summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/duckdb.R
blob: c772d4fbdabc67e7972cd8d4f13e5987df8a0277 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#' Create a (virtual) DuckDB table from an Arrow object
#'
#' This will do the necessary configuration to create a (virtual) table in DuckDB
#' that is backed by the Arrow object given. No data is copied or modified until
#' `collect()` or `compute()` are called or a query is run against the table.
#'
#' The result is a dbplyr-compatible object that can be used in d(b)plyr pipelines.
#'
#' If `auto_disconnect = TRUE`, the DuckDB table that is created will be configured
#' to be unregistered when the `tbl` object is garbage collected. This is helpful
#' if you don't want to have extra table objects in DuckDB after you've finished
#' using them. Currently, this cleanup can, however, sometimes lead to hangs if
#' tables are created and deleted in quick succession, hence the default value
#' of `FALSE`
#'
#' @param .data the Arrow object (e.g. Dataset, Table) to use for the DuckDB table
#' @param con a DuckDB connection to use (default will create one and store it
#' in `options("arrow_duck_con")`)
#' @param table_name a name to use in DuckDB for this object. The default is a
#' unique string `"arrow_"` followed by numbers.
#' @param auto_disconnect should the table be automatically cleaned up when the
#' resulting object is removed (and garbage collected)? Default: `FALSE`
#'
#' @return A `tbl` of the new table in DuckDB
#'
#' @name to_duckdb
#' @export
#' @examplesIf getFromNamespace("run_duckdb_examples", "arrow")()
#' library(dplyr)
#'
#' ds <- InMemoryDataset$create(mtcars)
#'
#' ds %>%
#'   filter(mpg < 30) %>%
#'   to_duckdb() %>%
#'   group_by(cyl) %>%
#'   summarize(mean_mpg = mean(mpg, na.rm = TRUE))
to_duckdb <- function(.data,
                      con = arrow_duck_connection(),
                      table_name = unique_arrow_tablename(),
                      auto_disconnect = FALSE) {
  .data <- as_adq(.data)
  duckdb::duckdb_register_arrow(con, table_name, .data)

  tbl <- tbl(con, table_name)
  groups <- dplyr::groups(.data)
  if (length(groups)) {
    tbl <- dplyr::group_by(tbl, groups)
  }

  if (auto_disconnect) {
    # this will add the correct connection disconnection when the tbl is gced.
    # we should probably confirm that this use of src$disco is kosher.
    tbl$src$disco <- duckdb_disconnector(con, table_name)
  }

  tbl
}

arrow_duck_connection <- function() {
  con <- getOption("arrow_duck_con")
  if (is.null(con) || !DBI::dbIsValid(con)) {
    con <- DBI::dbConnect(duckdb::duckdb())
    # Use the same CPU count that the arrow library is set to
    DBI::dbExecute(con, paste0("PRAGMA threads=", cpu_count()))
    options(arrow_duck_con = con)
  }
  con
}

# helper function to determine if duckdb examples should run
# see: https://github.com/r-lib/roxygen2/issues/1242
run_duckdb_examples <- function() {
  arrow_with_dataset() &&
    requireNamespace("duckdb", quietly = TRUE) &&
    packageVersion("duckdb") > "0.2.7" &&
    requireNamespace("dplyr", quietly = TRUE) &&
    requireNamespace("dbplyr", quietly = TRUE)
}

# Adapted from dbplyr
unique_arrow_tablename <- function() {
  i <- getOption("arrow_table_name", 0) + 1
  options(arrow_table_name = i)
  sprintf("arrow_%03i", i)
}

# Creates an environment that disconnects the database when it's GC'd
duckdb_disconnector <- function(con, tbl_name) {
  reg.finalizer(environment(), function(...) {
    # remote the table we ephemerally created (though only if the connection is
    # still valid)
    if (DBI::dbIsValid(con)) {
      duckdb::duckdb_unregister_arrow(con, tbl_name)
    }

    # and there are no more tables, so we can safely shutdown
    if (length(DBI::dbListTables(con)) == 0) {
      DBI::dbDisconnect(con, shutdown = TRUE)
    }
  })
  environment()
}

#' Create an Arrow object from others
#'
#' This can be used in pipelines that pass data back and forth between Arrow and
#' other processes (like DuckDB).
#'
#' @param .data the object to be converted
#'
#' @return an `arrow_dplyr_query` object, to be used in dplyr pipelines.
#' @export
#'
#' @examplesIf getFromNamespace("run_duckdb_examples", "arrow")()
#' library(dplyr)
#'
#' ds <- InMemoryDataset$create(mtcars)
#'
#' ds %>%
#'   filter(mpg < 30) %>%
#'   to_duckdb() %>%
#'   group_by(cyl) %>%
#'   summarize(mean_mpg = mean(mpg, na.rm = TRUE)) %>%
#'   to_arrow() %>%
#'   collect()
to_arrow <- function(.data) {
  # If this is an Arrow object already, return quickly since we're already Arrow
  if (inherits(.data, c("arrow_dplyr_query", "ArrowObject"))) {
    return(.data)
  }

  # For now, we only handle .data from duckdb, so check that it is that if we've
  # gotten this far
  if (!inherits(dbplyr::remote_con(.data), "duckdb_connection")) {
    stop(
      "to_arrow() currently only supports Arrow tables, Arrow datasets, ",
      "Arrow queries, or dbplyr tbls from duckdb connections",
      call. = FALSE
    )
  }

  # Run the query
  res <- DBI::dbSendQuery(dbplyr::remote_con(.data), dbplyr::remote_query(.data), arrow = TRUE)

  # TODO: we shouldn't need $read_table(), but we get segfaults when we do.
  arrow_dplyr_query(duckdb::duckdb_fetch_record_batch(res)$read_table())
}