1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import contextlib
import os
import pyarrow as pa
import shutil
import subprocess
import sys
import tempfile
import time
from pyarrow._plasma import (ObjectID, ObjectNotAvailable, # noqa
PlasmaBuffer, PlasmaClient, connect,
PlasmaObjectExists, PlasmaObjectNotFound,
PlasmaStoreFull)
# The Plasma TensorFlow Operator needs to be compiled on the end user's
# machine since the TensorFlow ABI is not stable between versions.
# The following code checks if the operator is already present. If not,
# the function build_plasma_tensorflow_op can be used to compile it.
TF_PLASMA_OP_PATH = os.path.join(pa.__path__[0], "tensorflow", "plasma_op.so")
tf_plasma_op = None
def load_plasma_tensorflow_op():
global tf_plasma_op
import tensorflow as tf
tf_plasma_op = tf.load_op_library(TF_PLASMA_OP_PATH)
def build_plasma_tensorflow_op():
global tf_plasma_op
try:
import tensorflow as tf
print("TensorFlow version: " + tf.__version__)
except ImportError:
pass
else:
print("Compiling Plasma TensorFlow Op...")
dir_path = os.path.dirname(os.path.realpath(__file__))
cc_path = os.path.join(dir_path, "tensorflow", "plasma_op.cc")
so_path = os.path.join(dir_path, "tensorflow", "plasma_op.so")
tf_cflags = tf.sysconfig.get_compile_flags()
if sys.platform == 'darwin':
tf_cflags = ["-undefined", "dynamic_lookup"] + tf_cflags
cmd = ["g++", "-std=c++11", "-g", "-shared", cc_path,
"-o", so_path, "-DNDEBUG", "-I" + pa.get_include()]
cmd += ["-L" + dir for dir in pa.get_library_dirs()]
cmd += ["-lplasma", "-larrow_python", "-larrow", "-fPIC"]
cmd += tf_cflags
cmd += tf.sysconfig.get_link_flags()
cmd += ["-O2"]
if tf.test.is_built_with_cuda():
cmd += ["-DGOOGLE_CUDA"]
print("Running command " + str(cmd))
subprocess.check_call(cmd)
tf_plasma_op = tf.load_op_library(TF_PLASMA_OP_PATH)
@contextlib.contextmanager
def start_plasma_store(plasma_store_memory,
use_valgrind=False, use_profiler=False,
plasma_directory=None, use_hugepages=False,
external_store=None):
"""Start a plasma store process.
Args:
plasma_store_memory (int): Capacity of the plasma store in bytes.
use_valgrind (bool): True if the plasma store should be started inside
of valgrind. If this is True, use_profiler must be False.
use_profiler (bool): True if the plasma store should be started inside
a profiler. If this is True, use_valgrind must be False.
plasma_directory (str): Directory where plasma memory mapped files
will be stored.
use_hugepages (bool): True if the plasma store should use huge pages.
external_store (str): External store to use for evicted objects.
Return:
A tuple of the name of the plasma store socket and the process ID of
the plasma store process.
"""
if use_valgrind and use_profiler:
raise Exception("Cannot use valgrind and profiler at the same time.")
tmpdir = tempfile.mkdtemp(prefix='test_plasma-')
try:
plasma_store_name = os.path.join(tmpdir, 'plasma.sock')
plasma_store_executable = os.path.join(
pa.__path__[0], "plasma-store-server")
if not os.path.exists(plasma_store_executable):
# Fallback to sys.prefix/bin/ (conda)
plasma_store_executable = os.path.join(
sys.prefix, "bin", "plasma-store-server")
command = [plasma_store_executable,
"-s", plasma_store_name,
"-m", str(plasma_store_memory)]
if plasma_directory:
command += ["-d", plasma_directory]
if use_hugepages:
command += ["-h"]
if external_store is not None:
command += ["-e", external_store]
stdout_file = None
stderr_file = None
if use_valgrind:
command = ["valgrind",
"--track-origins=yes",
"--leak-check=full",
"--show-leak-kinds=all",
"--leak-check-heuristics=stdstring",
"--error-exitcode=1"] + command
proc = subprocess.Popen(command, stdout=stdout_file,
stderr=stderr_file)
time.sleep(1.0)
elif use_profiler:
command = ["valgrind", "--tool=callgrind"] + command
proc = subprocess.Popen(command, stdout=stdout_file,
stderr=stderr_file)
time.sleep(1.0)
else:
proc = subprocess.Popen(command, stdout=stdout_file,
stderr=stderr_file)
time.sleep(0.1)
rc = proc.poll()
if rc is not None:
raise RuntimeError("plasma_store exited unexpectedly with "
"code %d" % (rc,))
yield plasma_store_name, proc
finally:
if proc.poll() is None:
proc.kill()
shutil.rmtree(tmpdir)
|