1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
import os
import sys
import pytest
import weakref
import numpy as np
import pyarrow as pa
tensor_type_pairs = [
('i1', pa.int8()),
('i2', pa.int16()),
('i4', pa.int32()),
('i8', pa.int64()),
('u1', pa.uint8()),
('u2', pa.uint16()),
('u4', pa.uint32()),
('u8', pa.uint64()),
('f2', pa.float16()),
('f4', pa.float32()),
('f8', pa.float64())
]
def test_tensor_attrs():
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
assert tensor.ndim == 2
assert tensor.dim_names == []
assert tensor.size == 40
assert tensor.shape == data.shape
assert tensor.strides == data.strides
assert tensor.is_contiguous
assert tensor.is_mutable
# not writeable
data2 = data.copy()
data2.flags.writeable = False
tensor = pa.Tensor.from_numpy(data2)
assert not tensor.is_mutable
# With dim_names
tensor = pa.Tensor.from_numpy(data, dim_names=('x', 'y'))
assert tensor.ndim == 2
assert tensor.dim_names == ['x', 'y']
assert tensor.dim_name(0) == 'x'
assert tensor.dim_name(1) == 'y'
wr = weakref.ref(tensor)
assert wr() is not None
del tensor
assert wr() is None
def test_tensor_base_object():
tensor = pa.Tensor.from_numpy(np.random.randn(10, 4))
n = sys.getrefcount(tensor)
array = tensor.to_numpy() # noqa
assert sys.getrefcount(tensor) == n + 1
@pytest.mark.parametrize('dtype_str,arrow_type', tensor_type_pairs)
def test_tensor_numpy_roundtrip(dtype_str, arrow_type):
dtype = np.dtype(dtype_str)
data = (100 * np.random.randn(10, 4)).astype(dtype)
tensor = pa.Tensor.from_numpy(data)
assert tensor.type == arrow_type
repr(tensor)
result = tensor.to_numpy()
assert (data == result).all()
def test_tensor_ipc_roundtrip(tmpdir):
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-roundtrip')
mmap = pa.create_memory_map(path, 1024)
pa.ipc.write_tensor(tensor, mmap)
mmap.seek(0)
result = pa.ipc.read_tensor(mmap)
assert result.equals(tensor)
@pytest.mark.gzip
def test_tensor_ipc_read_from_compressed(tempdir):
# ARROW-5910
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
path = tempdir / 'tensor-compressed-file'
out_stream = pa.output_stream(path, compression='gzip')
pa.ipc.write_tensor(tensor, out_stream)
out_stream.close()
result = pa.ipc.read_tensor(pa.input_stream(path, compression='gzip'))
assert result.equals(tensor)
def test_tensor_ipc_strided(tmpdir):
data1 = np.random.randn(10, 4)
tensor1 = pa.Tensor.from_numpy(data1[::2])
data2 = np.random.randn(10, 6, 4)
tensor2 = pa.Tensor.from_numpy(data2[::, ::2, ::])
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-strided')
mmap = pa.create_memory_map(path, 2048)
for tensor in [tensor1, tensor2]:
mmap.seek(0)
pa.ipc.write_tensor(tensor, mmap)
mmap.seek(0)
result = pa.ipc.read_tensor(mmap)
assert result.equals(tensor)
def test_tensor_equals():
def eq(a, b):
assert a.equals(b)
assert a == b
assert not (a != b)
def ne(a, b):
assert not a.equals(b)
assert not (a == b)
assert a != b
data = np.random.randn(10, 6, 4)[::, ::2, ::]
tensor1 = pa.Tensor.from_numpy(data)
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data))
eq(tensor1, tensor2)
data = data.copy()
data[9, 0, 0] = 1.0
tensor2 = pa.Tensor.from_numpy(np.ascontiguousarray(data))
ne(tensor1, tensor2)
def test_tensor_hashing():
# Tensors are unhashable
with pytest.raises(TypeError, match="unhashable"):
hash(pa.Tensor.from_numpy(np.arange(10)))
def test_tensor_size():
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
assert pa.ipc.get_tensor_size(tensor) > (data.size * 8)
def test_read_tensor(tmpdir):
# Create and write tensor tensor
data = np.random.randn(10, 4)
tensor = pa.Tensor.from_numpy(data)
data_size = pa.ipc.get_tensor_size(tensor)
path = os.path.join(str(tmpdir), 'pyarrow-tensor-ipc-read-tensor')
write_mmap = pa.create_memory_map(path, data_size)
pa.ipc.write_tensor(tensor, write_mmap)
# Try to read tensor
read_mmap = pa.memory_map(path, mode='r')
array = pa.ipc.read_tensor(read_mmap).to_numpy()
np.testing.assert_equal(data, array)
def test_tensor_memoryview():
# Tensors support the PEP 3118 buffer protocol
for dtype, expected_format in [(np.int8, '=b'),
(np.int64, '=q'),
(np.uint64, '=Q'),
(np.float16, 'e'),
(np.float64, 'd'),
]:
data = np.arange(10, dtype=dtype)
dtype = data.dtype
lst = data.tolist()
tensor = pa.Tensor.from_numpy(data)
m = memoryview(tensor)
assert m.format == expected_format
assert m.shape == data.shape
assert m.strides == data.strides
assert m.ndim == 1
assert m.nbytes == data.nbytes
assert m.itemsize == data.itemsize
assert m.itemsize * 8 == tensor.type.bit_width
assert np.frombuffer(m, dtype).tolist() == lst
del tensor, data
assert np.frombuffer(m, dtype).tolist() == lst
|