1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#' Scan the contents of a dataset
#'
#' @description
#' A `Scanner` iterates over a [Dataset]'s fragments and returns data
#' according to given row filtering and column projection. A `ScannerBuilder`
#' can help create one.
#'
#' @section Factory:
#' `Scanner$create()` wraps the `ScannerBuilder` interface to make a `Scanner`.
#' It takes the following arguments:
#'
#' * `dataset`: A `Dataset` or `arrow_dplyr_query` object, as returned by the
#' `dplyr` methods on `Dataset`.
#' * `projection`: A character vector of column names to select columns or a
#' named list of expressions
#' * `filter`: A `Expression` to filter the scanned rows by, or `TRUE` (default)
#' to keep all rows.
#' * `use_threads`: logical: should scanning use multithreading? Default `TRUE`
#' * `use_async`: logical: should the async scanner (performs better on
#' high-latency/highly parallel filesystems like S3) be used? Default `FALSE`
#' * `...`: Additional arguments, currently ignored
#' @section Methods:
#' `ScannerBuilder` has the following methods:
#'
#' - `$Project(cols)`: Indicate that the scan should only return columns given
#' by `cols`, a character vector of column names
#' - `$Filter(expr)`: Filter rows by an [Expression].
#' - `$UseThreads(threads)`: logical: should the scan use multithreading?
#' The method's default input is `TRUE`, but you must call the method to enable
#' multithreading because the scanner default is `FALSE`.
#' - `$UseAsync(use_async)`: logical: should the async scanner be used?
#' - `$BatchSize(batch_size)`: integer: Maximum row count of scanned record
#' batches, default is 32K. If scanned record batches are overflowing memory
#' then this method can be called to reduce their size.
#' - `$schema`: Active binding, returns the [Schema] of the Dataset
#' - `$Finish()`: Returns a `Scanner`
#'
#' `Scanner` currently has a single method, `$ToTable()`, which evaluates the
#' query and returns an Arrow [Table].
#' @rdname Scanner
#' @name Scanner
#' @export
Scanner <- R6Class("Scanner",
inherit = ArrowObject,
public = list(
ToTable = function() dataset___Scanner__ToTable(self),
ScanBatches = function() dataset___Scanner__ScanBatches(self),
ToRecordBatchReader = function() dataset___Scanner__ToRecordBatchReader(self),
CountRows = function() dataset___Scanner__CountRows(self)
),
active = list(
schema = function() dataset___Scanner__schema(self)
)
)
Scanner$create <- function(dataset,
projection = NULL,
filter = TRUE,
use_threads = option_use_threads(),
use_async = getOption("arrow.use_async", FALSE),
batch_size = NULL,
fragment_scan_options = NULL,
...) {
if (inherits(dataset, "arrow_dplyr_query")) {
if (is_collapsed(dataset)) {
# TODO: Is there a way to get a RecordBatchReader rather than evaluating?
dataset$.data <- as_adq(dplyr::compute(dataset$.data))$.data
}
proj <- c(dataset$selected_columns, dataset$temp_columns)
if (!is.null(projection)) {
if (is.character(projection)) {
stopifnot("attempting to project with unknown columns" = all(projection %in% names(proj)))
proj <- proj[projection]
} else {
# TODO: ARROW-13802 accepting lists of Expressions as a projection
warning(
"Scanner$create(projection = ...) must be a character vector, ",
"ignoring the projection argument."
)
}
}
if (!isTRUE(filter)) {
dataset <- set_filters(dataset, filter)
}
return(Scanner$create(
dataset$.data,
proj,
dataset$filtered_rows,
use_threads,
use_async,
batch_size,
fragment_scan_options,
...
))
}
scanner_builder <- ScannerBuilder$create(dataset)
if (use_threads) {
scanner_builder$UseThreads()
}
if (use_async) {
scanner_builder$UseAsync()
}
if (!is.null(projection)) {
scanner_builder$Project(projection)
}
if (!isTRUE(filter)) {
scanner_builder$Filter(filter)
}
if (is_integerish(batch_size)) {
scanner_builder$BatchSize(batch_size)
}
if (!is.null(fragment_scan_options)) {
scanner_builder$FragmentScanOptions(fragment_scan_options)
}
scanner_builder$Finish()
}
#' @export
names.Scanner <- function(x) names(x$schema)
#' @export
head.Scanner <- function(x, n = 6L, ...) {
assert_that(n > 0) # For now
dataset___Scanner__head(x, n)
}
#' @export
tail.Scanner <- function(x, n = 6L, ...) {
assert_that(n > 0) # For now
result <- list()
batch_num <- 0
for (batch in rev(dataset___Scanner__ScanBatches(x))) {
batch_num <- batch_num + 1
result[[batch_num]] <- tail(batch, n)
n <- n - nrow(batch)
if (n <= 0) break
}
Table$create(!!!rev(result))
}
ScanTask <- R6Class("ScanTask",
inherit = ArrowObject,
public = list(
Execute = function() dataset___ScanTask__get_batches(self)
)
)
#' Apply a function to a stream of RecordBatches
#'
#' As an alternative to calling `collect()` on a `Dataset` query, you can
#' use this function to access the stream of `RecordBatch`es in the `Dataset`.
#' This lets you aggregate on each chunk and pull the intermediate results into
#' a `data.frame` for further aggregation, even if you couldn't fit the whole
#' `Dataset` result in memory.
#'
#' This is experimental and not recommended for production use.
#'
#' @param X A `Dataset` or `arrow_dplyr_query` object, as returned by the
#' `dplyr` methods on `Dataset`.
#' @param FUN A function or `purrr`-style lambda expression to apply to each
#' batch
#' @param ... Additional arguments passed to `FUN`
#' @param .data.frame logical: collect the resulting chunks into a single
#' `data.frame`? Default `TRUE`
#' @export
map_batches <- function(X, FUN, ..., .data.frame = TRUE) {
if (.data.frame) {
lapply <- map_dfr
}
scanner <- Scanner$create(ensure_group_vars(X))
FUN <- as_mapper(FUN)
lapply(scanner$ScanBatches(), function(batch) {
# TODO: wrap batch in arrow_dplyr_query with X$selected_columns,
# X$temp_columns, and X$group_by_vars
# if X is arrow_dplyr_query, if some other arg (.dplyr?) == TRUE
FUN(batch, ...)
})
}
#' @usage NULL
#' @format NULL
#' @rdname Scanner
#' @export
ScannerBuilder <- R6Class("ScannerBuilder",
inherit = ArrowObject,
public = list(
Project = function(cols) {
# cols is either a character vector or a named list of Expressions
if (is.character(cols)) {
dataset___ScannerBuilder__ProjectNames(self, cols)
} else if (length(cols) == 0) {
# Empty projection
dataset___ScannerBuilder__ProjectNames(self, character(0))
} else {
# List of Expressions
dataset___ScannerBuilder__ProjectExprs(self, cols, names(cols))
}
self
},
Filter = function(expr) {
assert_is(expr, "Expression")
dataset___ScannerBuilder__Filter(self, expr)
self
},
UseThreads = function(threads = option_use_threads()) {
dataset___ScannerBuilder__UseThreads(self, threads)
self
},
UseAsync = function(use_async = TRUE) {
dataset___ScannerBuilder__UseAsync(self, use_async)
self
},
BatchSize = function(batch_size) {
dataset___ScannerBuilder__BatchSize(self, batch_size)
self
},
FragmentScanOptions = function(options) {
dataset___ScannerBuilder__FragmentScanOptions(self, options)
self
},
Finish = function() dataset___ScannerBuilder__Finish(self)
),
active = list(
schema = function() dataset___ScannerBuilder__schema(self)
)
)
ScannerBuilder$create <- function(dataset) {
if (inherits(dataset, "RecordBatchReader")) {
return(dataset___ScannerBuilder__FromRecordBatchReader(dataset))
}
if (inherits(dataset, c("data.frame", "ArrowTabular"))) {
dataset <- InMemoryDataset$create(dataset)
}
assert_is(dataset, "Dataset")
dataset$NewScan()
}
#' @export
names.ScannerBuilder <- function(x) names(x$schema)
|