summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/pyarrow/feather.py
blob: 2170a93c3765190fc2cadb5df01ba145f3129014 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


import os

from pyarrow.pandas_compat import _pandas_api  # noqa
from pyarrow.lib import (Codec, Table,  # noqa
                         concat_tables, schema)
import pyarrow.lib as ext
from pyarrow import _feather
from pyarrow._feather import FeatherError  # noqa: F401
from pyarrow.vendored.version import Version


def _check_pandas_version():
    if _pandas_api.loose_version < Version('0.17.0'):
        raise ImportError("feather requires pandas >= 0.17.0")


class FeatherDataset:
    """
    Encapsulates details of reading a list of Feather files.

    Parameters
    ----------
    path_or_paths : List[str]
        A list of file names
    validate_schema : bool, default True
        Check that individual file schemas are all the same / compatible
    """

    def __init__(self, path_or_paths, validate_schema=True):
        self.paths = path_or_paths
        self.validate_schema = validate_schema

    def read_table(self, columns=None):
        """
        Read multiple feather files as a single pyarrow.Table

        Parameters
        ----------
        columns : List[str]
            Names of columns to read from the file

        Returns
        -------
        pyarrow.Table
            Content of the file as a table (of columns)
        """
        _fil = read_table(self.paths[0], columns=columns)
        self._tables = [_fil]
        self.schema = _fil.schema

        for path in self.paths[1:]:
            table = read_table(path, columns=columns)
            if self.validate_schema:
                self.validate_schemas(path, table)
            self._tables.append(table)
        return concat_tables(self._tables)

    def validate_schemas(self, piece, table):
        if not self.schema.equals(table.schema):
            raise ValueError('Schema in {!s} was different. \n'
                             '{!s}\n\nvs\n\n{!s}'
                             .format(piece, self.schema,
                                     table.schema))

    def read_pandas(self, columns=None, use_threads=True):
        """
        Read multiple Parquet files as a single pandas DataFrame

        Parameters
        ----------
        columns : List[str]
            Names of columns to read from the file
        use_threads : bool, default True
            Use multiple threads when converting to pandas

        Returns
        -------
        pandas.DataFrame
            Content of the file as a pandas DataFrame (of columns)
        """
        _check_pandas_version()
        return self.read_table(columns=columns).to_pandas(
            use_threads=use_threads)


def check_chunked_overflow(name, col):
    if col.num_chunks == 1:
        return

    if col.type in (ext.binary(), ext.string()):
        raise ValueError("Column '{}' exceeds 2GB maximum capacity of "
                         "a Feather binary column. This restriction may be "
                         "lifted in the future".format(name))
    else:
        # TODO(wesm): Not sure when else this might be reached
        raise ValueError("Column '{}' of type {} was chunked on conversion "
                         "to Arrow and cannot be currently written to "
                         "Feather format".format(name, str(col.type)))


_FEATHER_SUPPORTED_CODECS = {'lz4', 'zstd', 'uncompressed'}


def write_feather(df, dest, compression=None, compression_level=None,
                  chunksize=None, version=2):
    """
    Write a pandas.DataFrame to Feather format.

    Parameters
    ----------
    df : pandas.DataFrame or pyarrow.Table
        Data to write out as Feather format.
    dest : str
        Local destination path.
    compression : string, default None
        Can be one of {"zstd", "lz4", "uncompressed"}. The default of None uses
        LZ4 for V2 files if it is available, otherwise uncompressed.
    compression_level : int, default None
        Use a compression level particular to the chosen compressor. If None
        use the default compression level
    chunksize : int, default None
        For V2 files, the internal maximum size of Arrow RecordBatch chunks
        when writing the Arrow IPC file format. None means use the default,
        which is currently 64K
    version : int, default 2
        Feather file version. Version 2 is the current. Version 1 is the more
        limited legacy format
    """
    if _pandas_api.have_pandas:
        _check_pandas_version()
        if (_pandas_api.has_sparse and
                isinstance(df, _pandas_api.pd.SparseDataFrame)):
            df = df.to_dense()

    if _pandas_api.is_data_frame(df):
        table = Table.from_pandas(df, preserve_index=False)

        if version == 1:
            # Version 1 does not chunking
            for i, name in enumerate(table.schema.names):
                col = table[i]
                check_chunked_overflow(name, col)
    else:
        table = df

    if version == 1:
        if len(table.column_names) > len(set(table.column_names)):
            raise ValueError("cannot serialize duplicate column names")

        if compression is not None:
            raise ValueError("Feather V1 files do not support compression "
                             "option")

        if chunksize is not None:
            raise ValueError("Feather V1 files do not support chunksize "
                             "option")
    else:
        if compression is None and Codec.is_available('lz4_frame'):
            compression = 'lz4'
        elif (compression is not None and
              compression not in _FEATHER_SUPPORTED_CODECS):
            raise ValueError('compression="{}" not supported, must be '
                             'one of {}'.format(compression,
                                                _FEATHER_SUPPORTED_CODECS))

    try:
        _feather.write_feather(table, dest, compression=compression,
                               compression_level=compression_level,
                               chunksize=chunksize, version=version)
    except Exception:
        if isinstance(dest, str):
            try:
                os.remove(dest)
            except os.error:
                pass
        raise


def read_feather(source, columns=None, use_threads=True, memory_map=True):
    """
    Read a pandas.DataFrame from Feather format. To read as pyarrow.Table use
    feather.read_table.

    Parameters
    ----------
    source : str file path, or file-like object
    columns : sequence, optional
        Only read a specific set of columns. If not provided, all columns are
        read.
    use_threads : bool, default True
        Whether to parallelize reading using multiple threads. If false the
        restriction is only used in the conversion to Pandas and not in the
        reading from Feather format.
    memory_map : boolean, default True
        Use memory mapping when opening file on disk

    Returns
    -------
    df : pandas.DataFrame
    """
    _check_pandas_version()
    return (read_table(source, columns=columns, memory_map=memory_map)
            .to_pandas(use_threads=use_threads))


def read_table(source, columns=None, memory_map=True):
    """
    Read a pyarrow.Table from Feather format

    Parameters
    ----------
    source : str file path, or file-like object
    columns : sequence, optional
        Only read a specific set of columns. If not provided, all columns are
        read.
    memory_map : boolean, default True
        Use memory mapping when opening file on disk

    Returns
    -------
    table : pyarrow.Table
    """
    reader = _feather.FeatherReader(source, use_memory_map=memory_map)

    if columns is None:
        return reader.read()

    column_types = [type(column) for column in columns]
    if all(map(lambda t: t == int, column_types)):
        table = reader.read_indices(columns)
    elif all(map(lambda t: t == str, column_types)):
        table = reader.read_names(columns)
    else:
        column_type_names = [t.__name__ for t in column_types]
        raise TypeError("Columns must be indices or names. "
                        "Got columns {} of types {}"
                        .format(columns, column_type_names))

    # Feather v1 already respects the column selection
    if reader.version < 3:
        return table
    # Feather v2 reads with sorted / deduplicated selection
    elif sorted(set(columns)) == columns:
        return table
    else:
        # follow exact order / selection of names
        return table.select(columns)