summaryrefslogtreecommitdiffstats
path: root/src/arrow/python/pyarrow/tests/test_jvm.py
blob: c5996f921534316b892f8c294530b9c6c8587df1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

import json
import os
import pyarrow as pa
import pyarrow.jvm as pa_jvm
import pytest
import sys
import xml.etree.ElementTree as ET


jpype = pytest.importorskip("jpype")


@pytest.fixture(scope="session")
def root_allocator():
    # This test requires Arrow Java to be built in the same source tree
    try:
        arrow_dir = os.environ["ARROW_SOURCE_DIR"]
    except KeyError:
        arrow_dir = os.path.join(os.path.dirname(__file__), '..', '..', '..')
    pom_path = os.path.join(arrow_dir, 'java', 'pom.xml')
    tree = ET.parse(pom_path)
    version = tree.getroot().find(
        'POM:version',
        namespaces={
            'POM': 'http://maven.apache.org/POM/4.0.0'
        }).text
    jar_path = os.path.join(
        arrow_dir, 'java', 'tools', 'target',
        'arrow-tools-{}-jar-with-dependencies.jar'.format(version))
    jar_path = os.getenv("ARROW_TOOLS_JAR", jar_path)
    kwargs = {}
    # This will be the default behaviour in jpype 0.8+
    kwargs['convertStrings'] = False
    jpype.startJVM(jpype.getDefaultJVMPath(), "-Djava.class.path=" + jar_path,
                   **kwargs)
    return jpype.JPackage("org").apache.arrow.memory.RootAllocator(sys.maxsize)


def test_jvm_buffer(root_allocator):
    # Create a Java buffer
    jvm_buffer = root_allocator.buffer(8)
    for i in range(8):
        jvm_buffer.setByte(i, 8 - i)

    orig_refcnt = jvm_buffer.refCnt()

    # Convert to Python
    buf = pa_jvm.jvm_buffer(jvm_buffer)

    # Check its content
    assert buf.to_pybytes() == b'\x08\x07\x06\x05\x04\x03\x02\x01'

    # Check Java buffer lifetime is tied to PyArrow buffer lifetime
    assert jvm_buffer.refCnt() == orig_refcnt + 1
    del buf
    assert jvm_buffer.refCnt() == orig_refcnt


def test_jvm_buffer_released(root_allocator):
    import jpype.imports  # noqa
    from java.lang import IllegalArgumentException

    jvm_buffer = root_allocator.buffer(8)
    jvm_buffer.release()

    with pytest.raises(IllegalArgumentException):
        pa_jvm.jvm_buffer(jvm_buffer)


def _jvm_field(jvm_spec):
    om = jpype.JClass('com.fasterxml.jackson.databind.ObjectMapper')()
    pojo_Field = jpype.JClass('org.apache.arrow.vector.types.pojo.Field')
    return om.readValue(jvm_spec, pojo_Field)


def _jvm_schema(jvm_spec, metadata=None):
    field = _jvm_field(jvm_spec)
    schema_cls = jpype.JClass('org.apache.arrow.vector.types.pojo.Schema')
    fields = jpype.JClass('java.util.ArrayList')()
    fields.add(field)
    if metadata:
        dct = jpype.JClass('java.util.HashMap')()
        for k, v in metadata.items():
            dct.put(k, v)
        return schema_cls(fields, dct)
    else:
        return schema_cls(fields)


# In the following, we use the JSON serialization of the Field objects in Java.
# This ensures that we neither rely on the exact mechanics on how to construct
# them using Java code as well as enables us to define them as parameters
# without to invoke the JVM.
#
# The specifications were created using:
#
#   om = jpype.JClass('com.fasterxml.jackson.databind.ObjectMapper')()
#   field = …  # Code to instantiate the field
#   jvm_spec = om.writeValueAsString(field)
@pytest.mark.parametrize('pa_type,jvm_spec', [
    (pa.null(), '{"name":"null"}'),
    (pa.bool_(), '{"name":"bool"}'),
    (pa.int8(), '{"name":"int","bitWidth":8,"isSigned":true}'),
    (pa.int16(), '{"name":"int","bitWidth":16,"isSigned":true}'),
    (pa.int32(), '{"name":"int","bitWidth":32,"isSigned":true}'),
    (pa.int64(), '{"name":"int","bitWidth":64,"isSigned":true}'),
    (pa.uint8(), '{"name":"int","bitWidth":8,"isSigned":false}'),
    (pa.uint16(), '{"name":"int","bitWidth":16,"isSigned":false}'),
    (pa.uint32(), '{"name":"int","bitWidth":32,"isSigned":false}'),
    (pa.uint64(), '{"name":"int","bitWidth":64,"isSigned":false}'),
    (pa.float16(), '{"name":"floatingpoint","precision":"HALF"}'),
    (pa.float32(), '{"name":"floatingpoint","precision":"SINGLE"}'),
    (pa.float64(), '{"name":"floatingpoint","precision":"DOUBLE"}'),
    (pa.time32('s'), '{"name":"time","unit":"SECOND","bitWidth":32}'),
    (pa.time32('ms'), '{"name":"time","unit":"MILLISECOND","bitWidth":32}'),
    (pa.time64('us'), '{"name":"time","unit":"MICROSECOND","bitWidth":64}'),
    (pa.time64('ns'), '{"name":"time","unit":"NANOSECOND","bitWidth":64}'),
    (pa.timestamp('s'), '{"name":"timestamp","unit":"SECOND",'
        '"timezone":null}'),
    (pa.timestamp('ms'), '{"name":"timestamp","unit":"MILLISECOND",'
        '"timezone":null}'),
    (pa.timestamp('us'), '{"name":"timestamp","unit":"MICROSECOND",'
        '"timezone":null}'),
    (pa.timestamp('ns'), '{"name":"timestamp","unit":"NANOSECOND",'
        '"timezone":null}'),
    (pa.timestamp('ns', tz='UTC'), '{"name":"timestamp","unit":"NANOSECOND"'
        ',"timezone":"UTC"}'),
    (pa.timestamp('ns', tz='Europe/Paris'), '{"name":"timestamp",'
        '"unit":"NANOSECOND","timezone":"Europe/Paris"}'),
    (pa.date32(), '{"name":"date","unit":"DAY"}'),
    (pa.date64(), '{"name":"date","unit":"MILLISECOND"}'),
    (pa.decimal128(19, 4), '{"name":"decimal","precision":19,"scale":4}'),
    (pa.string(), '{"name":"utf8"}'),
    (pa.binary(), '{"name":"binary"}'),
    (pa.binary(10), '{"name":"fixedsizebinary","byteWidth":10}'),
    # TODO(ARROW-2609): complex types that have children
    # pa.list_(pa.int32()),
    # pa.struct([pa.field('a', pa.int32()),
    #            pa.field('b', pa.int8()),
    #            pa.field('c', pa.string())]),
    # pa.union([pa.field('a', pa.binary(10)),
    #           pa.field('b', pa.string())], mode=pa.lib.UnionMode_DENSE),
    # pa.union([pa.field('a', pa.binary(10)),
    #           pa.field('b', pa.string())], mode=pa.lib.UnionMode_SPARSE),
    # TODO: DictionaryType requires a vector in the type
    # pa.dictionary(pa.int32(), pa.array(['a', 'b', 'c'])),
])
@pytest.mark.parametrize('nullable', [True, False])
def test_jvm_types(root_allocator, pa_type, jvm_spec, nullable):
    if pa_type == pa.null() and not nullable:
        return
    spec = {
        'name': 'field_name',
        'nullable': nullable,
        'type': json.loads(jvm_spec),
        # TODO: This needs to be set for complex types
        'children': []
    }
    jvm_field = _jvm_field(json.dumps(spec))
    result = pa_jvm.field(jvm_field)
    expected_field = pa.field('field_name', pa_type, nullable=nullable)
    assert result == expected_field

    jvm_schema = _jvm_schema(json.dumps(spec))
    result = pa_jvm.schema(jvm_schema)
    assert result == pa.schema([expected_field])

    # Schema with custom metadata
    jvm_schema = _jvm_schema(json.dumps(spec), {'meta': 'data'})
    result = pa_jvm.schema(jvm_schema)
    assert result == pa.schema([expected_field], {'meta': 'data'})

    # Schema with custom field metadata
    spec['metadata'] = [{'key': 'field meta', 'value': 'field data'}]
    jvm_schema = _jvm_schema(json.dumps(spec))
    result = pa_jvm.schema(jvm_schema)
    expected_field = expected_field.with_metadata(
        {'field meta': 'field data'})
    assert result == pa.schema([expected_field])


# These test parameters mostly use an integer range as an input as this is
# often the only type that is understood by both Python and Java
# implementations of Arrow.
@pytest.mark.parametrize('pa_type,py_data,jvm_type', [
    (pa.bool_(), [True, False, True, True], 'BitVector'),
    (pa.uint8(), list(range(128)), 'UInt1Vector'),
    (pa.uint16(), list(range(128)), 'UInt2Vector'),
    (pa.int32(), list(range(128)), 'IntVector'),
    (pa.int64(), list(range(128)), 'BigIntVector'),
    (pa.float32(), list(range(128)), 'Float4Vector'),
    (pa.float64(), list(range(128)), 'Float8Vector'),
    (pa.timestamp('s'), list(range(128)), 'TimeStampSecVector'),
    (pa.timestamp('ms'), list(range(128)), 'TimeStampMilliVector'),
    (pa.timestamp('us'), list(range(128)), 'TimeStampMicroVector'),
    (pa.timestamp('ns'), list(range(128)), 'TimeStampNanoVector'),
    # TODO(ARROW-2605): These types miss a conversion from pure Python objects
    #  * pa.time32('s')
    #  * pa.time32('ms')
    #  * pa.time64('us')
    #  * pa.time64('ns')
    (pa.date32(), list(range(128)), 'DateDayVector'),
    (pa.date64(), list(range(128)), 'DateMilliVector'),
    # TODO(ARROW-2606): pa.decimal128(19, 4)
])
def test_jvm_array(root_allocator, pa_type, py_data, jvm_type):
    # Create vector
    cls = "org.apache.arrow.vector.{}".format(jvm_type)
    jvm_vector = jpype.JClass(cls)("vector", root_allocator)
    jvm_vector.allocateNew(len(py_data))
    for i, val in enumerate(py_data):
        # char and int are ambiguous overloads for these two setSafe calls
        if jvm_type in {'UInt1Vector', 'UInt2Vector'}:
            val = jpype.JInt(val)
        jvm_vector.setSafe(i, val)
    jvm_vector.setValueCount(len(py_data))

    py_array = pa.array(py_data, type=pa_type)
    jvm_array = pa_jvm.array(jvm_vector)

    assert py_array.equals(jvm_array)


def test_jvm_array_empty(root_allocator):
    cls = "org.apache.arrow.vector.{}".format('IntVector')
    jvm_vector = jpype.JClass(cls)("vector", root_allocator)
    jvm_vector.allocateNew()
    jvm_array = pa_jvm.array(jvm_vector)
    assert len(jvm_array) == 0
    assert jvm_array.type == pa.int32()


# These test parameters mostly use an integer range as an input as this is
# often the only type that is understood by both Python and Java
# implementations of Arrow.
@pytest.mark.parametrize('pa_type,py_data,jvm_type,jvm_spec', [
    # TODO: null
    (pa.bool_(), [True, False, True, True], 'BitVector', '{"name":"bool"}'),
    (
        pa.uint8(),
        list(range(128)),
        'UInt1Vector',
        '{"name":"int","bitWidth":8,"isSigned":false}'
    ),
    (
        pa.uint16(),
        list(range(128)),
        'UInt2Vector',
        '{"name":"int","bitWidth":16,"isSigned":false}'
    ),
    (
        pa.uint32(),
        list(range(128)),
        'UInt4Vector',
        '{"name":"int","bitWidth":32,"isSigned":false}'
    ),
    (
        pa.uint64(),
        list(range(128)),
        'UInt8Vector',
        '{"name":"int","bitWidth":64,"isSigned":false}'
    ),
    (
        pa.int8(),
        list(range(128)),
        'TinyIntVector',
        '{"name":"int","bitWidth":8,"isSigned":true}'
    ),
    (
        pa.int16(),
        list(range(128)),
        'SmallIntVector',
        '{"name":"int","bitWidth":16,"isSigned":true}'
    ),
    (
        pa.int32(),
        list(range(128)),
        'IntVector',
        '{"name":"int","bitWidth":32,"isSigned":true}'
    ),
    (
        pa.int64(),
        list(range(128)),
        'BigIntVector',
        '{"name":"int","bitWidth":64,"isSigned":true}'
    ),
    # TODO: float16
    (
        pa.float32(),
        list(range(128)),
        'Float4Vector',
        '{"name":"floatingpoint","precision":"SINGLE"}'
    ),
    (
        pa.float64(),
        list(range(128)),
        'Float8Vector',
        '{"name":"floatingpoint","precision":"DOUBLE"}'
    ),
    (
        pa.timestamp('s'),
        list(range(128)),
        'TimeStampSecVector',
        '{"name":"timestamp","unit":"SECOND","timezone":null}'
    ),
    (
        pa.timestamp('ms'),
        list(range(128)),
        'TimeStampMilliVector',
        '{"name":"timestamp","unit":"MILLISECOND","timezone":null}'
    ),
    (
        pa.timestamp('us'),
        list(range(128)),
        'TimeStampMicroVector',
        '{"name":"timestamp","unit":"MICROSECOND","timezone":null}'
    ),
    (
        pa.timestamp('ns'),
        list(range(128)),
        'TimeStampNanoVector',
        '{"name":"timestamp","unit":"NANOSECOND","timezone":null}'
    ),
    # TODO(ARROW-2605): These types miss a conversion from pure Python objects
    #  * pa.time32('s')
    #  * pa.time32('ms')
    #  * pa.time64('us')
    #  * pa.time64('ns')
    (
        pa.date32(),
        list(range(128)),
        'DateDayVector',
        '{"name":"date","unit":"DAY"}'
    ),
    (
        pa.date64(),
        list(range(128)),
        'DateMilliVector',
        '{"name":"date","unit":"MILLISECOND"}'
    ),
    # TODO(ARROW-2606): pa.decimal128(19, 4)
])
def test_jvm_record_batch(root_allocator, pa_type, py_data, jvm_type,
                          jvm_spec):
    # Create vector
    cls = "org.apache.arrow.vector.{}".format(jvm_type)
    jvm_vector = jpype.JClass(cls)("vector", root_allocator)
    jvm_vector.allocateNew(len(py_data))
    for i, val in enumerate(py_data):
        if jvm_type in {'UInt1Vector', 'UInt2Vector'}:
            val = jpype.JInt(val)
        jvm_vector.setSafe(i, val)
    jvm_vector.setValueCount(len(py_data))

    # Create field
    spec = {
        'name': 'field_name',
        'nullable': False,
        'type': json.loads(jvm_spec),
        # TODO: This needs to be set for complex types
        'children': []
    }
    jvm_field = _jvm_field(json.dumps(spec))

    # Create VectorSchemaRoot
    jvm_fields = jpype.JClass('java.util.ArrayList')()
    jvm_fields.add(jvm_field)
    jvm_vectors = jpype.JClass('java.util.ArrayList')()
    jvm_vectors.add(jvm_vector)
    jvm_vsr = jpype.JClass('org.apache.arrow.vector.VectorSchemaRoot')
    jvm_vsr = jvm_vsr(jvm_fields, jvm_vectors, len(py_data))

    py_record_batch = pa.RecordBatch.from_arrays(
        [pa.array(py_data, type=pa_type)],
        ['col']
    )
    jvm_record_batch = pa_jvm.record_batch(jvm_vsr)

    assert py_record_batch.equals(jvm_record_batch)


def _string_to_varchar_holder(ra, string):
    nvch_cls = "org.apache.arrow.vector.holders.NullableVarCharHolder"
    holder = jpype.JClass(nvch_cls)()
    if string is None:
        holder.isSet = 0
    else:
        holder.isSet = 1
        value = jpype.JClass("java.lang.String")("string")
        std_charsets = jpype.JClass("java.nio.charset.StandardCharsets")
        bytes_ = value.getBytes(std_charsets.UTF_8)
        holder.buffer = ra.buffer(len(bytes_))
        holder.buffer.setBytes(0, bytes_, 0, len(bytes_))
        holder.start = 0
        holder.end = len(bytes_)
    return holder


# TODO(ARROW-2607)
@pytest.mark.xfail(reason="from_buffers is only supported for "
                          "primitive arrays yet")
def test_jvm_string_array(root_allocator):
    data = ["string", None, "töst"]
    cls = "org.apache.arrow.vector.VarCharVector"
    jvm_vector = jpype.JClass(cls)("vector", root_allocator)
    jvm_vector.allocateNew()

    for i, string in enumerate(data):
        holder = _string_to_varchar_holder(root_allocator, "string")
        jvm_vector.setSafe(i, holder)
        jvm_vector.setValueCount(i + 1)

    py_array = pa.array(data, type=pa.string())
    jvm_array = pa_jvm.array(jvm_vector)

    assert py_array.equals(jvm_array)