1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
|
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
/// EXPERIMENTAL: Metadata for n-dimensional sparse arrays, aka "sparse tensors".
/// Arrow implementations in general are not required to implement this type
include "Tensor.fbs";
namespace org.apache.arrow.flatbuf;
/// ----------------------------------------------------------------------
/// EXPERIMENTAL: Data structures for sparse tensors
/// Coordinate (COO) format of sparse tensor index.
///
/// COO's index list are represented as a NxM matrix,
/// where N is the number of non-zero values,
/// and M is the number of dimensions of a sparse tensor.
///
/// indicesBuffer stores the location and size of the data of this indices
/// matrix. The value type and the stride of the indices matrix is
/// specified in indicesType and indicesStrides fields.
///
/// For example, let X be a 2x3x4x5 tensor, and it has the following
/// 6 non-zero values:
/// ```text
/// X[0, 1, 2, 0] := 1
/// X[1, 1, 2, 3] := 2
/// X[0, 2, 1, 0] := 3
/// X[0, 1, 3, 0] := 4
/// X[0, 1, 2, 1] := 5
/// X[1, 2, 0, 4] := 6
/// ```
/// In COO format, the index matrix of X is the following 4x6 matrix:
/// ```text
/// [[0, 0, 0, 0, 1, 1],
/// [1, 1, 1, 2, 1, 2],
/// [2, 2, 3, 1, 2, 0],
/// [0, 1, 0, 0, 3, 4]]
/// ```
/// When isCanonical is true, the indices is sorted in lexicographical order
/// (row-major order), and it does not have duplicated entries. Otherwise,
/// the indices may not be sorted, or may have duplicated entries.
table SparseTensorIndexCOO {
/// The type of values in indicesBuffer
indicesType: Int (required);
/// Non-negative byte offsets to advance one value cell along each dimension
/// If omitted, default to row-major order (C-like).
indicesStrides: [long];
/// The location and size of the indices matrix's data
indicesBuffer: Buffer (required);
/// This flag is true if and only if the indices matrix is sorted in
/// row-major order, and does not have duplicated entries.
/// This sort order is the same as of Tensorflow's SparseTensor,
/// but it is inverse order of SciPy's canonical coo_matrix
/// (SciPy employs column-major order for its coo_matrix).
isCanonical: bool;
}
enum SparseMatrixCompressedAxis: short { Row, Column }
/// Compressed Sparse format, that is matrix-specific.
table SparseMatrixIndexCSX {
/// Which axis, row or column, is compressed
compressedAxis: SparseMatrixCompressedAxis;
/// The type of values in indptrBuffer
indptrType: Int (required);
/// indptrBuffer stores the location and size of indptr array that
/// represents the range of the rows.
/// The i-th row spans from `indptr[i]` to `indptr[i+1]` in the data.
/// The length of this array is 1 + (the number of rows), and the type
/// of index value is long.
///
/// For example, let X be the following 6x4 matrix:
/// ```text
/// X := [[0, 1, 2, 0],
/// [0, 0, 3, 0],
/// [0, 4, 0, 5],
/// [0, 0, 0, 0],
/// [6, 0, 7, 8],
/// [0, 9, 0, 0]].
/// ```
/// The array of non-zero values in X is:
/// ```text
/// values(X) = [1, 2, 3, 4, 5, 6, 7, 8, 9].
/// ```
/// And the indptr of X is:
/// ```text
/// indptr(X) = [0, 2, 3, 5, 5, 8, 10].
/// ```
indptrBuffer: Buffer (required);
/// The type of values in indicesBuffer
indicesType: Int (required);
/// indicesBuffer stores the location and size of the array that
/// contains the column indices of the corresponding non-zero values.
/// The type of index value is long.
///
/// For example, the indices of the above X is:
/// ```text
/// indices(X) = [1, 2, 2, 1, 3, 0, 2, 3, 1].
/// ```
/// Note that the indices are sorted in lexicographical order for each row.
indicesBuffer: Buffer (required);
}
/// Compressed Sparse Fiber (CSF) sparse tensor index.
table SparseTensorIndexCSF {
/// CSF is a generalization of compressed sparse row (CSR) index.
/// See [smith2017knl](http://shaden.io/pub-files/smith2017knl.pdf)
///
/// CSF index recursively compresses each dimension of a tensor into a set
/// of prefix trees. Each path from a root to leaf forms one tensor
/// non-zero index. CSF is implemented with two arrays of buffers and one
/// arrays of integers.
///
/// For example, let X be a 2x3x4x5 tensor and let it have the following
/// 8 non-zero values:
/// ```text
/// X[0, 0, 0, 1] := 1
/// X[0, 0, 0, 2] := 2
/// X[0, 1, 0, 0] := 3
/// X[0, 1, 0, 2] := 4
/// X[0, 1, 1, 0] := 5
/// X[1, 1, 1, 0] := 6
/// X[1, 1, 1, 1] := 7
/// X[1, 1, 1, 2] := 8
/// ```
/// As a prefix tree this would be represented as:
/// ```text
/// 0 1
/// / \ |
/// 0 1 1
/// / / \ |
/// 0 0 1 1
/// /| /| | /| |
/// 1 2 0 2 0 0 1 2
/// ```
/// The type of values in indptrBuffers
indptrType: Int (required);
/// indptrBuffers stores the sparsity structure.
/// Each two consecutive dimensions in a tensor correspond to a buffer in
/// indptrBuffers. A pair of consecutive values at `indptrBuffers[dim][i]`
/// and `indptrBuffers[dim][i + 1]` signify a range of nodes in
/// `indicesBuffers[dim + 1]` who are children of `indicesBuffers[dim][i]` node.
///
/// For example, the indptrBuffers for the above X is:
/// ```text
/// indptrBuffer(X) = [
/// [0, 2, 3],
/// [0, 1, 3, 4],
/// [0, 2, 4, 5, 8]
/// ].
/// ```
indptrBuffers: [Buffer] (required);
/// The type of values in indicesBuffers
indicesType: Int (required);
/// indicesBuffers stores values of nodes.
/// Each tensor dimension corresponds to a buffer in indicesBuffers.
/// For example, the indicesBuffers for the above X is:
/// ```text
/// indicesBuffer(X) = [
/// [0, 1],
/// [0, 1, 1],
/// [0, 0, 1, 1],
/// [1, 2, 0, 2, 0, 0, 1, 2]
/// ].
/// ```
indicesBuffers: [Buffer] (required);
/// axisOrder stores the sequence in which dimensions were traversed to
/// produce the prefix tree.
/// For example, the axisOrder for the above X is:
/// ```text
/// axisOrder(X) = [0, 1, 2, 3].
/// ```
axisOrder: [int] (required);
}
union SparseTensorIndex {
SparseTensorIndexCOO,
SparseMatrixIndexCSX,
SparseTensorIndexCSF
}
table SparseTensor {
/// The type of data contained in a value cell.
/// Currently only fixed-width value types are supported,
/// no strings or nested types.
type: Type (required);
/// The dimensions of the tensor, optionally named.
shape: [TensorDim] (required);
/// The number of non-zero values in a sparse tensor.
non_zero_length: long;
/// Sparse tensor index
sparseIndex: SparseTensorIndex (required);
/// The location and size of the tensor's data
data: Buffer (required);
}
root_type SparseTensor;
|