1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import io
import numpy as np
import pytest
import pyarrow as pa
from pyarrow.tests import util
parametrize_legacy_dataset = pytest.mark.parametrize(
"use_legacy_dataset",
[True, pytest.param(False, marks=pytest.mark.dataset)])
parametrize_legacy_dataset_not_supported = pytest.mark.parametrize(
"use_legacy_dataset", [True, pytest.param(False, marks=pytest.mark.skip)])
parametrize_legacy_dataset_fixed = pytest.mark.parametrize(
"use_legacy_dataset", [pytest.param(True, marks=pytest.mark.xfail),
pytest.param(False, marks=pytest.mark.dataset)])
# Marks all of the tests in this module
# Ignore these with pytest ... -m 'not parquet'
pytestmark = pytest.mark.parquet
def _write_table(table, path, **kwargs):
# So we see the ImportError somewhere
import pyarrow.parquet as pq
from pyarrow.pandas_compat import _pandas_api
if _pandas_api.is_data_frame(table):
table = pa.Table.from_pandas(table)
pq.write_table(table, path, **kwargs)
return table
def _read_table(*args, **kwargs):
import pyarrow.parquet as pq
table = pq.read_table(*args, **kwargs)
table.validate(full=True)
return table
def _roundtrip_table(table, read_table_kwargs=None,
write_table_kwargs=None, use_legacy_dataset=True):
read_table_kwargs = read_table_kwargs or {}
write_table_kwargs = write_table_kwargs or {}
writer = pa.BufferOutputStream()
_write_table(table, writer, **write_table_kwargs)
reader = pa.BufferReader(writer.getvalue())
return _read_table(reader, use_legacy_dataset=use_legacy_dataset,
**read_table_kwargs)
def _check_roundtrip(table, expected=None, read_table_kwargs=None,
use_legacy_dataset=True, **write_table_kwargs):
if expected is None:
expected = table
read_table_kwargs = read_table_kwargs or {}
# intentionally check twice
result = _roundtrip_table(table, read_table_kwargs=read_table_kwargs,
write_table_kwargs=write_table_kwargs,
use_legacy_dataset=use_legacy_dataset)
assert result.equals(expected)
result = _roundtrip_table(result, read_table_kwargs=read_table_kwargs,
write_table_kwargs=write_table_kwargs,
use_legacy_dataset=use_legacy_dataset)
assert result.equals(expected)
def _roundtrip_pandas_dataframe(df, write_kwargs, use_legacy_dataset=True):
table = pa.Table.from_pandas(df)
result = _roundtrip_table(
table, write_table_kwargs=write_kwargs,
use_legacy_dataset=use_legacy_dataset)
return result.to_pandas()
def _random_integers(size, dtype):
# We do not generate integers outside the int64 range
platform_int_info = np.iinfo('int_')
iinfo = np.iinfo(dtype)
return np.random.randint(max(iinfo.min, platform_int_info.min),
min(iinfo.max, platform_int_info.max),
size=size).astype(dtype)
def _test_dataframe(size=10000, seed=0):
import pandas as pd
np.random.seed(seed)
df = pd.DataFrame({
'uint8': _random_integers(size, np.uint8),
'uint16': _random_integers(size, np.uint16),
'uint32': _random_integers(size, np.uint32),
'uint64': _random_integers(size, np.uint64),
'int8': _random_integers(size, np.int8),
'int16': _random_integers(size, np.int16),
'int32': _random_integers(size, np.int32),
'int64': _random_integers(size, np.int64),
'float32': np.random.randn(size).astype(np.float32),
'float64': np.arange(size, dtype=np.float64),
'bool': np.random.randn(size) > 0,
'strings': [util.rands(10) for i in range(size)],
'all_none': [None] * size,
'all_none_category': [None] * size
})
# TODO(PARQUET-1015)
# df['all_none_category'] = df['all_none_category'].astype('category')
return df
def make_sample_file(table_or_df):
import pyarrow.parquet as pq
if isinstance(table_or_df, pa.Table):
a_table = table_or_df
else:
a_table = pa.Table.from_pandas(table_or_df)
buf = io.BytesIO()
_write_table(a_table, buf, compression='SNAPPY', version='2.6',
coerce_timestamps='ms')
buf.seek(0)
return pq.ParquetFile(buf)
def alltypes_sample(size=10000, seed=0, categorical=False):
import pandas as pd
np.random.seed(seed)
arrays = {
'uint8': np.arange(size, dtype=np.uint8),
'uint16': np.arange(size, dtype=np.uint16),
'uint32': np.arange(size, dtype=np.uint32),
'uint64': np.arange(size, dtype=np.uint64),
'int8': np.arange(size, dtype=np.int16),
'int16': np.arange(size, dtype=np.int16),
'int32': np.arange(size, dtype=np.int32),
'int64': np.arange(size, dtype=np.int64),
'float32': np.arange(size, dtype=np.float32),
'float64': np.arange(size, dtype=np.float64),
'bool': np.random.randn(size) > 0,
# TODO(wesm): Test other timestamp resolutions now that arrow supports
# them
'datetime': np.arange("2016-01-01T00:00:00.001", size,
dtype='datetime64[ms]'),
'str': pd.Series([str(x) for x in range(size)]),
'empty_str': [''] * size,
'str_with_nulls': [None] + [str(x) for x in range(size - 2)] + [None],
'null': [None] * size,
'null_list': [None] * 2 + [[None] * (x % 4) for x in range(size - 2)],
}
if categorical:
arrays['str_category'] = arrays['str'].astype('category')
return pd.DataFrame(arrays)
|