summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/dplyr-summarize.R
blob: a6b7a3592686027c1688090bb7ce4b9ab9a7a0de (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.


# The following S3 methods are registered on load if dplyr is present

summarise.arrow_dplyr_query <- function(.data, ...) {
  call <- match.call()
  .data <- as_adq(.data)
  exprs <- quos(...)
  # Only retain the columns we need to do our aggregations
  vars_to_keep <- unique(c(
    unlist(lapply(exprs, all.vars)), # vars referenced in summarise
    dplyr::group_vars(.data) # vars needed for grouping
  ))
  # If exprs rely on the results of previous exprs
  # (total = sum(x), mean = total / n())
  # then not all vars will correspond to columns in the data,
  # so don't try to select() them (use intersect() to exclude them)
  # Note that this select() isn't useful for the Arrow summarize implementation
  # because it will effectively project to keep what it needs anyway,
  # but the data.frame fallback version does benefit from select here
  .data <- dplyr::select(.data, intersect(vars_to_keep, names(.data)))

  # Try stuff, if successful return()
  out <- try(do_arrow_summarize(.data, ...), silent = TRUE)
  if (inherits(out, "try-error")) {
    return(abandon_ship(call, .data, format(out)))
  } else {
    return(out)
  }
}
summarise.Dataset <- summarise.ArrowTabular <- summarise.arrow_dplyr_query

# This is the Arrow summarize implementation
do_arrow_summarize <- function(.data, ..., .groups = NULL) {
  exprs <- ensure_named_exprs(quos(...))

  # Create a stateful environment for recording our evaluated expressions
  # It's more complex than other places because a single summarize() expr
  # may result in multiple query nodes (Aggregate, Project),
  # and we have to walk through the expressions to disentangle them.
  ctx <- env(
    mask = arrow_mask(.data, aggregation = TRUE),
    aggregations = empty_named_list(),
    post_mutate = empty_named_list()
  )
  for (i in seq_along(exprs)) {
    # Iterate over the indices and not the names because names may be repeated
    # (which overwrites the previous name)
    summarize_eval(
      names(exprs)[i],
      exprs[[i]],
      ctx,
      length(.data$group_by_vars) > 0
    )
  }

  # Apply the results to the .data object.
  # First, the aggregations
  .data$aggregations <- ctx$aggregations
  # Then collapse the query so that the resulting query object can have
  # additional operations applied to it
  out <- collapse.arrow_dplyr_query(.data)
  # The expressions may have been translated into
  # "first, aggregate, then transform the result further"
  # nolint start
  # For example,
  #   summarize(mean = sum(x) / n())
  # is effectively implemented as
  #   summarize(..temp0 = sum(x), ..temp1 = n()) %>%
  #   mutate(mean = ..temp0 / ..temp1) %>%
  #   select(-starts_with("..temp"))
  # If this is the case, there will be expressions in post_mutate
  # nolint end
  if (length(ctx$post_mutate)) {
    # Append post_mutate, and make sure order is correct
    # according to input exprs (also dropping ..temp columns)
    out$selected_columns <- c(
      out$selected_columns,
      ctx$post_mutate
    )[c(.data$group_by_vars, names(exprs))]
  }

  # If the object has .drop = FALSE and any group vars are dictionaries,
  # we can't (currently) preserve the empty rows that dplyr does,
  # so give a warning about that.
  if (!dplyr::group_by_drop_default(.data)) {
    group_by_exprs <- .data$selected_columns[.data$group_by_vars]
    if (any(map_lgl(group_by_exprs, ~ inherits(.$type(), "DictionaryType")))) {
      warning(
        ".drop = FALSE currently not supported in Arrow aggregation",
        call. = FALSE
      )
    }
  }

  # Handle .groups argument
  if (length(.data$group_by_vars)) {
    if (is.null(.groups)) {
      # dplyr docs say:
      # When ‘.groups’ is not specified, it is chosen based on the
      # number of rows of the results:
      # • If all the results have 1 row, you get "drop_last".
      # • If the number of rows varies, you get "keep".
      #
      # But we don't support anything that returns multiple rows now
      .groups <- "drop_last"
    } else {
      assert_that(is.string(.groups))
    }
    if (.groups == "drop_last") {
      out$group_by_vars <- head(.data$group_by_vars, -1)
    } else if (.groups == "keep") {
      out$group_by_vars <- .data$group_by_vars
    } else if (.groups == "rowwise") {
      stop(arrow_not_supported('.groups = "rowwise"'))
    } else if (.groups == "drop") {
      # collapse() preserves groups so remove them
      out <- dplyr::ungroup(out)
    } else {
      stop(paste("Invalid .groups argument:", .groups))
    }
    # TODO: shouldn't we be doing something with `drop_empty_groups` in summarize? (ARROW-14044)
    out$drop_empty_groups <- .data$drop_empty_groups
  }
  out
}

arrow_eval_or_stop <- function(expr, mask) {
  # TODO: change arrow_eval error handling behavior?
  out <- arrow_eval(expr, mask)
  if (inherits(out, "try-error")) {
    msg <- handle_arrow_not_supported(out, format_expr(expr))
    stop(msg, call. = FALSE)
  }
  out
}

summarize_projection <- function(.data) {
  c(
    map(.data$aggregations, ~ .$data),
    .data$selected_columns[.data$group_by_vars]
  )
}

format_aggregation <- function(x) {
  paste0(x$fun, "(", x$data$ToString(), ")")
}

# This function handles each summarize expression and turns it into the
# appropriate combination of (1) aggregations (possibly temporary) and
# (2) post-aggregation transformations (mutate)
# The function returns nothing: it assigns into the `ctx` environment
summarize_eval <- function(name, quosure, ctx, hash, recurse = FALSE) {
  expr <- quo_get_expr(quosure)
  ctx$quo_env <- quo_get_env(quosure)

  funs_in_expr <- all_funs(expr)
  if (length(funs_in_expr) == 0) {
    # If it is a scalar or field ref, no special handling required
    ctx$aggregations[[name]] <- arrow_eval_or_stop(quosure, ctx$mask)
    return()
  }

  # For the quantile() binding in the hash aggregation case, we need to mutate
  # the list output from the Arrow hash_tdigest kernel to flatten it into a
  # column of type float64. We do that by modifying the unevaluated expression
  # to replace quantile(...) with arrow_list_element(quantile(...), 0L)
  if (hash && "quantile" %in% funs_in_expr) {
    expr <- wrap_hash_quantile(expr)
    funs_in_expr <- all_funs(expr)
  }

  # Start inspecting the expr to see what aggregations it involves
  agg_funs <- names(agg_funcs)
  outer_agg <- funs_in_expr[1] %in% agg_funs
  inner_agg <- funs_in_expr[-1] %in% agg_funs

  # First, pull out any aggregations wrapped in other function calls
  if (any(inner_agg)) {
    expr <- extract_aggregations(expr, ctx)
  }

  # By this point, there are no more aggregation functions in expr
  # except for possibly the outer function call:
  # they've all been pulled out to ctx$aggregations, and in their place in expr
  # there are variable names, which will correspond to field refs in the
  # query object after aggregation and collapse().
  # So if we want to know if there are any aggregations inside expr,
  # we have to look for them by their new var names
  inner_agg_exprs <- all_vars(expr) %in% names(ctx$aggregations)

  if (outer_agg) {
    # This is something like agg(fun(x, y)
    # It just works by normal arrow_eval, unless there's a mix of aggs and
    # columns in the original data like agg(fun(x, agg(x)))
    # (but that will have been caught in extract_aggregations())
    ctx$aggregations[[name]] <- arrow_eval_or_stop(
      as_quosure(expr, ctx$quo_env),
      ctx$mask
    )
    return()
  } else if (all(inner_agg_exprs)) {
    # Something like: fun(agg(x), agg(y))
    # So based on the aggregations that have been extracted, mutate after
    mutate_mask <- arrow_mask(
      list(selected_columns = make_field_refs(names(ctx$aggregations)))
    )
    ctx$post_mutate[[name]] <- arrow_eval_or_stop(
      as_quosure(expr, ctx$quo_env),
      mutate_mask
    )
    return()
  }

  # Backstop for any other odd cases, like fun(x, y) (i.e. no aggregation),
  # or aggregation functions that aren't supported in Arrow (not in agg_funcs)
  stop(
    handle_arrow_not_supported(quo_get_expr(quosure), format_expr(quosure)),
    call. = FALSE
  )
}

# This function recurses through expr, pulls out any aggregation expressions,
# and inserts a variable name (field ref) in place of the aggregation
extract_aggregations <- function(expr, ctx) {
  # Keep the input in case we need to raise an error message with it
  original_expr <- expr
  funs <- all_funs(expr)
  if (length(funs) == 0) {
    return(expr)
  } else if (length(funs) > 1) {
    # Recurse more
    expr[-1] <- lapply(expr[-1], extract_aggregations, ctx)
  }
  if (funs[1] %in% names(agg_funcs)) {
    inner_agg_exprs <- all_vars(expr) %in% names(ctx$aggregations)
    if (any(inner_agg_exprs) & !all(inner_agg_exprs)) {
      # We can't aggregate over a combination of dataset columns and other
      # aggregations (e.g. sum(x - mean(x)))
      # TODO: support in ARROW-13926
      # TODO: Add "because" arg to explain _why_ it's not supported?
      # TODO: this message could also say "not supported in summarize()"
      #       since some of these expressions may be legal elsewhere
      stop(
        handle_arrow_not_supported(original_expr, format_expr(original_expr)),
        call. = FALSE
      )
    }

    # We have an aggregation expression with no other aggregations inside it,
    # so arrow_eval the expression on the data and give it a ..temp name prefix,
    # then insert that name (symbol) back into the expression so that we can
    # mutate() on the result of the aggregation and reference this field.
    tmpname <- paste0("..temp", length(ctx$aggregations))
    ctx$aggregations[[tmpname]] <- arrow_eval_or_stop(as_quosure(expr, ctx$quo_env), ctx$mask)
    expr <- as.symbol(tmpname)
  }
  expr
}

# This function recurses through expr and wraps each call to quantile() with a
# call to arrow_list_element()
wrap_hash_quantile <- function(expr) {
  if (length(expr) == 1) {
    return(expr)
  } else {
    if (is.call(expr) && expr[[1]] == quote(quantile)) {
      return(str2lang(paste0("arrow_list_element(", deparse1(expr), ", 0L)")))
    } else {
      return(as.call(lapply(expr, wrap_hash_quantile)))
    }
  }
}