1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import io
import os
import sys
import tempfile
import pytest
import hypothesis as h
import hypothesis.strategies as st
import numpy as np
import pyarrow as pa
import pyarrow.tests.strategies as past
from pyarrow.feather import (read_feather, write_feather, read_table,
FeatherDataset)
try:
from pandas.testing import assert_frame_equal
import pandas as pd
import pyarrow.pandas_compat
except ImportError:
pass
@pytest.fixture(scope='module')
def datadir(base_datadir):
return base_datadir / 'feather'
def random_path(prefix='feather_'):
return tempfile.mktemp(prefix=prefix)
@pytest.fixture(scope="module", params=[1, 2])
def version(request):
yield request.param
@pytest.fixture(scope="module", params=[None, "uncompressed", "lz4", "zstd"])
def compression(request):
if request.param in ['lz4', 'zstd'] and not pa.Codec.is_available(
request.param):
pytest.skip(f'{request.param} is not available')
yield request.param
TEST_FILES = None
def setup_module(module):
global TEST_FILES
TEST_FILES = []
def teardown_module(module):
for path in TEST_FILES:
try:
os.remove(path)
except os.error:
pass
@pytest.mark.pandas
def test_file_not_exist():
with pytest.raises(pa.ArrowIOError):
read_feather('test_invalid_file')
def _check_pandas_roundtrip(df, expected=None, path=None,
columns=None, use_threads=False,
version=None, compression=None,
compression_level=None):
if path is None:
path = random_path()
TEST_FILES.append(path)
write_feather(df, path, compression=compression,
compression_level=compression_level, version=version)
if not os.path.exists(path):
raise Exception('file not written')
result = read_feather(path, columns, use_threads=use_threads)
if expected is None:
expected = df
assert_frame_equal(result, expected)
def _check_arrow_roundtrip(table, path=None, compression=None):
if path is None:
path = random_path()
TEST_FILES.append(path)
write_feather(table, path, compression=compression)
if not os.path.exists(path):
raise Exception('file not written')
result = read_table(path)
assert result.equals(table)
def _assert_error_on_write(df, exc, path=None, version=2):
# check that we are raising the exception
# on writing
if path is None:
path = random_path()
TEST_FILES.append(path)
def f():
write_feather(df, path, version=version)
pytest.raises(exc, f)
def test_dataset(version):
num_values = (100, 100)
num_files = 5
paths = [random_path() for i in range(num_files)]
data = {
"col_" + str(i): np.random.randn(num_values[0])
for i in range(num_values[1])
}
table = pa.table(data)
TEST_FILES.extend(paths)
for index, path in enumerate(paths):
rows = (
index * (num_values[0] // num_files),
(index + 1) * (num_values[0] // num_files),
)
write_feather(table[rows[0]: rows[1]], path, version=version)
data = FeatherDataset(paths).read_table()
assert data.equals(table)
@pytest.mark.pandas
def test_float_no_nulls(version):
data = {}
numpy_dtypes = ['f4', 'f8']
num_values = 100
for dtype in numpy_dtypes:
values = np.random.randn(num_values)
data[dtype] = values.astype(dtype)
df = pd.DataFrame(data)
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_read_table(version):
num_values = (100, 100)
path = random_path()
TEST_FILES.append(path)
values = np.random.randint(0, 100, size=num_values)
columns = ['col_' + str(i) for i in range(100)]
table = pa.Table.from_arrays(values, columns)
write_feather(table, path, version=version)
result = read_table(path)
assert result.equals(table)
# Test without memory mapping
result = read_table(path, memory_map=False)
assert result.equals(table)
result = read_feather(path, memory_map=False)
assert_frame_equal(table.to_pandas(), result)
@pytest.mark.pandas
def test_float_nulls(version):
num_values = 100
path = random_path()
TEST_FILES.append(path)
null_mask = np.random.randint(0, 10, size=num_values) < 3
dtypes = ['f4', 'f8']
expected_cols = []
arrays = []
for name in dtypes:
values = np.random.randn(num_values).astype(name)
arrays.append(pa.array(values, mask=null_mask))
values[null_mask] = np.nan
expected_cols.append(values)
table = pa.table(arrays, names=dtypes)
_check_arrow_roundtrip(table)
df = table.to_pandas()
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_integer_no_nulls(version):
data, arr = {}, []
numpy_dtypes = ['i1', 'i2', 'i4', 'i8',
'u1', 'u2', 'u4', 'u8']
num_values = 100
for dtype in numpy_dtypes:
values = np.random.randint(0, 100, size=num_values)
data[dtype] = values.astype(dtype)
arr.append(values.astype(dtype))
df = pd.DataFrame(data)
_check_pandas_roundtrip(df, version=version)
table = pa.table(arr, names=numpy_dtypes)
_check_arrow_roundtrip(table)
@pytest.mark.pandas
def test_platform_numpy_integers(version):
data = {}
numpy_dtypes = ['longlong']
num_values = 100
for dtype in numpy_dtypes:
values = np.random.randint(0, 100, size=num_values)
data[dtype] = values.astype(dtype)
df = pd.DataFrame(data)
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_integer_with_nulls(version):
# pandas requires upcast to float dtype
path = random_path()
TEST_FILES.append(path)
int_dtypes = ['i1', 'i2', 'i4', 'i8', 'u1', 'u2', 'u4', 'u8']
num_values = 100
arrays = []
null_mask = np.random.randint(0, 10, size=num_values) < 3
expected_cols = []
for name in int_dtypes:
values = np.random.randint(0, 100, size=num_values)
arrays.append(pa.array(values, mask=null_mask))
expected = values.astype('f8')
expected[null_mask] = np.nan
expected_cols.append(expected)
table = pa.table(arrays, names=int_dtypes)
_check_arrow_roundtrip(table)
df = table.to_pandas()
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_boolean_no_nulls(version):
num_values = 100
np.random.seed(0)
df = pd.DataFrame({'bools': np.random.randn(num_values) > 0})
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_boolean_nulls(version):
# pandas requires upcast to object dtype
path = random_path()
TEST_FILES.append(path)
num_values = 100
np.random.seed(0)
mask = np.random.randint(0, 10, size=num_values) < 3
values = np.random.randint(0, 10, size=num_values) < 5
table = pa.table([pa.array(values, mask=mask)], names=['bools'])
_check_arrow_roundtrip(table)
df = table.to_pandas()
_check_pandas_roundtrip(df, version=version)
def test_buffer_bounds_error(version):
# ARROW-1676
path = random_path()
TEST_FILES.append(path)
for i in range(16, 256):
table = pa.Table.from_arrays(
[pa.array([None] + list(range(i)), type=pa.float64())],
names=["arr"]
)
_check_arrow_roundtrip(table)
def test_boolean_object_nulls(version):
repeats = 100
table = pa.Table.from_arrays(
[np.array([False, None, True] * repeats, dtype=object)],
names=["arr"]
)
_check_arrow_roundtrip(table)
@pytest.mark.pandas
def test_delete_partial_file_on_error(version):
if sys.platform == 'win32':
pytest.skip('Windows hangs on to file handle for some reason')
class CustomClass:
pass
# strings will fail
df = pd.DataFrame(
{
'numbers': range(5),
'strings': [b'foo', None, 'bar', CustomClass(), np.nan]},
columns=['numbers', 'strings'])
path = random_path()
try:
write_feather(df, path, version=version)
except Exception:
pass
assert not os.path.exists(path)
@pytest.mark.pandas
def test_strings(version):
repeats = 1000
# Mixed bytes, unicode, strings coerced to binary
values = [b'foo', None, 'bar', 'qux', np.nan]
df = pd.DataFrame({'strings': values * repeats})
ex_values = [b'foo', None, b'bar', b'qux', np.nan]
expected = pd.DataFrame({'strings': ex_values * repeats})
_check_pandas_roundtrip(df, expected, version=version)
# embedded nulls are ok
values = ['foo', None, 'bar', 'qux', None]
df = pd.DataFrame({'strings': values * repeats})
expected = pd.DataFrame({'strings': values * repeats})
_check_pandas_roundtrip(df, expected, version=version)
values = ['foo', None, 'bar', 'qux', np.nan]
df = pd.DataFrame({'strings': values * repeats})
expected = pd.DataFrame({'strings': values * repeats})
_check_pandas_roundtrip(df, expected, version=version)
@pytest.mark.pandas
def test_empty_strings(version):
df = pd.DataFrame({'strings': [''] * 10})
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_all_none(version):
df = pd.DataFrame({'all_none': [None] * 10})
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_all_null_category(version):
# ARROW-1188
df = pd.DataFrame({"A": (1, 2, 3), "B": (None, None, None)})
df = df.assign(B=df.B.astype("category"))
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_multithreaded_read(version):
data = {'c{}'.format(i): [''] * 10
for i in range(100)}
df = pd.DataFrame(data)
_check_pandas_roundtrip(df, use_threads=True, version=version)
@pytest.mark.pandas
def test_nan_as_null(version):
# Create a nan that is not numpy.nan
values = np.array(['foo', np.nan, np.nan * 2, 'bar'] * 10)
df = pd.DataFrame({'strings': values})
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_category(version):
repeats = 1000
values = ['foo', None, 'bar', 'qux', np.nan]
df = pd.DataFrame({'strings': values * repeats})
df['strings'] = df['strings'].astype('category')
values = ['foo', None, 'bar', 'qux', None]
expected = pd.DataFrame({'strings': pd.Categorical(values * repeats)})
_check_pandas_roundtrip(df, expected, version=version)
@pytest.mark.pandas
def test_timestamp(version):
df = pd.DataFrame({'naive': pd.date_range('2016-03-28', periods=10)})
df['with_tz'] = (df.naive.dt.tz_localize('utc')
.dt.tz_convert('America/Los_Angeles'))
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_timestamp_with_nulls(version):
df = pd.DataFrame({'test': [pd.Timestamp(2016, 1, 1),
None,
pd.Timestamp(2016, 1, 3)]})
df['with_tz'] = df.test.dt.tz_localize('utc')
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
@pytest.mark.xfail(reason="not supported", raises=TypeError)
def test_timedelta_with_nulls_v1():
df = pd.DataFrame({'test': [pd.Timedelta('1 day'),
None,
pd.Timedelta('3 day')]})
_check_pandas_roundtrip(df, version=1)
@pytest.mark.pandas
def test_timedelta_with_nulls():
df = pd.DataFrame({'test': [pd.Timedelta('1 day'),
None,
pd.Timedelta('3 day')]})
_check_pandas_roundtrip(df, version=2)
@pytest.mark.pandas
def test_out_of_float64_timestamp_with_nulls(version):
df = pd.DataFrame(
{'test': pd.DatetimeIndex([1451606400000000001,
None, 14516064000030405])})
df['with_tz'] = df.test.dt.tz_localize('utc')
_check_pandas_roundtrip(df, version=version)
@pytest.mark.pandas
def test_non_string_columns(version):
df = pd.DataFrame({0: [1, 2, 3, 4],
1: [True, False, True, False]})
expected = df.rename(columns=str)
_check_pandas_roundtrip(df, expected, version=version)
@pytest.mark.pandas
@pytest.mark.skipif(not os.path.supports_unicode_filenames,
reason='unicode filenames not supported')
def test_unicode_filename(version):
# GH #209
name = (b'Besa_Kavaj\xc3\xab.feather').decode('utf-8')
df = pd.DataFrame({'foo': [1, 2, 3, 4]})
_check_pandas_roundtrip(df, path=random_path(prefix=name),
version=version)
@pytest.mark.pandas
def test_read_columns(version):
df = pd.DataFrame({
'foo': [1, 2, 3, 4],
'boo': [5, 6, 7, 8],
'woo': [1, 3, 5, 7]
})
expected = df[['boo', 'woo']]
_check_pandas_roundtrip(df, expected, version=version,
columns=['boo', 'woo'])
def test_overwritten_file(version):
path = random_path()
TEST_FILES.append(path)
num_values = 100
np.random.seed(0)
values = np.random.randint(0, 10, size=num_values)
table = pa.table({'ints': values})
write_feather(table, path)
table = pa.table({'more_ints': values[0:num_values//2]})
_check_arrow_roundtrip(table, path=path)
@pytest.mark.pandas
def test_filelike_objects(version):
buf = io.BytesIO()
# the copy makes it non-strided
df = pd.DataFrame(np.arange(12).reshape(4, 3),
columns=['a', 'b', 'c']).copy()
write_feather(df, buf, version=version)
buf.seek(0)
result = read_feather(buf)
assert_frame_equal(result, df)
@pytest.mark.pandas
@pytest.mark.filterwarnings("ignore:Sparse:FutureWarning")
@pytest.mark.filterwarnings("ignore:DataFrame.to_sparse:FutureWarning")
def test_sparse_dataframe(version):
if not pa.pandas_compat._pandas_api.has_sparse:
pytest.skip("version of pandas does not support SparseDataFrame")
# GH #221
data = {'A': [0, 1, 2],
'B': [1, 0, 1]}
df = pd.DataFrame(data).to_sparse(fill_value=1)
expected = df.to_dense()
_check_pandas_roundtrip(df, expected, version=version)
@pytest.mark.pandas
def test_duplicate_columns_pandas():
# https://github.com/wesm/feather/issues/53
# not currently able to handle duplicate columns
df = pd.DataFrame(np.arange(12).reshape(4, 3),
columns=list('aaa')).copy()
_assert_error_on_write(df, ValueError)
def test_duplicate_columns():
# only works for version 2
table = pa.table([[1, 2, 3], [4, 5, 6], [7, 8, 9]], names=['a', 'a', 'b'])
_check_arrow_roundtrip(table)
_assert_error_on_write(table, ValueError, version=1)
@pytest.mark.pandas
def test_unsupported():
# https://github.com/wesm/feather/issues/240
# serializing actual python objects
# custom python objects
class A:
pass
df = pd.DataFrame({'a': [A(), A()]})
_assert_error_on_write(df, ValueError)
# non-strings
df = pd.DataFrame({'a': ['a', 1, 2.0]})
_assert_error_on_write(df, TypeError)
@pytest.mark.pandas
def test_v2_set_chunksize():
df = pd.DataFrame({'A': np.arange(1000)})
table = pa.table(df)
buf = io.BytesIO()
write_feather(table, buf, chunksize=250, version=2)
result = buf.getvalue()
ipc_file = pa.ipc.open_file(pa.BufferReader(result))
assert ipc_file.num_record_batches == 4
assert len(ipc_file.get_batch(0)) == 250
@pytest.mark.pandas
@pytest.mark.lz4
@pytest.mark.snappy
@pytest.mark.zstd
def test_v2_compression_options():
df = pd.DataFrame({'A': np.arange(1000)})
cases = [
# compression, compression_level
('uncompressed', None),
('lz4', None),
('zstd', 1),
('zstd', 10)
]
for compression, compression_level in cases:
_check_pandas_roundtrip(df, compression=compression,
compression_level=compression_level)
buf = io.BytesIO()
# LZ4 doesn't support compression_level
with pytest.raises(pa.ArrowInvalid,
match="doesn't support setting a compression level"):
write_feather(df, buf, compression='lz4', compression_level=10)
# Trying to compress with V1
with pytest.raises(
ValueError,
match="Feather V1 files do not support compression option"):
write_feather(df, buf, compression='lz4', version=1)
# Trying to set chunksize with V1
with pytest.raises(
ValueError,
match="Feather V1 files do not support chunksize option"):
write_feather(df, buf, chunksize=4096, version=1)
# Unsupported compressor
with pytest.raises(ValueError,
match='compression="snappy" not supported'):
write_feather(df, buf, compression='snappy')
def test_v2_lz4_default_compression():
# ARROW-8750: Make sure that the compression=None option selects lz4 if
# it's available
if not pa.Codec.is_available('lz4_frame'):
pytest.skip("LZ4 compression support is not built in C++")
# some highly compressible data
t = pa.table([np.repeat(0, 100000)], names=['f0'])
buf = io.BytesIO()
write_feather(t, buf)
default_result = buf.getvalue()
buf = io.BytesIO()
write_feather(t, buf, compression='uncompressed')
uncompressed_result = buf.getvalue()
assert len(default_result) < len(uncompressed_result)
def test_v1_unsupported_types():
table = pa.table([pa.array([[1, 2, 3], [], None])], names=['f0'])
buf = io.BytesIO()
with pytest.raises(TypeError,
match=("Unsupported Feather V1 type: "
"list<item: int64>. "
"Use V2 format to serialize all Arrow types.")):
write_feather(table, buf, version=1)
@pytest.mark.slow
@pytest.mark.pandas
def test_large_dataframe(version):
df = pd.DataFrame({'A': np.arange(400000000)})
_check_pandas_roundtrip(df, version=version)
@pytest.mark.large_memory
@pytest.mark.pandas
def test_chunked_binary_error_message():
# ARROW-3058: As Feather does not yet support chunked columns, we at least
# make sure it's clear to the user what is going on
# 2^31 + 1 bytes
values = [b'x'] + [
b'x' * (1 << 20)
] * 2 * (1 << 10)
df = pd.DataFrame({'byte_col': values})
# Works fine with version 2
buf = io.BytesIO()
write_feather(df, buf, version=2)
result = read_feather(pa.BufferReader(buf.getvalue()))
assert_frame_equal(result, df)
with pytest.raises(ValueError, match="'byte_col' exceeds 2GB maximum "
"capacity of a Feather binary column. This restriction "
"may be lifted in the future"):
write_feather(df, io.BytesIO(), version=1)
def test_feather_without_pandas(tempdir, version):
# ARROW-8345
table = pa.table([pa.array([1, 2, 3])], names=['f0'])
path = str(tempdir / "data.feather")
_check_arrow_roundtrip(table, path)
@pytest.mark.pandas
def test_read_column_selection(version):
# ARROW-8641
df = pd.DataFrame(np.arange(12).reshape(4, 3), columns=['a', 'b', 'c'])
# select columns as string names or integer indices
_check_pandas_roundtrip(
df, columns=['a', 'c'], expected=df[['a', 'c']], version=version)
_check_pandas_roundtrip(
df, columns=[0, 2], expected=df[['a', 'c']], version=version)
# different order is followed
_check_pandas_roundtrip(
df, columns=['b', 'a'], expected=df[['b', 'a']], version=version)
_check_pandas_roundtrip(
df, columns=[1, 0], expected=df[['b', 'a']], version=version)
def test_read_column_duplicated_selection(tempdir, version):
# duplicated columns in the column selection
table = pa.table([[1, 2, 3], [4, 5, 6], [7, 8, 9]], names=['a', 'b', 'c'])
path = str(tempdir / "data.feather")
write_feather(table, path, version=version)
expected = pa.table([[1, 2, 3], [4, 5, 6], [1, 2, 3]],
names=['a', 'b', 'a'])
for col_selection in [['a', 'b', 'a'], [0, 1, 0]]:
result = read_table(path, columns=col_selection)
assert result.equals(expected)
def test_read_column_duplicated_in_file(tempdir):
# duplicated columns in feather file (only works for feather v2)
table = pa.table([[1, 2, 3], [4, 5, 6], [7, 8, 9]], names=['a', 'b', 'a'])
path = str(tempdir / "data.feather")
write_feather(table, path, version=2)
# no selection works fine
result = read_table(path)
assert result.equals(table)
# selection with indices works
result = read_table(path, columns=[0, 2])
assert result.column_names == ['a', 'a']
# selection with column names errors
with pytest.raises(ValueError):
read_table(path, columns=['a', 'b'])
def test_nested_types(compression):
# https://issues.apache.org/jira/browse/ARROW-8860
table = pa.table({'col': pa.StructArray.from_arrays(
[[0, 1, 2], [1, 2, 3]], names=["f1", "f2"])})
_check_arrow_roundtrip(table, compression=compression)
table = pa.table({'col': pa.array([[1, 2], [3, 4]])})
_check_arrow_roundtrip(table, compression=compression)
table = pa.table({'col': pa.array([[[1, 2], [3, 4]], [[5, 6], None]])})
_check_arrow_roundtrip(table, compression=compression)
@h.given(past.all_tables, st.sampled_from(["uncompressed", "lz4", "zstd"]))
def test_roundtrip(table, compression):
_check_arrow_roundtrip(table, compression=compression)
@pytest.mark.lz4
def test_feather_v017_experimental_compression_backward_compatibility(datadir):
# ARROW-11163 - ensure newer pyarrow versions can read the old feather
# files from version 0.17.0 with experimental compression support (before
# it was officially added to IPC format in 1.0.0)
# file generated with:
# table = pa.table({'a': range(5)})
# from pyarrow import feather
# feather.write_feather(
# table, "v0.17.0.version=2-compression=lz4.feather",
# compression="lz4", version=2)
expected = pa.table({'a': range(5)})
result = read_table(datadir / "v0.17.0.version=2-compression=lz4.feather")
assert result.equals(expected)
|