summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/dataset-factory.R
blob: c56a6b181065c95974065c809119a3f5e7ef1c91 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#' @include dataset.R

#' @usage NULL
#' @format NULL
#' @rdname Dataset
#' @export
DatasetFactory <- R6Class("DatasetFactory",
  inherit = ArrowObject,
  public = list(
    Finish = function(schema = NULL, unify_schemas = FALSE) {
      if (is.null(schema)) {
        dataset___DatasetFactory__Finish1(self, unify_schemas)
      } else {
        assert_is(schema, "Schema")
        dataset___DatasetFactory__Finish2(self, schema)
      }
    },
    Inspect = function(unify_schemas = FALSE) {
      dataset___DatasetFactory__Inspect(self, unify_schemas)
    }
  )
)
DatasetFactory$create <- function(x,
                                  filesystem = NULL,
                                  format = c("parquet", "arrow", "ipc", "feather", "csv", "tsv", "text"),
                                  partitioning = NULL,
                                  ...) {
  if (is_list_of(x, "DatasetFactory")) {
    return(dataset___UnionDatasetFactory__Make(x))
  }

  if (is.character(format)) {
    format <- FileFormat$create(match.arg(format), ...)
  } else {
    assert_is(format, "FileFormat")
  }

  path_and_fs <- get_paths_and_filesystem(x, filesystem)
  info <- path_and_fs$fs$GetFileInfo(path_and_fs$path)

  if (length(info) > 1 || info[[1]]$type == FileType$File) {
    # x looks like a vector of one or more file paths (not a directory path)
    return(FileSystemDatasetFactory$create(path_and_fs$fs, NULL, path_and_fs$path, format))
  }

  if (!is.null(partitioning)) {
    if (inherits(partitioning, "Schema")) {
      partitioning <- DirectoryPartitioning$create(partitioning)
    } else if (is.character(partitioning)) {
      # These are the column/field names, and we should autodetect their types
      partitioning <- DirectoryPartitioningFactory$create(partitioning)
    }
  }

  selector <- FileSelector$create(path_and_fs$path, allow_not_found = FALSE, recursive = TRUE)

  FileSystemDatasetFactory$create(path_and_fs$fs, selector, NULL, format, partitioning)
}

#' Create a DatasetFactory
#'
#' A [Dataset] can constructed using one or more [DatasetFactory]s.
#' This function helps you construct a `DatasetFactory` that you can pass to
#' [open_dataset()].
#'
#' If you would only have a single `DatasetFactory` (for example, you have a
#' single directory containing Parquet files), you can call `open_dataset()`
#' directly. Use `dataset_factory()` when you
#' want to combine different directories, file systems, or file formats.
#'
#' @param x A string path to a directory containing data files, a vector of one
#' one or more string paths to data files, or a list of `DatasetFactory` objects
#' whose datasets should be combined. If this argument is specified it will be
#' used to construct a `UnionDatasetFactory` and other arguments will be
#' ignored.
#' @param filesystem A [FileSystem] object; if omitted, the `FileSystem` will
#' be detected from `x`
#' @param format A [FileFormat] object, or a string identifier of the format of
#' the files in `x`. Currently supported values:
#' * "parquet"
#' * "ipc"/"arrow"/"feather", all aliases for each other; for Feather, note that
#'   only version 2 files are supported
#' * "csv"/"text", aliases for the same thing (because comma is the default
#'   delimiter for text files
#' * "tsv", equivalent to passing `format = "text", delimiter = "\t"`
#'
#' Default is "parquet", unless a `delimiter` is also specified, in which case
#' it is assumed to be "text".
#' @param partitioning One of
#'   * A `Schema`, in which case the file paths relative to `sources` will be
#'    parsed, and path segments will be matched with the schema fields. For
#'    example, `schema(year = int16(), month = int8())` would create partitions
#'    for file paths like "2019/01/file.parquet", "2019/02/file.parquet", etc.
#'   * A character vector that defines the field names corresponding to those
#'    path segments (that is, you're providing the names that would correspond
#'    to a `Schema` but the types will be autodetected)
#'   * A `HivePartitioning` or `HivePartitioningFactory`, as returned
#'    by [hive_partition()] which parses explicit or autodetected fields from
#'    Hive-style path segments
#'   * `NULL` for no partitioning
#' @param ... Additional format-specific options, passed to
#' `FileFormat$create()`. For CSV options, note that you can specify them either
#' with the Arrow C++ library naming ("delimiter", "quoting", etc.) or the
#' `readr`-style naming used in [read_csv_arrow()] ("delim", "quote", etc.).
#' Not all `readr` options are currently supported; please file an issue if you
#' encounter one that `arrow` should support.
#' @return A `DatasetFactory` object. Pass this to [open_dataset()],
#' in a list potentially with other `DatasetFactory` objects, to create
#' a `Dataset`.
#' @export
dataset_factory <- DatasetFactory$create

#' @usage NULL
#' @format NULL
#' @rdname Dataset
#' @export
FileSystemDatasetFactory <- R6Class("FileSystemDatasetFactory",
  inherit = DatasetFactory
)
FileSystemDatasetFactory$create <- function(filesystem,
                                            selector = NULL,
                                            paths = NULL,
                                            format,
                                            partitioning = NULL) {
  assert_is(filesystem, "FileSystem")
  is.null(selector) || assert_is(selector, "FileSelector")
  is.null(paths) || assert_is(paths, "character")
  assert_that(
    xor(is.null(selector), is.null(paths)),
    msg = "Either selector or paths must be specified"
  )
  assert_is(format, "FileFormat")
  if (!is.null(paths)) {
    assert_that(is.null(partitioning), msg = "Partitioning not supported with paths")
  }

  if (!is.null(paths)) {
    ptr <- dataset___FileSystemDatasetFactory__Make0(filesystem, paths, format)
  } else if (is.null(partitioning)) {
    ptr <- dataset___FileSystemDatasetFactory__Make1(filesystem, selector, format)
  } else if (inherits(partitioning, "PartitioningFactory")) {
    ptr <- dataset___FileSystemDatasetFactory__Make3(filesystem, selector, format, partitioning)
  } else if (inherits(partitioning, "Partitioning")) {
    ptr <- dataset___FileSystemDatasetFactory__Make2(filesystem, selector, format, partitioning)
  } else {
    stop(
      "Expected 'partitioning' to be NULL, PartitioningFactory or Partitioning",
      call. = FALSE
    )
  }

  ptr
}