summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/benchmarks/common.py
blob: 48526a4054e96bc65a877969f9703fe28dce2951 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import codecs
import decimal
from functools import partial
import itertools
import sys
import unicodedata

import numpy as np

import pyarrow as pa


KILOBYTE = 1 << 10
MEGABYTE = KILOBYTE * KILOBYTE

DEFAULT_NONE_PROB = 0.3


def _multiplicate_sequence(base, target_size):
    q, r = divmod(target_size, len(base))
    return [base] * q + [base[:r]]


def get_random_bytes(n, seed=42):
    """
    Generate a random bytes object of size *n*.
    Note the result might be compressible.
    """
    rnd = np.random.RandomState(seed)
    # Computing a huge random bytestring can be costly, so we get at most
    # 100KB and duplicate the result as needed
    base_size = 100003
    q, r = divmod(n, base_size)
    if q == 0:
        result = rnd.bytes(r)
    else:
        base = rnd.bytes(base_size)
        result = b''.join(_multiplicate_sequence(base, n))
    assert len(result) == n
    return result


def get_random_ascii(n, seed=42):
    """
    Get a random ASCII-only unicode string of size *n*.
    """
    arr = np.frombuffer(get_random_bytes(n, seed=seed), dtype=np.int8) & 0x7f
    result, _ = codecs.ascii_decode(arr)
    assert isinstance(result, str)
    assert len(result) == n
    return result


def _random_unicode_letters(n, seed=42):
    """
    Generate a string of random unicode letters (slow).
    """
    def _get_more_candidates():
        return rnd.randint(0, sys.maxunicode, size=n).tolist()

    rnd = np.random.RandomState(seed)
    out = []
    candidates = []

    while len(out) < n:
        if not candidates:
            candidates = _get_more_candidates()
        ch = chr(candidates.pop())
        # XXX Do we actually care that the code points are valid?
        if unicodedata.category(ch)[0] == 'L':
            out.append(ch)
    return out


_1024_random_unicode_letters = _random_unicode_letters(1024)


def get_random_unicode(n, seed=42):
    """
    Get a random non-ASCII unicode string of size *n*.
    """
    indices = np.frombuffer(get_random_bytes(n * 2, seed=seed),
                            dtype=np.int16) & 1023
    unicode_arr = np.array(_1024_random_unicode_letters)[indices]

    result = ''.join(unicode_arr.tolist())
    assert len(result) == n, (len(result), len(unicode_arr))
    return result


class BuiltinsGenerator(object):

    def __init__(self, seed=42):
        self.rnd = np.random.RandomState(seed)

    def sprinkle(self, lst, prob, value):
        """
        Sprinkle *value* entries in list *lst* with likelihood *prob*.
        """
        for i, p in enumerate(self.rnd.random_sample(size=len(lst))):
            if p < prob:
                lst[i] = value

    def sprinkle_nones(self, lst, prob):
        """
        Sprinkle None entries in list *lst* with likelihood *prob*.
        """
        self.sprinkle(lst, prob, None)

    def generate_int_list(self, n, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of Python ints with *none_prob* probability of
        an entry being None.
        """
        data = list(range(n))
        self.sprinkle_nones(data, none_prob)
        return data

    def generate_float_list(self, n, none_prob=DEFAULT_NONE_PROB,
                            use_nan=False):
        """
        Generate a list of Python floats with *none_prob* probability of
        an entry being None (or NaN if *use_nan* is true).
        """
        # Make sure we get Python floats, not np.float64
        data = list(map(float, self.rnd.uniform(0.0, 1.0, n)))
        assert len(data) == n
        self.sprinkle(data, none_prob, value=float('nan') if use_nan else None)
        return data

    def generate_bool_list(self, n, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of Python bools with *none_prob* probability of
        an entry being None.
        """
        # Make sure we get Python bools, not np.bool_
        data = [bool(x >= 0.5) for x in self.rnd.uniform(0.0, 1.0, n)]
        assert len(data) == n
        self.sprinkle_nones(data, none_prob)
        return data

    def generate_decimal_list(self, n, none_prob=DEFAULT_NONE_PROB,
                              use_nan=False):
        """
        Generate a list of Python Decimals with *none_prob* probability of
        an entry being None (or NaN if *use_nan* is true).
        """
        data = [decimal.Decimal('%.9f' % f)
                for f in self.rnd.uniform(0.0, 1.0, n)]
        assert len(data) == n
        self.sprinkle(data, none_prob,
                      value=decimal.Decimal('nan') if use_nan else None)
        return data

    def generate_object_list(self, n, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of generic Python objects with *none_prob*
        probability of an entry being None.
        """
        data = [object() for i in range(n)]
        self.sprinkle_nones(data, none_prob)
        return data

    def _generate_varying_sequences(self, random_factory, n, min_size,
                                    max_size, none_prob):
        """
        Generate a list of *n* sequences of varying size between *min_size*
        and *max_size*, with *none_prob* probability of an entry being None.
        The base material for each sequence is obtained by calling
        `random_factory(<some size>)`
        """
        base_size = 10000
        base = random_factory(base_size + max_size)
        data = []
        for i in range(n):
            off = self.rnd.randint(base_size)
            if min_size == max_size:
                size = min_size
            else:
                size = self.rnd.randint(min_size, max_size + 1)
            data.append(base[off:off + size])
        self.sprinkle_nones(data, none_prob)
        assert len(data) == n
        return data

    def generate_fixed_binary_list(self, n, size, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of bytestrings with a fixed *size*.
        """
        return self._generate_varying_sequences(get_random_bytes, n,
                                                size, size, none_prob)

    def generate_varying_binary_list(self, n, min_size, max_size,
                                     none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of bytestrings with a random size between
        *min_size* and *max_size*.
        """
        return self._generate_varying_sequences(get_random_bytes, n,
                                                min_size, max_size, none_prob)

    def generate_ascii_string_list(self, n, min_size, max_size,
                                   none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of ASCII strings with a random size between
        *min_size* and *max_size*.
        """
        return self._generate_varying_sequences(get_random_ascii, n,
                                                min_size, max_size, none_prob)

    def generate_unicode_string_list(self, n, min_size, max_size,
                                     none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of unicode strings with a random size between
        *min_size* and *max_size*.
        """
        return self._generate_varying_sequences(get_random_unicode, n,
                                                min_size, max_size, none_prob)

    def generate_int_list_list(self, n, min_size, max_size,
                               none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of lists of Python ints with a random size between
        *min_size* and *max_size*.
        """
        return self._generate_varying_sequences(
            partial(self.generate_int_list, none_prob=none_prob),
            n, min_size, max_size, none_prob)

    def generate_tuple_list(self, n, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of tuples with random values.
        Each tuple has the form `(int value, float value, bool value)`
        """
        dicts = self.generate_dict_list(n, none_prob=none_prob)
        tuples = [(d.get('u'), d.get('v'), d.get('w'))
                  if d is not None else None
                  for d in dicts]
        assert len(tuples) == n
        return tuples

    def generate_dict_list(self, n, none_prob=DEFAULT_NONE_PROB):
        """
        Generate a list of dicts with random values.
        Each dict has the form

            `{'u': int value, 'v': float value, 'w': bool value}`
        """
        ints = self.generate_int_list(n, none_prob=none_prob)
        floats = self.generate_float_list(n, none_prob=none_prob)
        bools = self.generate_bool_list(n, none_prob=none_prob)
        dicts = []
        # Keep half the Nones, omit the other half
        keep_nones = itertools.cycle([True, False])
        for u, v, w in zip(ints, floats, bools):
            d = {}
            if u is not None or next(keep_nones):
                d['u'] = u
            if v is not None or next(keep_nones):
                d['v'] = v
            if w is not None or next(keep_nones):
                d['w'] = w
            dicts.append(d)
        self.sprinkle_nones(dicts, none_prob)
        assert len(dicts) == n
        return dicts

    def get_type_and_builtins(self, n, type_name):
        """
        Return a `(arrow type, list)` tuple where the arrow type
        corresponds to the given logical *type_name*, and the list
        is a list of *n* random-generated Python objects compatible
        with the arrow type.
        """
        size = None

        if type_name in ('bool', 'decimal', 'ascii', 'unicode', 'int64 list'):
            kind = type_name
        elif type_name.startswith(('int', 'uint')):
            kind = 'int'
        elif type_name.startswith('float'):
            kind = 'float'
        elif type_name.startswith('struct'):
            kind = 'struct'
        elif type_name == 'binary':
            kind = 'varying binary'
        elif type_name.startswith('binary'):
            kind = 'fixed binary'
            size = int(type_name[6:])
            assert size > 0
        else:
            raise ValueError("unrecognized type %r" % (type_name,))

        if kind in ('int', 'float'):
            ty = getattr(pa, type_name)()
        elif kind == 'bool':
            ty = pa.bool_()
        elif kind == 'decimal':
            ty = pa.decimal128(9, 9)
        elif kind == 'fixed binary':
            ty = pa.binary(size)
        elif kind == 'varying binary':
            ty = pa.binary()
        elif kind in ('ascii', 'unicode'):
            ty = pa.string()
        elif kind == 'int64 list':
            ty = pa.list_(pa.int64())
        elif kind == 'struct':
            ty = pa.struct([pa.field('u', pa.int64()),
                            pa.field('v', pa.float64()),
                            pa.field('w', pa.bool_())])

        factories = {
            'int': self.generate_int_list,
            'float': self.generate_float_list,
            'bool': self.generate_bool_list,
            'decimal': self.generate_decimal_list,
            'fixed binary': partial(self.generate_fixed_binary_list,
                                    size=size),
            'varying binary': partial(self.generate_varying_binary_list,
                                      min_size=3, max_size=40),
            'ascii': partial(self.generate_ascii_string_list,
                             min_size=3, max_size=40),
            'unicode': partial(self.generate_unicode_string_list,
                               min_size=3, max_size=40),
            'int64 list': partial(self.generate_int_list_list,
                                  min_size=0, max_size=20),
            'struct': self.generate_dict_list,
            'struct from tuples': self.generate_tuple_list,
        }
        data = factories[kind](n)
        return ty, data