summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/R/table.R
blob: 5ae87f7e351ac94b35a2038e8000ea4e8b2e2c54 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

#' @include record-batch.R
#' @title Table class
#' @description A Table is a sequence of [chunked arrays][ChunkedArray]. They
#' have a similar interface to [record batches][RecordBatch], but they can be
#' composed from multiple record batches or chunked arrays.
#' @usage NULL
#' @format NULL
#' @docType class
#'
#' @section S3 Methods and Usage:
#' Tables are data-frame-like, and many methods you expect to work on
#' a `data.frame` are implemented for `Table`. This includes `[`, `[[`,
#' `$`, `names`, `dim`, `nrow`, `ncol`, `head`, and `tail`. You can also pull
#' the data from an Arrow table into R with `as.data.frame()`. See the
#' examples.
#'
#' A caveat about the `$` method: because `Table` is an `R6` object,
#' `$` is also used to access the object's methods (see below). Methods take
#' precedence over the table's columns. So, `tab$Slice` would return the
#' "Slice" method function even if there were a column in the table called
#' "Slice".
#'
#' @section R6 Methods:
#' In addition to the more R-friendly S3 methods, a `Table` object has
#' the following R6 methods that map onto the underlying C++ methods:
#'
#' - `$column(i)`: Extract a `ChunkedArray` by integer position from the table
#' - `$ColumnNames()`: Get all column names (called by `names(tab)`)
#' - `$RenameColumns(value)`: Set all column names (called by `names(tab) <- value`)
#' - `$GetColumnByName(name)`: Extract a `ChunkedArray` by string name
#' - `$field(i)`: Extract a `Field` from the table schema by integer position
#' - `$SelectColumns(indices)`: Return new `Table` with specified columns, expressed as 0-based integers.
#' - `$Slice(offset, length = NULL)`: Create a zero-copy view starting at the
#'    indicated integer offset and going for the given length, or to the end
#'    of the table if `NULL`, the default.
#' - `$Take(i)`: return an `Table` with rows at positions given by
#'    integers `i`. If `i` is an Arrow `Array` or `ChunkedArray`, it will be
#'    coerced to an R vector before taking.
#' - `$Filter(i, keep_na = TRUE)`: return an `Table` with rows at positions where logical
#'    vector or Arrow boolean-type `(Chunked)Array` `i` is `TRUE`.
#' - `$SortIndices(names, descending = FALSE)`: return an `Array` of integer row
#'    positions that can be used to rearrange the `Table` in ascending or descending
#'    order by the first named column, breaking ties with further named columns.
#'    `descending` can be a logical vector of length one or of the same length as
#'    `names`.
#' - `$serialize(output_stream, ...)`: Write the table to the given
#'    [OutputStream]
#' - `$cast(target_schema, safe = TRUE, options = cast_options(safe))`: Alter
#'    the schema of the record batch.
#'
#' There are also some active bindings:
#' - `$num_columns`
#' - `$num_rows`
#' - `$schema`
#' - `$metadata`: Returns the key-value metadata of the `Schema` as a named list.
#'    Modify or replace by assigning in (`tab$metadata <- new_metadata`).
#'    All list elements are coerced to string. See `schema()` for more information.
#' - `$columns`: Returns a list of `ChunkedArray`s
#' @rdname Table
#' @name Table
#' @export
Table <- R6Class("Table",
  inherit = ArrowTabular,
  public = list(
    column = function(i) Table__column(self, i),
    ColumnNames = function() Table__ColumnNames(self),
    RenameColumns = function(value) Table__RenameColumns(self, value),
    GetColumnByName = function(name) {
      assert_is(name, "character")
      assert_that(length(name) == 1)
      Table__GetColumnByName(self, name)
    },
    RemoveColumn = function(i) Table__RemoveColumn(self, i),
    AddColumn = function(i, new_field, value) Table__AddColumn(self, i, new_field, value),
    SetColumn = function(i, new_field, value) Table__SetColumn(self, i, new_field, value),
    ReplaceSchemaMetadata = function(new) {
      Table__ReplaceSchemaMetadata(self, new)
    },
    field = function(i) Table__field(self, i),
    serialize = function(output_stream, ...) write_table(self, output_stream, ...),
    to_data_frame = function() {
      Table__to_dataframe(self, use_threads = option_use_threads())
    },
    cast = function(target_schema, safe = TRUE, ..., options = cast_options(safe, ...)) {
      assert_is(target_schema, "Schema")
      assert_that(identical(self$schema$names, target_schema$names), msg = "incompatible schemas")
      Table__cast(self, target_schema, options)
    },
    SelectColumns = function(indices) Table__SelectColumns(self, indices),
    Slice = function(offset, length = NULL) {
      if (is.null(length)) {
        Table__Slice1(self, offset)
      } else {
        Table__Slice2(self, offset, length)
      }
    },
    # Take, Filter, and SortIndices are methods on ArrowTabular
    Equals = function(other, check_metadata = FALSE, ...) {
      inherits(other, "Table") && Table__Equals(self, other, isTRUE(check_metadata))
    },
    Validate = function() Table__Validate(self),
    ValidateFull = function() Table__ValidateFull(self),
    invalidate = function() {
      .Call(`_arrow_Table__Reset`, self)
      super$invalidate()
    }
  ),
  active = list(
    num_columns = function() Table__num_columns(self),
    num_rows = function() Table__num_rows(self),
    schema = function() Table__schema(self),
    columns = function() Table__columns(self)
  )
)

Table$create <- function(..., schema = NULL) {
  dots <- list2(...)
  # making sure there are always names
  if (is.null(names(dots))) {
    names(dots) <- rep_len("", length(dots))
  }
  stopifnot(length(dots) > 0)

  if (all_record_batches(dots)) {
    return(Table__from_record_batches(dots, schema))
  }

  # If any arrays are length 1, recycle them
  dots <- recycle_scalars(dots)

  Table__from_dots(dots, schema, option_use_threads())
}

#' @export
names.Table <- function(x) x$ColumnNames()

#' @param ... A `data.frame` or a named set of Arrays or vectors. If given a
#' mixture of data.frames and named vectors, the inputs will be autospliced together
#' (see examples). Alternatively, you can provide a single Arrow IPC
#' `InputStream`, `Message`, `Buffer`, or R `raw` object containing a `Buffer`.
#' @param schema a [Schema], or `NULL` (the default) to infer the schema from
#' the data in `...`. When providing an Arrow IPC buffer, `schema` is required.
#' @rdname Table
#' @examplesIf arrow_available()
#' tbl <- arrow_table(name = rownames(mtcars), mtcars)
#' dim(tbl)
#' dim(head(tbl))
#' names(tbl)
#' tbl$mpg
#' tbl[["cyl"]]
#' as.data.frame(tbl[4:8, c("gear", "hp", "wt")])
#' @export
arrow_table <- Table$create