summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/pyarrow/ipc.py
blob: cb28a0b5fd43d5ddbb7c3c75ae65eb0d06bb2de4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

# Arrow file and stream reader/writer classes, and other messaging tools

import os

import pyarrow as pa

from pyarrow.lib import (IpcWriteOptions, ReadStats, WriteStats,  # noqa
                         Message, MessageReader,
                         RecordBatchReader, _ReadPandasMixin,
                         MetadataVersion,
                         read_message, read_record_batch, read_schema,
                         read_tensor, write_tensor,
                         get_record_batch_size, get_tensor_size)
import pyarrow.lib as lib


class RecordBatchStreamReader(lib._RecordBatchStreamReader):
    """
    Reader for the Arrow streaming binary format.

    Parameters
    ----------
    source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
        Either an in-memory buffer, or a readable file object.
    """

    def __init__(self, source):
        self._open(source)


_ipc_writer_class_doc = """\
Parameters
----------
sink : str, pyarrow.NativeFile, or file-like Python object
    Either a file path, or a writable file object.
schema : pyarrow.Schema
    The Arrow schema for data to be written to the file.
options : pyarrow.ipc.IpcWriteOptions
    Options for IPC serialization.

    If None, default values will be used: the legacy format will not
    be used unless overridden by setting the environment variable
    ARROW_PRE_0_15_IPC_FORMAT=1, and the V5 metadata version will be
    used unless overridden by setting the environment variable
    ARROW_PRE_1_0_METADATA_VERSION=1.
use_legacy_format : bool, default None
    Deprecated in favor of setting options. Cannot be provided with
    options.

    If None, False will be used unless this default is overridden by
    setting the environment variable ARROW_PRE_0_15_IPC_FORMAT=1"""


class RecordBatchStreamWriter(lib._RecordBatchStreamWriter):
    __doc__ = """Writer for the Arrow streaming binary format

{}""".format(_ipc_writer_class_doc)

    def __init__(self, sink, schema, *, use_legacy_format=None, options=None):
        options = _get_legacy_format_default(use_legacy_format, options)
        self._open(sink, schema, options=options)


class RecordBatchFileReader(lib._RecordBatchFileReader):
    """
    Class for reading Arrow record batch data from the Arrow binary file format

    Parameters
    ----------
    source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
        Either an in-memory buffer, or a readable file object
    footer_offset : int, default None
        If the file is embedded in some larger file, this is the byte offset to
        the very end of the file data
    """

    def __init__(self, source, footer_offset=None):
        self._open(source, footer_offset=footer_offset)


class RecordBatchFileWriter(lib._RecordBatchFileWriter):

    __doc__ = """Writer to create the Arrow binary file format

{}""".format(_ipc_writer_class_doc)

    def __init__(self, sink, schema, *, use_legacy_format=None, options=None):
        options = _get_legacy_format_default(use_legacy_format, options)
        self._open(sink, schema, options=options)


def _get_legacy_format_default(use_legacy_format, options):
    if use_legacy_format is not None and options is not None:
        raise ValueError(
            "Can provide at most one of options and use_legacy_format")
    elif options:
        if not isinstance(options, IpcWriteOptions):
            raise TypeError("expected IpcWriteOptions, got {}"
                            .format(type(options)))
        return options

    metadata_version = MetadataVersion.V5
    if use_legacy_format is None:
        use_legacy_format = \
            bool(int(os.environ.get('ARROW_PRE_0_15_IPC_FORMAT', '0')))
    if bool(int(os.environ.get('ARROW_PRE_1_0_METADATA_VERSION', '0'))):
        metadata_version = MetadataVersion.V4
    return IpcWriteOptions(use_legacy_format=use_legacy_format,
                           metadata_version=metadata_version)


def new_stream(sink, schema, *, use_legacy_format=None, options=None):
    return RecordBatchStreamWriter(sink, schema,
                                   use_legacy_format=use_legacy_format,
                                   options=options)


new_stream.__doc__ = """\
Create an Arrow columnar IPC stream writer instance

{}""".format(_ipc_writer_class_doc)


def open_stream(source):
    """
    Create reader for Arrow streaming format.

    Parameters
    ----------
    source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
        Either an in-memory buffer, or a readable file object.

    Returns
    -------
    reader : RecordBatchStreamReader
    """
    return RecordBatchStreamReader(source)


def new_file(sink, schema, *, use_legacy_format=None, options=None):
    return RecordBatchFileWriter(sink, schema,
                                 use_legacy_format=use_legacy_format,
                                 options=options)


new_file.__doc__ = """\
Create an Arrow columnar IPC file writer instance

{}""".format(_ipc_writer_class_doc)


def open_file(source, footer_offset=None):
    """
    Create reader for Arrow file format.

    Parameters
    ----------
    source : bytes/buffer-like, pyarrow.NativeFile, or file-like Python object
        Either an in-memory buffer, or a readable file object.
    footer_offset : int, default None
        If the file is embedded in some larger file, this is the byte offset to
        the very end of the file data.

    Returns
    -------
    reader : RecordBatchFileReader
    """
    return RecordBatchFileReader(source, footer_offset=footer_offset)


def serialize_pandas(df, *, nthreads=None, preserve_index=None):
    """
    Serialize a pandas DataFrame into a buffer protocol compatible object.

    Parameters
    ----------
    df : pandas.DataFrame
    nthreads : int, default None
        Number of threads to use for conversion to Arrow, default all CPUs.
    preserve_index : bool, default None
        The default of None will store the index as a column, except for
        RangeIndex which is stored as metadata only. If True, always
        preserve the pandas index data as a column. If False, no index
        information is saved and the result will have a default RangeIndex.

    Returns
    -------
    buf : buffer
        An object compatible with the buffer protocol.
    """
    batch = pa.RecordBatch.from_pandas(df, nthreads=nthreads,
                                       preserve_index=preserve_index)
    sink = pa.BufferOutputStream()
    with pa.RecordBatchStreamWriter(sink, batch.schema) as writer:
        writer.write_batch(batch)
    return sink.getvalue()


def deserialize_pandas(buf, *, use_threads=True):
    """Deserialize a buffer protocol compatible object into a pandas DataFrame.

    Parameters
    ----------
    buf : buffer
        An object compatible with the buffer protocol.
    use_threads : bool, default True
        Whether to parallelize the conversion using multiple threads.

    Returns
    -------
    df : pandas.DataFrame
    """
    buffer_reader = pa.BufferReader(buf)
    with pa.RecordBatchStreamReader(buffer_reader) as reader:
        table = reader.read_all()
    return table.to_pandas(use_threads=use_threads)