1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
|
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
#' @include arrow-package.R
#' @include array.R
#' @title RecordBatch class
#' @description A record batch is a collection of equal-length arrays matching
#' a particular [Schema]. It is a table-like data structure that is semantically
#' a sequence of [fields][Field], each a contiguous Arrow [Array].
#' @usage NULL
#' @format NULL
#' @docType class
#'
#' @section S3 Methods and Usage:
#' Record batches are data-frame-like, and many methods you expect to work on
#' a `data.frame` are implemented for `RecordBatch`. This includes `[`, `[[`,
#' `$`, `names`, `dim`, `nrow`, `ncol`, `head`, and `tail`. You can also pull
#' the data from an Arrow record batch into R with `as.data.frame()`. See the
#' examples.
#'
#' A caveat about the `$` method: because `RecordBatch` is an `R6` object,
#' `$` is also used to access the object's methods (see below). Methods take
#' precedence over the table's columns. So, `batch$Slice` would return the
#' "Slice" method function even if there were a column in the table called
#' "Slice".
#'
#' @section R6 Methods:
#' In addition to the more R-friendly S3 methods, a `RecordBatch` object has
#' the following R6 methods that map onto the underlying C++ methods:
#'
#' - `$Equals(other)`: Returns `TRUE` if the `other` record batch is equal
#' - `$column(i)`: Extract an `Array` by integer position from the batch
#' - `$column_name(i)`: Get a column's name by integer position
#' - `$names()`: Get all column names (called by `names(batch)`)
#' - `$RenameColumns(value)`: Set all column names (called by `names(batch) <- value`)
#' - `$GetColumnByName(name)`: Extract an `Array` by string name
#' - `$RemoveColumn(i)`: Drops a column from the batch by integer position
#' - `$SelectColumns(indices)`: Return a new record batch with a selection of columns, expressed as 0-based integers.
#' - `$Slice(offset, length = NULL)`: Create a zero-copy view starting at the
#' indicated integer offset and going for the given length, or to the end
#' of the table if `NULL`, the default.
#' - `$Take(i)`: return an `RecordBatch` with rows at positions given by
#' integers (R vector or Array Array) `i`.
#' - `$Filter(i, keep_na = TRUE)`: return an `RecordBatch` with rows at positions where logical
#' vector (or Arrow boolean Array) `i` is `TRUE`.
#' - `$SortIndices(names, descending = FALSE)`: return an `Array` of integer row
#' positions that can be used to rearrange the `RecordBatch` in ascending or
#' descending order by the first named column, breaking ties with further named
#' columns. `descending` can be a logical vector of length one or of the same
#' length as `names`.
#' - `$serialize()`: Returns a raw vector suitable for interprocess communication
#' - `$cast(target_schema, safe = TRUE, options = cast_options(safe))`: Alter
#' the schema of the record batch.
#'
#' There are also some active bindings
#' - `$num_columns`
#' - `$num_rows`
#' - `$schema`
#' - `$metadata`: Returns the key-value metadata of the `Schema` as a named list.
#' Modify or replace by assigning in (`batch$metadata <- new_metadata`).
#' All list elements are coerced to string. See `schema()` for more information.
#' - `$columns`: Returns a list of `Array`s
#' @rdname RecordBatch
#' @name RecordBatch
#' @export
RecordBatch <- R6Class("RecordBatch",
inherit = ArrowTabular,
public = list(
column = function(i) RecordBatch__column(self, i),
column_name = function(i) RecordBatch__column_name(self, i),
names = function() RecordBatch__names(self),
RenameColumns = function(value) RecordBatch__RenameColumns(self, value),
Equals = function(other, check_metadata = FALSE, ...) {
inherits(other, "RecordBatch") && RecordBatch__Equals(self, other, isTRUE(check_metadata))
},
GetColumnByName = function(name) {
assert_that(is.string(name))
RecordBatch__GetColumnByName(self, name)
},
SelectColumns = function(indices) RecordBatch__SelectColumns(self, indices),
AddColumn = function(i, new_field, value) {
RecordBatch__AddColumn(self, i, new_field, value)
},
SetColumn = function(i, new_field, value) {
RecordBatch__SetColumn(self, i, new_field, value)
},
RemoveColumn = function(i) RecordBatch__RemoveColumn(self, i),
ReplaceSchemaMetadata = function(new) {
RecordBatch__ReplaceSchemaMetadata(self, new)
},
Slice = function(offset, length = NULL) {
if (is.null(length)) {
RecordBatch__Slice1(self, offset)
} else {
RecordBatch__Slice2(self, offset, length)
}
},
# Take, Filter, and SortIndices are methods on ArrowTabular
serialize = function() ipc___SerializeRecordBatch__Raw(self),
to_data_frame = function() {
RecordBatch__to_dataframe(self, use_threads = option_use_threads())
},
cast = function(target_schema, safe = TRUE, ..., options = cast_options(safe, ...)) {
assert_is(target_schema, "Schema")
assert_that(identical(self$schema$names, target_schema$names), msg = "incompatible schemas")
RecordBatch__cast(self, target_schema, options)
},
invalidate = function() {
.Call(`_arrow_RecordBatch__Reset`, self)
super$invalidate()
},
export_to_c = function(array_ptr, schema_ptr) {
ExportRecordBatch(self, array_ptr, schema_ptr)
}
),
active = list(
num_columns = function() RecordBatch__num_columns(self),
num_rows = function() RecordBatch__num_rows(self),
schema = function() RecordBatch__schema(self),
columns = function() RecordBatch__columns(self)
)
)
RecordBatch$create <- function(..., schema = NULL) {
arrays <- list2(...)
if (length(arrays) == 1 && inherits(arrays[[1]], c("raw", "Buffer", "InputStream", "Message"))) {
return(RecordBatch$from_message(arrays[[1]], schema))
}
# Else, a list of arrays or data.frames
# making sure there are always names
if (is.null(names(arrays))) {
names(arrays) <- rep_len("", length(arrays))
}
stopifnot(length(arrays) > 0)
# If any arrays are length 1, recycle them
arrays <- recycle_scalars(arrays)
# TODO: should this also assert that they're all Arrays?
RecordBatch__from_arrays(schema, arrays)
}
RecordBatch$from_message <- function(obj, schema) {
# Message/Buffer readers, previously in read_record_batch()
assert_is(schema, "Schema")
if (inherits(obj, c("raw", "Buffer"))) {
obj <- BufferReader$create(obj)
on.exit(obj$close())
}
if (inherits(obj, "InputStream")) {
ipc___ReadRecordBatch__InputStream__Schema(obj, schema)
} else {
ipc___ReadRecordBatch__Message__Schema(obj, schema)
}
}
#' @include arrowExports.R
RecordBatch$import_from_c <- ImportRecordBatch
#' @param ... A `data.frame` or a named set of Arrays or vectors. If given a
#' mixture of data.frames and vectors, the inputs will be autospliced together
#' (see examples). Alternatively, you can provide a single Arrow IPC
#' `InputStream`, `Message`, `Buffer`, or R `raw` object containing a `Buffer`.
#' @param schema a [Schema], or `NULL` (the default) to infer the schema from
#' the data in `...`. When providing an Arrow IPC buffer, `schema` is required.
#' @rdname RecordBatch
#' @examplesIf arrow_available()
#' batch <- record_batch(name = rownames(mtcars), mtcars)
#' dim(batch)
#' dim(head(batch))
#' names(batch)
#' batch$mpg
#' batch[["cyl"]]
#' as.data.frame(batch[4:8, c("gear", "hp", "wt")])
#' @export
record_batch <- RecordBatch$create
#' @export
names.RecordBatch <- function(x) x$names()
|