summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/compute.R
blob: 0a7d77a096d47287b70ad383d92e2c40d5640d06 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#' Call an Arrow compute function
#'
#' This function provides a lower-level API for calling Arrow functions by their
#' string function name. You won't use it directly for most applications.
#' Many Arrow compute functions are mapped to R methods,
#' and in a `dplyr` evaluation context, [all Arrow functions][list_compute_functions()]
#' are callable with an `arrow_` prefix.
#' @param function_name string Arrow compute function name
#' @param ... Function arguments, which may include `Array`, `ChunkedArray`, `Scalar`,
#' `RecordBatch`, or `Table`.
#' @param args list arguments as an alternative to specifying in `...`
#' @param options named list of C++ function options.
#' @details When passing indices in `...`, `args`, or `options`, express them as
#' 0-based integers (consistent with C++).
#' @return An `Array`, `ChunkedArray`, `Scalar`, `RecordBatch`, or `Table`, whatever the compute function results in.
#' @seealso [Arrow C++ documentation](https://arrow.apache.org/docs/cpp/compute.html) for
#'   the functions and their respective options.
#' @examplesIf arrow_available()
#' a <- Array$create(c(1L, 2L, 3L, NA, 5L))
#' s <- Scalar$create(4L)
#' call_function("coalesce", a, s)
#'
#' a <- Array$create(rnorm(10000))
#' call_function("quantile", a, options = list(q = seq(0, 1, 0.25)))
#' @export
#' @include array.R
#' @include chunked-array.R
#' @include scalar.R
call_function <- function(function_name, ..., args = list(...), options = empty_named_list()) {
  assert_that(is.string(function_name))
  assert_that(is.list(options), !is.null(names(options)))

  datum_classes <- c("Array", "ChunkedArray", "RecordBatch", "Table", "Scalar")
  valid_args <- map_lgl(args, ~ inherits(., datum_classes))
  if (!all(valid_args)) {
    # Lame, just pick one to report
    first_bad <- min(which(!valid_args))
    stop(
      "Argument ", first_bad, " is of class ", head(class(args[[first_bad]]), 1),
      " but it must be one of ", oxford_paste(datum_classes, "or"),
      call. = FALSE
    )
  }

  compute__CallFunction(function_name, args, options)
}

#' List available Arrow C++ compute functions
#'
#' This function lists the names of all available Arrow C++ library compute functions.
#' These can be called by passing to [call_function()], or they can be
#' called by name with an `arrow_` prefix inside a `dplyr` verb.
#'
#' The resulting list describes the capabilities of your `arrow` build.
#' Some functions, such as string and regular expression functions,
#' require optional build-time C++ dependencies. If your `arrow` package
#' was not compiled with those features enabled, those functions will
#' not appear in this list.
#'
#' Some functions take options that need to be passed when calling them
#' (in a list called `options`). These options require custom handling
#' in C++; many functions already have that handling set up but not all do.
#' If you encounter one that needs special handling for options, please
#' report an issue.
#'
#' Note that this list does *not* enumerate all of the R bindings for these functions.
#' The package includes Arrow methods for many base R functions that can
#' be called directly on Arrow objects, as well as some tidyverse-flavored versions
#' available inside `dplyr` verbs.
#'
#' @param pattern Optional regular expression to filter the function list
#' @param ... Additional parameters passed to `grep()`
#' @return A character vector of available Arrow C++ function names
#' @examplesIf arrow_available()
#' available_funcs <- list_compute_functions()
#' utf8_funcs <- list_compute_functions(pattern = "^UTF8", ignore.case = TRUE)
#' @export
list_compute_functions <- function(pattern = NULL, ...) {
  funcs <- compute__GetFunctionNames()
  if (!is.null(pattern)) {
    funcs <- grep(pattern, funcs, value = TRUE, ...)
  }
  # TODO: Filtering of hash funcs will already happen in C++ with ARROW-13943
  funcs <- grep(
    "^hash_",
    funcs,
    value = TRUE,
    invert = TRUE
  )
  funcs
}

#' @export
sum.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("sum", ..., na.rm = na.rm)
}

#' @export
mean.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("mean", ..., na.rm = na.rm)
}

#' @export
min.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("min_max", ..., na.rm = na.rm)$GetFieldByName("min")
}

#' @export
max.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("min_max", ..., na.rm = na.rm)$GetFieldByName("max")
}

scalar_aggregate <- function(FUN, ..., na.rm = FALSE, min_count = 0L) {
  a <- collect_arrays_from_dots(list(...))
  if (FUN == "min_max" && na.rm && a$null_count == length(a)) {
    Array$create(data.frame(min = Inf, max = -Inf))
    # If na.rm == TRUE and all values in array are NA, R returns
    # Inf/-Inf, which are type double. Since Arrow is type-stable
    # and does not do that, we handle this special case here.
  } else {
    call_function(FUN, a, options = list(skip_nulls = na.rm, min_count = min_count))
  }
}

collect_arrays_from_dots <- function(dots) {
  # Given a list that may contain both Arrays and ChunkedArrays,
  # return a single ChunkedArray containing all of those chunks
  # (may return a regular Array if there is only one element in dots)
  # If there is only one element and it is a scalar, it returns the scalar
  if (length(dots) == 1) {
    return(dots[[1]])
  }

  assert_that(all(map_lgl(dots, is.Array)))
  arrays <- unlist(lapply(dots, function(x) {
    if (inherits(x, "ChunkedArray")) {
      x$chunks
    } else {
      x
    }
  }))
  ChunkedArray$create(!!!arrays)
}

#' @export
quantile.ArrowDatum <- function(x,
                                probs = seq(0, 1, 0.25),
                                na.rm = FALSE,
                                type = 7,
                                interpolation = c("linear", "lower", "higher", "nearest", "midpoint"),
                                ...) {
  if (inherits(x, "Scalar")) x <- Array$create(x)
  assert_is(probs, c("numeric", "integer"))
  assert_that(length(probs) > 0)
  assert_that(all(probs >= 0 & probs <= 1))
  if (!na.rm && x$null_count > 0) {
    stop("Missing values not allowed if 'na.rm' is FALSE", call. = FALSE)
  }
  if (type != 7) {
    stop(
      "Argument `type` not supported in Arrow. To control the quantile ",
      "interpolation algorithm, set argument `interpolation` to one of: ",
      "\"linear\" (the default), \"lower\", \"higher\", \"nearest\", or ",
      "\"midpoint\".",
      call. = FALSE
    )
  }
  interpolation <- QuantileInterpolation[[toupper(match.arg(interpolation))]]
  out <- call_function("quantile", x, options = list(q = probs, interpolation = interpolation))
  if (length(out) == 0) {
    # When there are no non-missing values in the data, the Arrow quantile
    # function returns an empty Array, but for consistency with the R quantile
    # function, we want an Array of NA_real_ with the same length as probs
    out <- Array$create(rep(NA_real_, length(probs)))
  }
  out
}

#' @export
median.ArrowDatum <- function(x, na.rm = FALSE, ...) {
  if (!na.rm && x$null_count > 0) {
    Scalar$create(NA_real_)
  } else {
    Scalar$create(quantile(x, probs = 0.5, na.rm = TRUE, ...))
  }
}

#' @export
unique.ArrowDatum <- function(x, incomparables = FALSE, ...) {
  call_function("unique", x)
}

#' @export
any.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("any", ..., na.rm = na.rm)
}

#' @export
all.ArrowDatum <- function(..., na.rm = FALSE) {
  scalar_aggregate("all", ..., na.rm = na.rm)
}

#' `match` and `%in%` for Arrow objects
#'
#' `base::match()` is not a generic, so we can't just define Arrow methods for
#' it. This function exposes the analogous functions in the Arrow C++ library.
#'
#' @param x `Scalar`, `Array` or `ChunkedArray`
#' @param table `Scalar`, Array`, `ChunkedArray`, or R vector lookup table.
#' @param ... additional arguments, ignored
#' @return `match_arrow()` returns an `int32`-type Arrow object of the same length
#' and type as `x` with the (0-based) indexes into `table`. `is_in()` returns a
#' `boolean`-type Arrow object of the same length and type as `x` with values indicating
#' per element of `x` it it is present in `table`.
#' @examplesIf arrow_available()
#' # note that the returned value is 0-indexed
#' cars_tbl <- arrow_table(name = rownames(mtcars), mtcars)
#' match_arrow(Scalar$create("Mazda RX4 Wag"), cars_tbl$name)
#'
#' is_in(Array$create("Mazda RX4 Wag"), cars_tbl$name)
#'
#' # Although there are multiple matches, you are returned the index of the first
#' # match, as with the base R equivalent
#' match(4, mtcars$cyl) # 1-indexed
#' match_arrow(Scalar$create(4), cars_tbl$cyl) # 0-indexed
#'
#' # If `x` contains multiple values, you are returned the indices of the first
#' # match for each value.
#' match(c(4, 6, 8), mtcars$cyl)
#' match_arrow(Array$create(c(4, 6, 8)), cars_tbl$cyl)
#'
#' # Return type matches type of `x`
#' is_in(c(4, 6, 8), mtcars$cyl) # returns vector
#' is_in(Scalar$create(4), mtcars$cyl) # returns Scalar
#' is_in(Array$create(c(4, 6, 8)), cars_tbl$cyl) # returns Array
#' is_in(ChunkedArray$create(c(4, 6), 8), cars_tbl$cyl) # returns ChunkedArray
#' @export
match_arrow <- function(x, table, ...) {
  if (!inherits(x, "ArrowDatum")) {
    x <- Array$create(x)
  }

  if (!inherits(table, c("Array", "ChunkedArray"))) {
    table <- Array$create(table)
  }
  call_function("index_in_meta_binary", x, table)
}

#' @rdname match_arrow
#' @export
is_in <- function(x, table, ...) {
  if (!inherits(x, "ArrowDatum")) {
    x <- Array$create(x)
  }

  if (!inherits(table, c("Array", "DictionaryArray", "ChunkedArray"))) {
    table <- Array$create(table)
  }
  call_function("is_in_meta_binary", x, table)
}

#' `table` for Arrow objects
#'
#' This function tabulates the values in the array and returns a table of counts.
#' @param x `Array` or `ChunkedArray`
#' @return A `StructArray` containing "values" (same type as `x`) and "counts"
#' `Int64`.
#' @examplesIf arrow_available()
#' cyl_vals <- Array$create(mtcars$cyl)
#' counts <- value_counts(cyl_vals)
#' @export
value_counts <- function(x) {
  call_function("value_counts", x)
}

#' Cast options
#'
#' @param safe logical: enforce safe conversion? Default `TRUE`
#' @param ... additional cast options, such as `allow_int_overflow`,
#' `allow_time_truncate`, and `allow_float_truncate`, which are set to `!safe`
#' by default
#' @return A list
#' @export
#' @keywords internal
cast_options <- function(safe = TRUE, ...) {
  opts <- list(
    allow_int_overflow = !safe,
    allow_time_truncate = !safe,
    allow_float_truncate = !safe
  )
  modifyList(opts, list(...))
}