1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
# pandas lazy-loading API shim that reduces API call and import overhead
import warnings
cdef class _PandasAPIShim(object):
"""
Lazy pandas importer that isolates usages of pandas APIs and avoids
importing pandas until it's actually needed
"""
cdef:
bint _tried_importing_pandas
bint _have_pandas
cdef readonly:
object _loose_version, _version
object _pd, _types_api, _compat_module
object _data_frame, _index, _series, _categorical_type
object _datetimetz_type, _extension_array, _extension_dtype
object _array_like_types, _is_extension_array_dtype
bint has_sparse
bint _pd024
def __init__(self):
self._tried_importing_pandas = False
self._have_pandas = 0
cdef _import_pandas(self, bint raise_):
try:
import pandas as pd
import pyarrow.pandas_compat as pdcompat
except ImportError:
self._have_pandas = False
if raise_:
raise
else:
return
from pyarrow.vendored.version import Version
self._pd = pd
self._version = pd.__version__
self._loose_version = Version(pd.__version__)
if self._loose_version < Version('0.23.0'):
self._have_pandas = False
if raise_:
raise ImportError(
"pyarrow requires pandas 0.23.0 or above, pandas {} is "
"installed".format(self._version)
)
else:
warnings.warn(
"pyarrow requires pandas 0.23.0 or above, pandas {} is "
"installed. Therefore, pandas-specific integration is not "
"used.".format(self._version), stacklevel=2)
return
self._compat_module = pdcompat
self._data_frame = pd.DataFrame
self._index = pd.Index
self._categorical_type = pd.Categorical
self._series = pd.Series
self._extension_array = pd.api.extensions.ExtensionArray
self._array_like_types = (
self._series, self._index, self._categorical_type,
self._extension_array)
self._extension_dtype = pd.api.extensions.ExtensionDtype
if self._loose_version >= Version('0.24.0'):
self._is_extension_array_dtype = \
pd.api.types.is_extension_array_dtype
else:
self._is_extension_array_dtype = None
self._types_api = pd.api.types
self._datetimetz_type = pd.api.types.DatetimeTZDtype
self._have_pandas = True
if self._loose_version > Version('0.25'):
self.has_sparse = False
else:
self.has_sparse = True
self._pd024 = self._loose_version >= Version('0.24')
cdef inline _check_import(self, bint raise_=True):
if self._tried_importing_pandas:
if not self._have_pandas and raise_:
self._import_pandas(raise_)
return
self._tried_importing_pandas = True
self._import_pandas(raise_)
def series(self, *args, **kwargs):
self._check_import()
return self._series(*args, **kwargs)
def data_frame(self, *args, **kwargs):
self._check_import()
return self._data_frame(*args, **kwargs)
cdef inline bint _have_pandas_internal(self):
if not self._tried_importing_pandas:
self._check_import(raise_=False)
return self._have_pandas
@property
def have_pandas(self):
return self._have_pandas_internal()
@property
def compat(self):
self._check_import()
return self._compat_module
@property
def pd(self):
self._check_import()
return self._pd
cpdef infer_dtype(self, obj):
self._check_import()
try:
return self._types_api.infer_dtype(obj, skipna=False)
except AttributeError:
return self._pd.lib.infer_dtype(obj)
cpdef pandas_dtype(self, dtype):
self._check_import()
try:
return self._types_api.pandas_dtype(dtype)
except AttributeError:
return None
@property
def loose_version(self):
self._check_import()
return self._loose_version
@property
def version(self):
self._check_import()
return self._version
@property
def categorical_type(self):
self._check_import()
return self._categorical_type
@property
def datetimetz_type(self):
self._check_import()
return self._datetimetz_type
@property
def extension_dtype(self):
self._check_import()
return self._extension_dtype
cpdef is_array_like(self, obj):
self._check_import()
return isinstance(obj, self._array_like_types)
cpdef is_categorical(self, obj):
if self._have_pandas_internal():
return isinstance(obj, self._categorical_type)
else:
return False
cpdef is_datetimetz(self, obj):
if self._have_pandas_internal():
return isinstance(obj, self._datetimetz_type)
else:
return False
cpdef is_extension_array_dtype(self, obj):
self._check_import()
if self._is_extension_array_dtype:
return self._is_extension_array_dtype(obj)
else:
return False
cpdef is_sparse(self, obj):
if self._have_pandas_internal():
return self._types_api.is_sparse(obj)
else:
return False
cpdef is_data_frame(self, obj):
if self._have_pandas_internal():
return isinstance(obj, self._data_frame)
else:
return False
cpdef is_series(self, obj):
if self._have_pandas_internal():
return isinstance(obj, self._series)
else:
return False
cpdef is_index(self, obj):
if self._have_pandas_internal():
return isinstance(obj, self._index)
else:
return False
cpdef get_values(self, obj):
"""
Get the underlying array values of a pandas Series or Index in the
format (np.ndarray or pandas ExtensionArray) as we need them.
Assumes obj is a pandas Series or Index.
"""
self._check_import()
if isinstance(obj.dtype, (self.pd.api.types.IntervalDtype,
self.pd.api.types.PeriodDtype)):
if self._pd024:
# only since pandas 0.24, interval and period are stored as
# such in Series
return obj.array
return obj.values
def assert_frame_equal(self, *args, **kwargs):
self._check_import()
return self._pd.util.testing.assert_frame_equal
def get_rangeindex_attribute(self, level, name):
# public start/stop/step attributes added in pandas 0.25.0
self._check_import()
if hasattr(level, name):
return getattr(level, name)
return getattr(level, '_' + name)
cdef _PandasAPIShim pandas_api = _PandasAPIShim()
_pandas_api = pandas_api
|