1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
from pyarrow.pandas_compat import _pandas_api # noqa
from pyarrow.lib import (Codec, Table, # noqa
concat_tables, schema)
import pyarrow.lib as ext
from pyarrow import _feather
from pyarrow._feather import FeatherError # noqa: F401
from pyarrow.vendored.version import Version
def _check_pandas_version():
if _pandas_api.loose_version < Version('0.17.0'):
raise ImportError("feather requires pandas >= 0.17.0")
class FeatherDataset:
"""
Encapsulates details of reading a list of Feather files.
Parameters
----------
path_or_paths : List[str]
A list of file names
validate_schema : bool, default True
Check that individual file schemas are all the same / compatible
"""
def __init__(self, path_or_paths, validate_schema=True):
self.paths = path_or_paths
self.validate_schema = validate_schema
def read_table(self, columns=None):
"""
Read multiple feather files as a single pyarrow.Table
Parameters
----------
columns : List[str]
Names of columns to read from the file
Returns
-------
pyarrow.Table
Content of the file as a table (of columns)
"""
_fil = read_table(self.paths[0], columns=columns)
self._tables = [_fil]
self.schema = _fil.schema
for path in self.paths[1:]:
table = read_table(path, columns=columns)
if self.validate_schema:
self.validate_schemas(path, table)
self._tables.append(table)
return concat_tables(self._tables)
def validate_schemas(self, piece, table):
if not self.schema.equals(table.schema):
raise ValueError('Schema in {!s} was different. \n'
'{!s}\n\nvs\n\n{!s}'
.format(piece, self.schema,
table.schema))
def read_pandas(self, columns=None, use_threads=True):
"""
Read multiple Parquet files as a single pandas DataFrame
Parameters
----------
columns : List[str]
Names of columns to read from the file
use_threads : bool, default True
Use multiple threads when converting to pandas
Returns
-------
pandas.DataFrame
Content of the file as a pandas DataFrame (of columns)
"""
_check_pandas_version()
return self.read_table(columns=columns).to_pandas(
use_threads=use_threads)
def check_chunked_overflow(name, col):
if col.num_chunks == 1:
return
if col.type in (ext.binary(), ext.string()):
raise ValueError("Column '{}' exceeds 2GB maximum capacity of "
"a Feather binary column. This restriction may be "
"lifted in the future".format(name))
else:
# TODO(wesm): Not sure when else this might be reached
raise ValueError("Column '{}' of type {} was chunked on conversion "
"to Arrow and cannot be currently written to "
"Feather format".format(name, str(col.type)))
_FEATHER_SUPPORTED_CODECS = {'lz4', 'zstd', 'uncompressed'}
def write_feather(df, dest, compression=None, compression_level=None,
chunksize=None, version=2):
"""
Write a pandas.DataFrame to Feather format.
Parameters
----------
df : pandas.DataFrame or pyarrow.Table
Data to write out as Feather format.
dest : str
Local destination path.
compression : string, default None
Can be one of {"zstd", "lz4", "uncompressed"}. The default of None uses
LZ4 for V2 files if it is available, otherwise uncompressed.
compression_level : int, default None
Use a compression level particular to the chosen compressor. If None
use the default compression level
chunksize : int, default None
For V2 files, the internal maximum size of Arrow RecordBatch chunks
when writing the Arrow IPC file format. None means use the default,
which is currently 64K
version : int, default 2
Feather file version. Version 2 is the current. Version 1 is the more
limited legacy format
"""
if _pandas_api.have_pandas:
_check_pandas_version()
if (_pandas_api.has_sparse and
isinstance(df, _pandas_api.pd.SparseDataFrame)):
df = df.to_dense()
if _pandas_api.is_data_frame(df):
table = Table.from_pandas(df, preserve_index=False)
if version == 1:
# Version 1 does not chunking
for i, name in enumerate(table.schema.names):
col = table[i]
check_chunked_overflow(name, col)
else:
table = df
if version == 1:
if len(table.column_names) > len(set(table.column_names)):
raise ValueError("cannot serialize duplicate column names")
if compression is not None:
raise ValueError("Feather V1 files do not support compression "
"option")
if chunksize is not None:
raise ValueError("Feather V1 files do not support chunksize "
"option")
else:
if compression is None and Codec.is_available('lz4_frame'):
compression = 'lz4'
elif (compression is not None and
compression not in _FEATHER_SUPPORTED_CODECS):
raise ValueError('compression="{}" not supported, must be '
'one of {}'.format(compression,
_FEATHER_SUPPORTED_CODECS))
try:
_feather.write_feather(table, dest, compression=compression,
compression_level=compression_level,
chunksize=chunksize, version=version)
except Exception:
if isinstance(dest, str):
try:
os.remove(dest)
except os.error:
pass
raise
def read_feather(source, columns=None, use_threads=True, memory_map=True):
"""
Read a pandas.DataFrame from Feather format. To read as pyarrow.Table use
feather.read_table.
Parameters
----------
source : str file path, or file-like object
columns : sequence, optional
Only read a specific set of columns. If not provided, all columns are
read.
use_threads : bool, default True
Whether to parallelize reading using multiple threads. If false the
restriction is only used in the conversion to Pandas and not in the
reading from Feather format.
memory_map : boolean, default True
Use memory mapping when opening file on disk
Returns
-------
df : pandas.DataFrame
"""
_check_pandas_version()
return (read_table(source, columns=columns, memory_map=memory_map)
.to_pandas(use_threads=use_threads))
def read_table(source, columns=None, memory_map=True):
"""
Read a pyarrow.Table from Feather format
Parameters
----------
source : str file path, or file-like object
columns : sequence, optional
Only read a specific set of columns. If not provided, all columns are
read.
memory_map : boolean, default True
Use memory mapping when opening file on disk
Returns
-------
table : pyarrow.Table
"""
reader = _feather.FeatherReader(source, use_memory_map=memory_map)
if columns is None:
return reader.read()
column_types = [type(column) for column in columns]
if all(map(lambda t: t == int, column_types)):
table = reader.read_indices(columns)
elif all(map(lambda t: t == str, column_types)):
table = reader.read_names(columns)
else:
column_type_names = [t.__name__ for t in column_types]
raise TypeError("Columns must be indices or names. "
"Got columns {} of types {}"
.format(columns, column_type_names))
# Feather v1 already respects the column selection
if reader.version < 3:
return table
# Feather v2 reads with sorted / deduplicated selection
elif sorted(set(columns)) == columns:
return table
else:
# follow exact order / selection of names
return table.select(columns)
|