summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/schema.R
blob: c3dfee5f9fe35e9d3ae8aa4c39aca7d540b7556b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#' @include arrow-package.R
#' @title Schema class
#'
#' @description A `Schema` is a list of [Field]s, which map names to
#' Arrow [data types][data-type]. Create a `Schema` when you
#' want to convert an R `data.frame` to Arrow but don't want to rely on the
#' default mapping of R types to Arrow types, such as when you want to choose a
#' specific numeric precision, or when creating a [Dataset] and you want to
#' ensure a specific schema rather than inferring it from the various files.
#'
#' Many Arrow objects, including [Table] and [Dataset], have a `$schema` method
#' (active binding) that lets you access their schema.
#'
#' @usage NULL
#' @format NULL
#' @docType class
#' @section Methods:
#'
#' - `$ToString()`: convert to a string
#' - `$field(i)`: returns the field at index `i` (0-based)
#' - `$GetFieldByName(x)`: returns the field with name `x`
#' - `$WithMetadata(metadata)`: returns a new `Schema` with the key-value
#'    `metadata` set. Note that all list elements in `metadata` will be coerced
#'    to `character`.
#'
#' @section Active bindings:
#'
#' - `$names`: returns the field names (called in `names(Schema)`)
#' - `$num_fields`: returns the number of fields (called in `length(Schema)`)
#' - `$fields`: returns the list of `Field`s in the `Schema`, suitable for
#'   iterating over
#' - `$HasMetadata`: logical: does this `Schema` have extra metadata?
#' - `$metadata`: returns the key-value metadata as a named list.
#'    Modify or replace by assigning in (`sch$metadata <- new_metadata`).
#'    All list elements are coerced to string.
#'
#' @section R Metadata:
#'
#'   When converting a data.frame to an Arrow Table or RecordBatch, attributes
#'   from the `data.frame` are saved alongside tables so that the object can be
#'   reconstructed faithfully in R (e.g. with `as.data.frame()`). This metadata
#'   can be both at the top-level of the `data.frame` (e.g. `attributes(df)`) or
#'   at the column (e.g. `attributes(df$col_a)`) or for list columns only:
#'   element level (e.g. `attributes(df[1, "col_a"])`). For example, this allows
#'   for storing `haven` columns in a table and being able to faithfully
#'   re-create them when pulled back into R. This metadata is separate from the
#'   schema (column names and types) which is compatible with other Arrow
#'   clients. The R metadata is only read by R and is ignored by other clients
#'   (e.g. Pandas has its own custom metadata). This metadata is stored in
#'   `$metadata$r`.
#'
#'   Since Schema metadata keys and values must be strings, this metadata is
#'   saved by serializing R's attribute list structure to a string. If the
#'   serialized metadata exceeds 100Kb in size, by default it is compressed
#'   starting in version 3.0.0. To disable this compression (e.g. for tables
#'   that are compatible with Arrow versions before 3.0.0 and include large
#'   amounts of metadata), set the option `arrow.compress_metadata` to `FALSE`.
#'   Files with compressed metadata are readable by older versions of arrow, but
#'   the metadata is dropped.
#'
#' @rdname Schema
#' @name Schema
#' @examplesIf arrow_available()
#' df <- data.frame(col1 = 2:4, col2 = c(0.1, 0.3, 0.5))
#' tab1 <- arrow_table(df)
#' tab1$schema
#' tab2 <- arrow_table(df, schema = schema(col1 = int8(), col2 = float32()))
#' tab2$schema
#' @export
Schema <- R6Class("Schema",
  inherit = ArrowObject,
  public = list(
    ToString = function() {
      fields <- print_schema_fields(self)
      if (self$HasMetadata) {
        fields <- paste0(fields, "\n\nSee $metadata for additional Schema metadata")
      }
      fields
    },
    field = function(i) Schema__field(self, i),
    GetFieldByName = function(x) Schema__GetFieldByName(self, x),
    AddField = function(i, field) {
      assert_is(field, "Field")
      Schema__AddField(self, i, field)
    },
    SetField = function(i, field) {
      assert_is(field, "Field")
      Schema__SetField(self, i, field)
    },
    RemoveField = function(i) Schema__RemoveField(self, i),
    serialize = function() Schema__serialize(self),
    WithMetadata = function(metadata = NULL) {
      metadata <- prepare_key_value_metadata(metadata)
      Schema__WithMetadata(self, metadata)
    },
    Equals = function(other, check_metadata = FALSE, ...) {
      inherits(other, "Schema") && Schema__Equals(self, other, isTRUE(check_metadata))
    },
    export_to_c = function(ptr) ExportSchema(self, ptr)
  ),
  active = list(
    names = function() {
      Schema__field_names(self)
    },
    num_fields = function() Schema__num_fields(self),
    fields = function() Schema__fields(self),
    HasMetadata = function() Schema__HasMetadata(self),
    metadata = function(new_metadata) {
      if (missing(new_metadata)) {
        Schema__metadata(self)
      } else {
        # Set the metadata
        out <- self$WithMetadata(new_metadata)
        # $WithMetadata returns a new object but we're modifying in place,
        # so swap in that new C++ object pointer into our R6 object
        self$set_pointer(out$pointer())
        self
      }
    },
    r_metadata = function(new) {
      # Helper for the R metadata that handles the serialization
      # See also method on ArrowTabular
      if (missing(new)) {
        out <- self$metadata$r
        if (!is.null(out)) {
          # Can't unserialize NULL
          out <- .unserialize_arrow_r_metadata(out)
        }
        # Returns either NULL or a named list
        out
      } else {
        # Set the R metadata
        self$metadata$r <- .serialize_arrow_r_metadata(new)
        self
      }
    }
  )
)
Schema$create <- function(...) {
  .list <- list2(...)
  if (all(map_lgl(.list, ~ inherits(., "Field")))) {
    schema_(.list)
  } else {
    schema_(.fields(.list))
  }
}
#' @include arrowExports.R
Schema$import_from_c <- ImportSchema

prepare_key_value_metadata <- function(metadata) {
  # key-value-metadata must be a named character vector;
  # this function validates and coerces
  if (is.null(metadata)) {
    # NULL to remove metadata, so equivalent to setting an empty list
    metadata <- empty_named_list()
  }
  if (is.null(names(metadata))) {
    stop(
      "Key-value metadata must be a named list or character vector",
      call. = FALSE
    )
  }
  map_chr(metadata, as.character)
}

print_schema_fields <- function(s) {
  # Alternative to Schema__ToString that doesn't print metadata
  paste(map_chr(s$fields, ~ .$ToString()), collapse = "\n")
}

#' @param ... named list containing [data types][data-type] or
#'   a list of [fields][field] containing the fields for the schema
#' @export
#' @rdname Schema
schema <- Schema$create

#' @export
names.Schema <- function(x) x$names

#' @export
length.Schema <- function(x) x$num_fields

#' @export
`[[.Schema` <- function(x, i, ...) {
  if (is.character(i)) {
    x$GetFieldByName(i)
  } else if (is.numeric(i)) {
    x$field(i - 1)
  } else {
    stop("'i' must be character or numeric, not ", class(i), call. = FALSE)
  }
}

#' @export
`[[<-.Schema` <- function(x, i, value) {
  assert_that(length(i) == 1)
  if (is.character(i)) {
    field_names <- names(x)
    if (anyDuplicated(field_names)) {
      stop("Cannot update field by name with duplicates", call. = FALSE)
    }

    # If i is character, it's the field name
    if (!is.null(value) && !inherits(value, "Field")) {
      value <- field(i, as_type(value, "value"))
    }

    # No match means we're adding to the end
    i <- match(i, field_names, nomatch = length(field_names) + 1L)
  } else {
    assert_that(is.numeric(i), !is.na(i), i > 0)
    # If i is numeric and we have a type,
    # we need to grab the existing field name for the new one
    if (!is.null(value) && !inherits(value, "Field")) {
      value <- field(names(x)[i], as_type(value, "value"))
    }
  }

  i <- as.integer(i - 1L)
  if (i >= length(x)) {
    if (!is.null(value)) {
      x <- x$AddField(i, value)
    }
  } else if (is.null(value)) {
    x <- x$RemoveField(i)
  } else {
    x <- x$SetField(i, value)
  }
  x
}

#' @export
`$<-.Schema` <- `$<-.ArrowTabular`

#' @export
`[.Schema` <- function(x, i, ...) {
  if (is.logical(i)) {
    i <- rep_len(i, length(x)) # For R recycling behavior
    i <- which(i)
  }
  if (is.numeric(i)) {
    if (all(i < 0)) {
      # in R, negative i means "everything but i"
      i <- setdiff(seq_len(length(x)), -1 * i)
    }
  }
  fields <- map(i, ~ x[[.]])
  invalid <- map_lgl(fields, is.null)
  if (any(invalid)) {
    stop(
      "Invalid field name", ifelse(sum(invalid) > 1, "s: ", ": "),
      oxford_paste(i[invalid]),
      call. = FALSE
    )
  }
  schema_(fields)
}

#' @export
`$.Schema` <- function(x, name, ...) {
  assert_that(is.string(name))
  if (name %in% ls(x)) {
    get(name, x)
  } else {
    x$GetFieldByName(name)
  }
}

#' @export
as.list.Schema <- function(x, ...) x$fields

#' read a Schema from a stream
#'
#' @param stream a `Message`, `InputStream`, or `Buffer`
#' @param ... currently ignored
#' @return A [Schema]
#' @export
read_schema <- function(stream, ...) {
  if (inherits(stream, "Message")) {
    return(ipc___ReadSchema_Message(stream))
  } else {
    if (!inherits(stream, "InputStream")) {
      stream <- BufferReader$create(stream)
      on.exit(stream$close())
    }
    return(ipc___ReadSchema_InputStream(stream))
  }
}

#' Combine and harmonize schemas
#'
#' @param ... [Schema]s to unify
#' @param schemas Alternatively, a list of schemas
#' @return A `Schema` with the union of fields contained in the inputs, or
#'   `NULL` if any of `schemas` is `NULL`
#' @export
#' @examplesIf arrow_available()
#' a <- schema(b = double(), c = bool())
#' z <- schema(b = double(), k = utf8())
#' unify_schemas(a, z)
unify_schemas <- function(..., schemas = list(...)) {
  if (any(vapply(schemas, is.null, TRUE))) {
    return(NULL)
  }
  arrow__UnifySchemas(schemas)
}

#' @export
print.arrow_r_metadata <- function(x, ...) {
  utils::str(x)
  utils::str(.unserialize_arrow_r_metadata(x))
  invisible(x)
}