyLong_AsLongLongAndOverflow(elem, &overflow);
if (!overflow) {
RETURN_NOT_OK(builder->AppendInt64(data));
} else {
// Attempt to serialize the object using the custom callback.
PyObject* serialized_object;
// The reference count of serialized_object will be decremented in SerializeDict
RETURN_NOT_OK(CallSerializeCallback(context, elem, &serialized_object));
RETURN_NOT_OK(
builder->AppendDict(context, serialized_object, recursion_depth, blobs_out));
}
} else if (PyBytes_Check(elem)) {
auto data = reinterpret_cast<uint8_t*>(PyBytes_AS_STRING(elem));
int32_t size = -1;
RETURN_NOT_OK(internal::CastSize(PyBytes_GET_SIZE(elem), &size));
RETURN_NOT_OK(builder->AppendBytes(data, size));
} else if (PyUnicode_Check(elem)) {
ARROW_ASSIGN_OR_RAISE(auto view, PyBytesView::FromUnicode(elem));
int32_t size = -1;
RETURN_NOT_OK(internal::CastSize(view.size, &size));
RETURN_NOT_OK(builder->AppendString(view.bytes, size));
} else if (PyList_CheckExact(elem)) {
RETURN_NOT_OK(builder->AppendList(context, elem, recursion_depth, blobs_out));
} else if (PyDict_CheckExact(elem)) {
RETURN_NOT_OK(builder->AppendDict(context, elem, recursion_depth, blobs_out));
} else if (PyTuple_CheckExact(elem)) {
RETURN_NOT_OK(builder->AppendTuple(context, elem, recursion_depth, blobs_out));
} else if (PySet_Check(elem)) {
RETURN_NOT_OK(builder->AppendSet(context, elem, recursion_depth, blobs_out));
} else if (PyArray_IsScalar(elem, Generic)) {
RETURN_NOT_OK(AppendScalar(elem, builder));
} else if (PyArray_CheckExact(elem)) {
RETURN_NOT_OK(AppendArray(context, reinterpret_cast<PyArrayObject*>(elem), builder,
recursion_depth, blobs_out));
} else if (elem == Py_None) {
RETURN_NOT_OK(builder->AppendNone());
} else if (PyDateTime_Check(elem)) {
PyDateTime_DateTime* datetime = reinterpret_cast<PyDateTime_DateTime*>(elem);
RETURN_NOT_OK(builder->AppendDate64(internal::PyDateTime_to_us(datetime)));
} else if (is_buffer(elem)) {
RETURN_NOT_OK(builder->AppendBuffer(static_cast<int32_t>(blobs_out->buffers.size())));
ARROW_ASSIGN_OR_RAISE(auto buffer, unwrap_buffer(elem));
blobs_out->buffers.push_back(buffer);
} else if (is_tensor(elem)) {
RETURN_NOT_OK(builder->AppendTensor(static_cast<int32_t>(blobs_out->tensors.size())));
ARROW_ASSIGN_OR_RAISE(auto tensor, unwrap_tensor(elem));
blobs_out->tensors.push_back(tensor);
} else if (is_sparse_coo_tensor(elem)) {
RETURN_NOT_OK(builder->AppendSparseCOOTensor(
static_cast<int32_t>(blobs_out->sparse_tensors.size())));
ARROW_ASSIGN_OR_RAISE(auto tensor, unwrap_sparse_coo_tensor(elem));
blobs_out->sparse_tensors.push_back(tensor);
} else if (is_sparse_csr_matrix(elem)) {
RETURN_NOT_OK(builder->AppendSparseCSRMatrix(
static_cast<int32_t>(blobs_out->sparse_tensors.size())));
ARROW_ASSIGN_OR_RAISE(auto matrix, unwrap_sparse_csr_matrix(elem));
blobs_out->sparse_tensors.push_back(matrix);
} else if (is_sparse_csc_matrix(elem)) {
RETURN_NOT_OK(builder->AppendSparseCSCMatrix(
static_cast<int32_t>(blobs_out->sparse_tensors.size())));
ARROW_ASSIGN_OR_RAISE(auto matrix, unwrap_sparse_csc_matrix(elem));
blobs_out->sparse_tensors.push_back(matrix);
} else if (is_sparse_csf_tensor(elem)) {
RETURN_NOT_OK(builder->AppendSparseCSFTensor(
static_cast<int32_t>(blobs_out->sparse_tensors.size())));
ARROW_ASSIGN_OR_RAISE(auto tensor, unwrap_sparse_csf_tensor(elem));
blobs_out->sparse_tensors.push_back(tensor);
} else {
// Attempt to serialize the object using the custom callback.
PyObject* serialized_object;
// The reference count of serialized_object will be decremented in SerializeDict
RETURN_NOT_OK(CallSerializeCallback(context, elem, &serialized_object));
RETURN_NOT_OK(
builder->AppendDict(context, serialized_object, recursion_depth, blobs_out));
}
return Status::OK();
}
Status AppendArray(PyObject* context, PyArrayObject* array, SequenceBuilder* builder,
int32_t recursion_depth, SerializedPyObject* blobs_out) {
int dtype = PyArray_TYPE(array);
switch (dtype) {
case NPY_UINT8:
case NPY_INT8:
case NPY_UINT16:
case NPY_INT16:
case NPY_UINT32:
case NPY_INT32:
case NPY_UINT64:
case NPY_INT64:
case NPY_HALF:
case NPY_FLOAT:
case NPY_DOUBLE: {
RETURN_NOT_OK(
builder->AppendNdarray(static_cast<int32_t>(blobs_out->ndarrays.size())));
std::shared_ptr<Tensor> tensor;
RETURN_NOT_OK(NdarrayToTensor(default_memory_pool(),
reinterpret_cast<PyObject*>(array), {}, &tensor));
blobs_out->ndarrays.push_back(tensor);
} break;
default: {
PyObject* serialized_object;
// The reference count of serialized_object will be decremented in SerializeDict
RETURN_NOT_OK(CallSerializeCallback(context, reinterpret_cast<PyObject*>(array),
&serialized_object));
RETURN_NOT_OK(builder->AppendDict(context, serialized_object, recursion_depth + 1,
blobs_out));
}
}
return Status::OK();
}
std::shared_ptr<RecordBatch> MakeBatch(std::shared_ptr<Array> data) {
auto field = std::make_shared<Field>("list", data->type());
auto schema = ::arrow::schema({field});
return RecordBatch::Make(schema, data->length(), {data});
}
Status SerializeObject(PyObject* context, PyObject* sequence, SerializedPyObject* out) {
PyAcquireGIL lock;
SequenceBuilder builder;
RETURN_NOT_OK(internal::VisitIterable(
sequence, [&](PyObject* obj, bool* keep_going /* unused */) {
return Append(context, obj, &builder, 0, out);
}));
std::shared_ptr<Array> array;
RETURN_NOT_OK(builder.Finish(&array));
out->batch = MakeBatch(array);
return Status::OK();
}
Status SerializeNdarray(std::shared_ptr<Tensor> tensor, SerializedPyObject* out) {
std::shared_ptr<Array> array;
SequenceBuilder builder;
RETURN_NOT_OK(builder.AppendNdarray(static_cast<int32_t>(out->ndarrays.size())));
out->ndarrays.push_back(tensor);
RETURN_NOT_OK(builder.Finish(&array));
out->batch = MakeBatch(array);
return Status::OK();
}
Status WriteNdarrayHeader(std::shared_ptr<DataType> dtype,
const std::vector<int64_t>& shape, int64_t tensor_num_bytes,
io::OutputStream* dst) {
auto empty_tensor = std::make_shared<Tensor>(
dtype, std::make_shared<Buffer>(nullptr, tensor_num_bytes), shape);
SerializedPyObject serialized_tensor;
RETURN_NOT_OK(SerializeNdarray(empty_tensor, &serialized_tensor));
return serialized_tensor.WriteTo(dst);
}
SerializedPyObject::SerializedPyObject()
: ipc_options(ipc::IpcWriteOptions::Defaults()) {}
Status SerializedPyObject::WriteTo(io::OutputStream* dst) {
int32_t num_tensors = static_cast<int32_t>(this->tensors.size());
int32_t num_sparse_tensors = static_cast<int32_t>(this->sparse_tensors.size());
int32_t num_ndarrays = static_cast<int32_t>(this->ndarrays.size());
int32_t num_buffers = static_cast<int32_t>(this->buffers.size());
RETURN_NOT_OK(
dst->Write(reinterpret_cast<const uint8_t*>(&num_tensors), sizeof(int32_t)));
RETURN_NOT_OK(
dst->Write(reinterpret_cast<const uint8_t*>(&num_sparse_tensors), sizeof(int32_t)));
RETURN_NOT_OK(
dst->Write(reinterpret_cast<const uint8_t*>(&num_ndarrays), sizeof(int32_t)));
RETURN_NOT_OK(
dst->Write(reinterpret_cast<const uint8_t*>(&num_buffers), sizeof(int32_t)));
// Align stream to 8-byte offset
RETURN_NOT_OK(ipc::AlignStream(dst, ipc::kArrowIpcAlignment));
RETURN_NOT_OK(ipc::WriteRecordBatchStream({this->batch}, this->ipc_options, dst));
// Align stream to 64-byte offset so tensor bodies are 64-byte aligned
RETURN_NOT_OK(ipc::AlignStream(dst, ipc::kTensorAlignment));
int32_t metadata_length;
int64_t body_length;
for (const auto& tensor : this->tensors) {
RETURN_NOT_OK(ipc::WriteTensor(*tensor, dst, &metadata_length, &body_length));
RETURN_NOT_OK(ipc::AlignStream(dst, ipc::kTensorAlignment));
}
for (const auto& sparse_tensor : this->sparse_tensors) {
RETURN_NOT_OK(
ipc::WriteSparseTensor(*sparse_tensor, dst, &metadata_length, &body_length));
RETURN_NOT_OK(ipc::AlignStream(dst, ipc::kTensorAlignment));
}
for (const auto& tensor : this->ndarrays) {
RETURN_NOT_OK(ipc::WriteTensor(*tensor, dst, &metadata_length, &body_length));
RETURN_NOT_OK(ipc::AlignStream(dst, ipc::kTensorAlignment));
}
for (const auto& buffer : this->buffers) {
int64_t size = buffer->size();
RETURN_NOT_OK(dst->Write(reinterpret_cast<const uint8_t*>(&size), sizeof(int64_t)));
RETURN_NOT_OK(dst->Write(buffer->data(), size));
}
return Status::OK();
}
namespace {
Status CountSparseTensors(
const std::vector<std::shared_ptr<SparseTensor>>& sparse_tensors, PyObject** out) {
OwnedRef num_sparse_tensors(PyDict_New());
size_t num_coo = 0;
size_t num_csr = 0;
size_t num_csc = 0;
size_t num_csf = 0;
size_t ndim_csf = 0;
for (const auto& sparse_tensor : sparse_tensors) {
switch (sparse_tensor->format_id()) {
case SparseTensorFormat::COO:
++num_coo;
break;
case SparseTensorFormat::CSR:
++num_csr;
break;
case SparseTensorFormat::CSC:
++num_csc;
break;
case SparseTensorFormat::CSF:
++num_csf;
ndim_csf += sparse_tensor->ndim();
break;
}
}
PyDict_SetItemString(num_sparse_tensors.obj(), "coo", PyLong_FromSize_t(num_coo));
PyDict_SetItemString(num_sparse_tensors.obj(), "csr", PyLong_FromSize_t(num_csr));
PyDict_SetItemString(num_sparse_tensors.obj(), "csc", PyLong_FromSize_t(num_csc));
PyDict_SetItemString(num_sparse_tensors.obj(), "csf", PyLong_FromSize_t(num_csf));
PyDict_SetItemString(num_sparse_tensors.obj(), "ndim_csf", PyLong_FromSize_t(ndim_csf));
RETURN_IF_PYERROR();
*out = num_sparse_tensors.detach();
return Status::OK();
}
} // namespace
Status SerializedPyObject::GetComponents(MemoryPool* memory_pool, PyObject** out) {
PyAcquireGIL py_gil;
OwnedRef result(PyDict_New());
PyObject* buffers = PyList_New(0);
PyObject* num_sparse_tensors = nullptr;
// TODO(wesm): Not sure how pedantic we need to be about checking the return
// values of these functions. There are other places where we do not check
// PyDict_SetItem/SetItemString return value, but these failures would be
// quite esoteric
PyDict_SetItemString(result.obj(), "num_tensors",
PyLong_FromSize_t(this->tensors.size()));
RETURN_NOT_OK(CountSparseTensors(this->sparse_tensors, &num_sparse_tensors));
PyDict_SetItemString(result.obj(), "num_sparse_tensors", num_sparse_tensors);
PyDict_SetItemString(result.obj(), "ndim_csf", num_sparse_tensors);
PyDict_SetItemString(result.obj(), "num_ndarrays",
PyLong_FromSize_t(this->ndarrays.size()));
PyDict_SetItemString(result.obj(), "num_buffers",
PyLong_FromSize_t(this->buffers.size()));
PyDict_SetItemString(result.obj(), "data", buffers);
RETURN_IF_PYERROR();
Py_DECREF(buffers);
auto PushBuffer = [&buffers](const std::shared_ptr<Buffer>& buffer) {
PyObject* wrapped_buffer = wrap_buffer(buffer);
RETURN_IF_PYERROR();
if (PyList_Append(buffers, wrapped_buffer) < 0) {
Py_DECREF(wrapped_buffer);
RETURN_IF_PYERROR();
}
Py_DECREF(wrapped_buffer);
return Status::OK();
};
constexpr int64_t kInitialCapacity = 1024;
// Write the record batch describing the object structure
py_gil.release();
ARROW_ASSIGN_OR_RAISE(auto stream,
io::BufferOutputStream::Create(kInitialCapacity, memory_pool));
RETURN_NOT_OK(
ipc::WriteRecordBatchStream({this->batch}, this->ipc_options, stream.get()));
ARROW_ASSIGN_OR_RAISE(auto buffer, stream->Finish());
py_gil.acquire();
RETURN_NOT_OK(PushBuffer(buffer));
// For each tensor, get a metadata buffer and a buffer for the body
for (const auto& tensor : this->tensors) {
ARROW_ASSIGN_OR_RAISE(std::unique_ptr<ipc::Message> message,
ipc::GetTensorMessage(*tensor, memory_pool));
RETURN_NOT_OK(PushBuffer(message->metadata()));
RETURN_NOT_OK(PushBuffer(message->body()));
}
// For each sparse tensor, get a metadata buffer and buffers containing index and data
for (const auto& sparse_tensor : this->sparse_tensors) {
ipc::IpcPayload payload;
RETURN_NOT_OK(ipc::GetSparseTensorPayload(*sparse_tensor, memory_pool, &payload));
RETURN_NOT_OK(PushBuffer(payload.metadata));
for (const auto& body : payload.body_buffers) {
RETURN_NOT_OK(PushBuffer(body));
}
}
// For each ndarray, get a metadata buffer and a buffer for the body
for (const auto& ndarray : this->ndarrays) {
ARROW_ASSIGN_OR_RAISE(std::unique_ptr<ipc::Message> message,
ipc::GetTensorMessage(*ndarray, memory_pool));
RETURN_NOT_OK(PushBuffer(message->metadata()));
RETURN_NOT_OK(PushBuffer(message->body()));
}
for (const auto& buf : this->buffers) {
RETURN_NOT_OK(PushBuffer(buf));
}
*out = result.detach();
return Status::OK();
}
} // namespace py
} // namespace arrow
|