summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/query-engine.R
blob: 234aaf56975dec534615419910145fc348bf2e72 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

do_exec_plan <- function(.data) {
  plan <- ExecPlan$create()
  final_node <- plan$Build(.data)
  tab <- plan$Run(final_node)

  # TODO (ARROW-14289): make the head/tail methods return RBR not Table
  if (inherits(tab, "RecordBatchReader")) {
    tab <- tab$read_table()
  }

  # If arrange() created $temp_columns, make sure to omit them from the result
  # We can't currently handle this in the ExecPlan itself because sorting
  # happens in the end (SinkNode) so nothing comes after it.
  if (length(final_node$sort$temp_columns) > 0) {
    tab <- tab[, setdiff(names(tab), final_node$sort$temp_columns), drop = FALSE]
  }

  if (ncol(tab)) {
    # Apply any column metadata from the original schema, where appropriate
    original_schema <- source_data(.data)$schema
    # TODO: do we care about other (non-R) metadata preservation?
    # How would we know if it were meaningful?
    r_meta <- original_schema$r_metadata
    if (!is.null(r_meta)) {
      # Filter r_metadata$columns on columns with name _and_ type match
      new_schema <- tab$schema
      common_names <- intersect(names(r_meta$columns), names(tab))
      keep <- common_names[
        map_lgl(common_names, ~ original_schema[[.]] == new_schema[[.]])
      ]
      r_meta$columns <- r_meta$columns[keep]
      if (has_aggregation(.data)) {
        # dplyr drops top-level attributes if you do summarize
        r_meta$attributes <- NULL
      }
      tab$r_metadata <- r_meta
    }
  }

  tab
}

ExecPlan <- R6Class("ExecPlan",
  inherit = ArrowObject,
  public = list(
    Scan = function(dataset) {
      # Handle arrow_dplyr_query
      if (inherits(dataset, "arrow_dplyr_query")) {
        if (inherits(dataset$.data, "RecordBatchReader")) {
          return(ExecNode_ReadFromRecordBatchReader(self, dataset$.data))
        }

        filter <- dataset$filtered_rows
        if (isTRUE(filter)) {
          filter <- Expression$scalar(TRUE)
        }
        # Use FieldsInExpression to find all from dataset$selected_columns
        colnames <- unique(unlist(map(
          dataset$selected_columns,
          field_names_in_expression
        )))
        dataset <- dataset$.data
        assert_is(dataset, "Dataset")
      } else {
        if (inherits(dataset, "ArrowTabular")) {
          dataset <- InMemoryDataset$create(dataset)
        }
        assert_is(dataset, "Dataset")
        # Set some defaults
        filter <- Expression$scalar(TRUE)
        colnames <- names(dataset)
      }
      # ScanNode needs the filter to do predicate pushdown and skip partitions,
      # and it needs to know which fields to materialize (and which are unnecessary)
      ExecNode_Scan(self, dataset, filter, colnames %||% character(0))
    },
    Build = function(.data) {
      # This method takes an arrow_dplyr_query and chains together the
      # ExecNodes that they produce. It does not evaluate them--that is Run().
      group_vars <- dplyr::group_vars(.data)
      grouped <- length(group_vars) > 0

      # Collect the target names first because we have to add back the group vars
      target_names <- names(.data)
      .data <- ensure_group_vars(.data)
      .data <- ensure_arrange_vars(.data) # this sets .data$temp_columns

      if (inherits(.data$.data, "arrow_dplyr_query")) {
        # We have a nested query. Recurse.
        node <- self$Build(.data$.data)
      } else {
        node <- self$Scan(.data)
      }

      # ARROW-13498: Even though Scan takes the filter, apparently we have to do it again
      if (inherits(.data$filtered_rows, "Expression")) {
        node <- node$Filter(.data$filtered_rows)
      }

      if (!is.null(.data$aggregations)) {
        # Project to include just the data required for each aggregation,
        # plus group_by_vars (last)
        # TODO: validate that none of names(aggregations) are the same as names(group_by_vars)
        # dplyr does not error on this but the result it gives isn't great
        node <- node$Project(summarize_projection(.data))

        if (grouped) {
          # We need to prefix all of the aggregation function names with "hash_"
          .data$aggregations <- lapply(.data$aggregations, function(x) {
            x[["fun"]] <- paste0("hash_", x[["fun"]])
            x
          })
        }

        node <- node$Aggregate(
          options = map(.data$aggregations, ~ .[c("fun", "options")]),
          target_names = names(.data$aggregations),
          out_field_names = names(.data$aggregations),
          key_names = group_vars
        )

        if (grouped) {
          # The result will have result columns first then the grouping cols.
          # dplyr orders group cols first, so adapt the result to meet that expectation.
          node <- node$Project(
            make_field_refs(c(group_vars, names(.data$aggregations)))
          )
          if (getOption("arrow.summarise.sort", FALSE)) {
            # Add sorting instructions for the rows too to match dplyr
            # (see below about why sorting isn't itself a Node)
            node$sort <- list(
              names = group_vars,
              orders = rep(0L, length(group_vars))
            )
          }
        }
      } else {
        # If any columns are derived, reordered, or renamed we need to Project
        # If there are aggregations, the projection was already handled above
        # We have to project at least once to eliminate some junk columns
        # that the ExecPlan adds:
        # __fragment_index, __batch_index, __last_in_fragment
        # Presumably extraneous repeated projection of the same thing
        # (as when we've done collapse() and not projected after) is cheap/no-op
        projection <- c(.data$selected_columns, .data$temp_columns)
        node <- node$Project(projection)

        if (!is.null(.data$join)) {
          node <- node$Join(
            type = .data$join$type,
            right_node = self$Build(.data$join$right_data),
            by = .data$join$by,
            left_output = names(.data),
            right_output = setdiff(names(.data$join$right_data), .data$join$by)
          )
        }
      }

      # Apply sorting: this is currently not an ExecNode itself, it is a
      # sink node option.
      # TODO: handle some cases:
      # (1) arrange > summarize > arrange
      # (2) ARROW-13779: arrange then operation where order matters (e.g. cumsum)
      if (length(.data$arrange_vars)) {
        node$sort <- list(
          names = names(.data$arrange_vars),
          orders = .data$arrange_desc,
          temp_columns = names(.data$temp_columns)
        )
      }

      # This is only safe because we are going to evaluate queries that end
      # with head/tail first, then evaluate any subsequent query as a new query
      if (!is.null(.data$head)) {
        node$head <- .data$head
      }
      if (!is.null(.data$tail)) {
        node$tail <- .data$tail
      }

      node
    },
    Run = function(node) {
      assert_is(node, "ExecNode")

      # Sorting and head/tail (if sorted) are handled in the SinkNode,
      # created in ExecPlan_run
      sorting <- node$sort %||% list()
      select_k <- node$head %||% -1L
      has_sorting <- length(sorting) > 0
      if (has_sorting) {
        if (!is.null(node$tail)) {
          # Reverse the sort order and take the top K, then after we'll reverse
          # the resulting rows so that it is ordered as expected
          sorting$orders <- !sorting$orders
          select_k <- node$tail
        }
        sorting$orders <- as.integer(sorting$orders)
      }

      out <- ExecPlan_run(self, node, sorting, select_k)

      if (!has_sorting) {
        # Since ExecPlans don't scan in deterministic order, head/tail are both
        # essentially taking a random slice from somewhere in the dataset.
        # And since the head() implementation is way more efficient than tail(),
        # just use it to take the random slice
        slice_size <- node$head %||% node$tail
        if (!is.null(slice_size)) {
          # TODO (ARROW-14289): make the head methods return RBR not Table
          out <- head(out, slice_size)
        }
        # Can we now tell `self$Stop()` to StopProducing? We already have
        # everything we need for the head (but it seems to segfault: ARROW-14329)
      } else if (!is.null(node$tail)) {
        # Reverse the row order to get back what we expect
        # TODO: don't return Table, return RecordBatchReader
        out <- out$read_table()
        out <- out[rev(seq_len(nrow(out))), , drop = FALSE]
      }

      out
    },
    Stop = function() ExecPlan_StopProducing(self)
  )
)
ExecPlan$create <- function(use_threads = option_use_threads()) {
  ExecPlan_create(use_threads)
}

ExecNode <- R6Class("ExecNode",
  inherit = ArrowObject,
  public = list(
    # `sort` is a slight hack to be able to keep around arrange() params,
    # which don't currently yield their own ExecNode but rather are consumed
    # in the SinkNode (in ExecPlan$run())
    sort = NULL,
    # Similar hacks for head and tail
    head = NULL,
    tail = NULL,
    preserve_sort = function(new_node) {
      new_node$sort <- self$sort
      new_node$head <- self$head
      new_node$tail <- self$tail
      new_node
    },
    Project = function(cols) {
      if (length(cols)) {
        assert_is_list_of(cols, "Expression")
        self$preserve_sort(ExecNode_Project(self, cols, names(cols)))
      } else {
        self$preserve_sort(ExecNode_Project(self, character(0), character(0)))
      }
    },
    Filter = function(expr) {
      assert_is(expr, "Expression")
      self$preserve_sort(ExecNode_Filter(self, expr))
    },
    Aggregate = function(options, target_names, out_field_names, key_names) {
      self$preserve_sort(
        ExecNode_Aggregate(self, options, target_names, out_field_names, key_names)
      )
    },
    Join = function(type, right_node, by, left_output, right_output) {
      self$preserve_sort(
        ExecNode_Join(
          self,
          type,
          right_node,
          left_keys = names(by),
          right_keys = by,
          left_output = left_output,
          right_output = right_output
        )
      )
    }
  ),
  active = list(
    schema = function() ExecNode_output_schema(self)
  )
)