summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/pyarrow/tests/parquet/common.py
blob: 90bfb55d1e6d3ca8d724c0e1e530b2e42954f8ac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import io

import numpy as np
import pytest

import pyarrow as pa
from pyarrow.tests import util

parametrize_legacy_dataset = pytest.mark.parametrize(
    "use_legacy_dataset",
    [True, pytest.param(False, marks=pytest.mark.dataset)])
parametrize_legacy_dataset_not_supported = pytest.mark.parametrize(
    "use_legacy_dataset", [True, pytest.param(False, marks=pytest.mark.skip)])
parametrize_legacy_dataset_fixed = pytest.mark.parametrize(
    "use_legacy_dataset", [pytest.param(True, marks=pytest.mark.xfail),
                           pytest.param(False, marks=pytest.mark.dataset)])

# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet


def _write_table(table, path, **kwargs):
    # So we see the ImportError somewhere
    import pyarrow.parquet as pq
    from pyarrow.pandas_compat import _pandas_api

    if _pandas_api.is_data_frame(table):
        table = pa.Table.from_pandas(table)

    pq.write_table(table, path, **kwargs)
    return table


def _read_table(*args, **kwargs):
    import pyarrow.parquet as pq

    table = pq.read_table(*args, **kwargs)
    table.validate(full=True)
    return table


def _roundtrip_table(table, read_table_kwargs=None,
                     write_table_kwargs=None, use_legacy_dataset=True):
    read_table_kwargs = read_table_kwargs or {}
    write_table_kwargs = write_table_kwargs or {}

    writer = pa.BufferOutputStream()
    _write_table(table, writer, **write_table_kwargs)
    reader = pa.BufferReader(writer.getvalue())
    return _read_table(reader, use_legacy_dataset=use_legacy_dataset,
                       **read_table_kwargs)


def _check_roundtrip(table, expected=None, read_table_kwargs=None,
                     use_legacy_dataset=True, **write_table_kwargs):
    if expected is None:
        expected = table

    read_table_kwargs = read_table_kwargs or {}

    # intentionally check twice
    result = _roundtrip_table(table, read_table_kwargs=read_table_kwargs,
                              write_table_kwargs=write_table_kwargs,
                              use_legacy_dataset=use_legacy_dataset)
    assert result.equals(expected)
    result = _roundtrip_table(result, read_table_kwargs=read_table_kwargs,
                              write_table_kwargs=write_table_kwargs,
                              use_legacy_dataset=use_legacy_dataset)
    assert result.equals(expected)


def _roundtrip_pandas_dataframe(df, write_kwargs, use_legacy_dataset=True):
    table = pa.Table.from_pandas(df)
    result = _roundtrip_table(
        table, write_table_kwargs=write_kwargs,
        use_legacy_dataset=use_legacy_dataset)
    return result.to_pandas()


def _random_integers(size, dtype):
    # We do not generate integers outside the int64 range
    platform_int_info = np.iinfo('int_')
    iinfo = np.iinfo(dtype)
    return np.random.randint(max(iinfo.min, platform_int_info.min),
                             min(iinfo.max, platform_int_info.max),
                             size=size).astype(dtype)


def _test_dataframe(size=10000, seed=0):
    import pandas as pd

    np.random.seed(seed)
    df = pd.DataFrame({
        'uint8': _random_integers(size, np.uint8),
        'uint16': _random_integers(size, np.uint16),
        'uint32': _random_integers(size, np.uint32),
        'uint64': _random_integers(size, np.uint64),
        'int8': _random_integers(size, np.int8),
        'int16': _random_integers(size, np.int16),
        'int32': _random_integers(size, np.int32),
        'int64': _random_integers(size, np.int64),
        'float32': np.random.randn(size).astype(np.float32),
        'float64': np.arange(size, dtype=np.float64),
        'bool': np.random.randn(size) > 0,
        'strings': [util.rands(10) for i in range(size)],
        'all_none': [None] * size,
        'all_none_category': [None] * size
    })

    # TODO(PARQUET-1015)
    # df['all_none_category'] = df['all_none_category'].astype('category')
    return df


def make_sample_file(table_or_df):
    import pyarrow.parquet as pq

    if isinstance(table_or_df, pa.Table):
        a_table = table_or_df
    else:
        a_table = pa.Table.from_pandas(table_or_df)

    buf = io.BytesIO()
    _write_table(a_table, buf, compression='SNAPPY', version='2.6',
                 coerce_timestamps='ms')

    buf.seek(0)
    return pq.ParquetFile(buf)


def alltypes_sample(size=10000, seed=0, categorical=False):
    import pandas as pd

    np.random.seed(seed)
    arrays = {
        'uint8': np.arange(size, dtype=np.uint8),
        'uint16': np.arange(size, dtype=np.uint16),
        'uint32': np.arange(size, dtype=np.uint32),
        'uint64': np.arange(size, dtype=np.uint64),
        'int8': np.arange(size, dtype=np.int16),
        'int16': np.arange(size, dtype=np.int16),
        'int32': np.arange(size, dtype=np.int32),
        'int64': np.arange(size, dtype=np.int64),
        'float32': np.arange(size, dtype=np.float32),
        'float64': np.arange(size, dtype=np.float64),
        'bool': np.random.randn(size) > 0,
        # TODO(wesm): Test other timestamp resolutions now that arrow supports
        # them
        'datetime': np.arange("2016-01-01T00:00:00.001", size,
                              dtype='datetime64[ms]'),
        'str': pd.Series([str(x) for x in range(size)]),
        'empty_str': [''] * size,
        'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None],
        'null': [None] * size,
        'null_list': [None] * 2 + [[None] * (x % 4) for x in range(size - 2)],
    }
    if categorical:
        arrays['str_category'] = arrays['str'].astype('category')
    return pd.DataFrame(arrays)