summaryrefslogtreecommitdiffstats
path: root/src/arrow/r/tests/testthat/test-dataset-csv.R
blob: ab66931480c1512ee9aa5cd9720b14016716e88e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements.  See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership.  The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License.  You may obtain a copy of the License at
#
#   http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied.  See the License for the
# specific language governing permissions and limitations
# under the License.

skip_if_not_available("dataset")

library(dplyr, warn.conflicts = FALSE)

csv_dir <- make_temp_dir()
tsv_dir <- make_temp_dir()

test_that("Setup (putting data in the dirs)", {
  dir.create(file.path(csv_dir, 5))
  dir.create(file.path(csv_dir, 6))
  write.csv(df1, file.path(csv_dir, 5, "file1.csv"), row.names = FALSE)
  write.csv(df2, file.path(csv_dir, 6, "file2.csv"), row.names = FALSE)
  expect_length(dir(csv_dir, recursive = TRUE), 2)

  # Now, tab-delimited
  dir.create(file.path(tsv_dir, 5))
  dir.create(file.path(tsv_dir, 6))
  write.table(df1, file.path(tsv_dir, 5, "file1.tsv"), row.names = FALSE, sep = "\t")
  write.table(df2, file.path(tsv_dir, 6, "file2.tsv"), row.names = FALSE, sep = "\t")
  expect_length(dir(tsv_dir, recursive = TRUE), 2)
})

test_that("CSV dataset", {
  ds <- open_dataset(csv_dir, partitioning = "part", format = "csv")
  expect_r6_class(ds$format, "CsvFileFormat")
  expect_r6_class(ds$filesystem, "LocalFileSystem")
  expect_identical(names(ds), c(names(df1), "part"))
  if (getRversion() >= "4.0.0") {
    # CountRows segfaults on RTools35/R 3.6, so don't test it there
    expect_identical(dim(ds), c(20L, 7L))
  }
  expect_equal(
    ds %>%
      select(string = chr, integer = int, part) %>%
      filter(integer > 6 & part == 5) %>%
      collect() %>%
      summarize(mean = mean(as.numeric(integer))), # as.numeric bc they're being parsed as int64
    df1 %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6) %>%
      summarize(mean = mean(integer))
  )
  # Collecting virtual partition column works
  expect_equal(
    collect(ds) %>% arrange(part) %>% pull(part),
    c(rep(5, 10), rep(6, 10))
  )
})

test_that("CSV scan options", {
  options <- FragmentScanOptions$create("text")
  expect_equal(options$type, "csv")
  options <- FragmentScanOptions$create("csv",
    null_values = c("mynull"),
    strings_can_be_null = TRUE
  )
  expect_equal(options$type, "csv")

  dst_dir <- make_temp_dir()
  dst_file <- file.path(dst_dir, "data.csv")
  df <- tibble(chr = c("foo", "mynull"))
  write.csv(df, dst_file, row.names = FALSE, quote = FALSE)

  ds <- open_dataset(dst_dir, format = "csv")
  expect_equal(ds %>% collect(), df)

  sb <- ds$NewScan()
  sb$FragmentScanOptions(options)

  tab <- sb$Finish()$ToTable()
  expect_equal(as.data.frame(tab), tibble(chr = c("foo", NA)))

  # Set default convert options in CsvFileFormat
  csv_format <- CsvFileFormat$create(
    null_values = c("mynull"),
    strings_can_be_null = TRUE
  )
  ds <- open_dataset(dst_dir, format = csv_format)
  expect_equal(ds %>% collect(), tibble(chr = c("foo", NA)))

  # Set both parse and convert options
  df <- tibble(chr = c("foo", "mynull"), chr2 = c("bar", "baz"))
  write.table(df, dst_file, row.names = FALSE, quote = FALSE, sep = "\t")
  ds <- open_dataset(dst_dir,
    format = "csv",
    delimiter = "\t",
    null_values = c("mynull"),
    strings_can_be_null = TRUE
  )
  expect_equal(ds %>% collect(), tibble(
    chr = c("foo", NA),
    chr2 = c("bar", "baz")
  ))
  expect_equal(
    ds %>%
      group_by(chr2) %>%
      summarize(na = all(is.na(chr))) %>%
      arrange(chr2) %>%
      collect(),
    tibble(
      chr2 = c("bar", "baz"),
      na = c(FALSE, TRUE)
    )
  )
})

test_that("compressed CSV dataset", {
  skip_if_not_available("gzip")
  dst_dir <- make_temp_dir()
  dst_file <- file.path(dst_dir, "data.csv.gz")
  write.csv(df1, gzfile(dst_file), row.names = FALSE, quote = FALSE)
  format <- FileFormat$create("csv")
  ds <- open_dataset(dst_dir, format = format)
  expect_r6_class(ds$format, "CsvFileFormat")
  expect_r6_class(ds$filesystem, "LocalFileSystem")

  expect_equal(
    ds %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6 & integer < 11) %>%
      collect() %>%
      summarize(mean = mean(integer)),
    df1 %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6) %>%
      summarize(mean = mean(integer))
  )
})

test_that("CSV dataset options", {
  dst_dir <- make_temp_dir()
  dst_file <- file.path(dst_dir, "data.csv")
  df <- tibble(chr = letters[1:10])
  write.csv(df, dst_file, row.names = FALSE, quote = FALSE)

  format <- FileFormat$create("csv", skip_rows = 1)
  ds <- open_dataset(dst_dir, format = format)

  expect_equal(
    ds %>%
      select(string = a) %>%
      collect(),
    df1[-1, ] %>%
      select(string = chr)
  )

  ds <- open_dataset(dst_dir, format = "csv", column_names = c("foo"))

  expect_equal(
    ds %>%
      select(string = foo) %>%
      collect(),
    tibble(string = c(c("chr"), letters[1:10]))
  )
})

test_that("Other text delimited dataset", {
  ds1 <- open_dataset(tsv_dir, partitioning = "part", format = "tsv")
  expect_equal(
    ds1 %>%
      select(string = chr, integer = int, part) %>%
      filter(integer > 6 & part == 5) %>%
      collect() %>%
      summarize(mean = mean(as.numeric(integer))), # as.numeric bc they're being parsed as int64
    df1 %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6) %>%
      summarize(mean = mean(integer))
  )

  ds2 <- open_dataset(tsv_dir, partitioning = "part", format = "text", delimiter = "\t")
  expect_equal(
    ds2 %>%
      select(string = chr, integer = int, part) %>%
      filter(integer > 6 & part == 5) %>%
      collect() %>%
      summarize(mean = mean(as.numeric(integer))), # as.numeric bc they're being parsed as int64
    df1 %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6) %>%
      summarize(mean = mean(integer))
  )
})

test_that("readr parse options", {
  arrow_opts <- names(formals(CsvParseOptions$create))
  readr_opts <- names(formals(readr_to_csv_parse_options))

  # Arrow and readr parse options must be mutually exclusive, or else the code
  # in `csv_file_format_parse_options()` will error or behave incorrectly. A
  # failure of this test indicates that these two sets of option names are not
  # mutually exclusive.
  expect_equal(
    intersect(arrow_opts, readr_opts),
    character(0)
  )

  # With not yet supported readr parse options (ARROW-8631)
  expect_error(
    open_dataset(tsv_dir, partitioning = "part", delim = "\t", na = "\\N"),
    "supported"
  )

  # With unrecognized (garbage) parse options
  expect_error(
    open_dataset(
      tsv_dir,
      partitioning = "part",
      format = "text",
      asdfg = "\\"
    ),
    "Unrecognized"
  )

  # With both Arrow and readr parse options (disallowed)
  expect_error(
    open_dataset(
      tsv_dir,
      partitioning = "part",
      format = "text",
      quote = "\"",
      quoting = TRUE
    ),
    "either"
  )

  # With ambiguous partial option names (disallowed)
  expect_error(
    open_dataset(
      tsv_dir,
      partitioning = "part",
      format = "text",
      quo = "\"",
    ),
    "Ambiguous"
  )

  # With only readr parse options (and omitting format = "text")
  ds1 <- open_dataset(tsv_dir, partitioning = "part", delim = "\t")
  expect_equal(
    ds1 %>%
      select(string = chr, integer = int, part) %>%
      filter(integer > 6 & part == 5) %>%
      collect() %>%
      summarize(mean = mean(as.numeric(integer))), # as.numeric bc they're being parsed as int64
    df1 %>%
      select(string = chr, integer = int) %>%
      filter(integer > 6) %>%
      summarize(mean = mean(integer))
  )
})

# see https://issues.apache.org/jira/browse/ARROW-12791
test_that("Error if no format specified and files are not parquet", {
  expect_error(
    open_dataset(csv_dir, partitioning = "part"),
    "Did you mean to specify a 'format' other than the default (parquet)?",
    fixed = TRUE
  )
  expect_error(
    open_dataset(csv_dir, partitioning = "part", format = "parquet"),
    "Parquet magic bytes not found"
  )
})

test_that("Column names inferred from schema for headerless CSVs (ARROW-14063)", {
  headerless_csv_dir <- make_temp_dir()
  tbl <- df1[, c("int", "dbl")]
  write.table(tbl, file.path(headerless_csv_dir, "file1.csv"), sep = ",", row.names = FALSE, col.names = FALSE)

  ds <- open_dataset(headerless_csv_dir, format = "csv", schema = schema(int = int32(), dbl = float64()))
  expect_equal(ds %>% collect(), tbl)
})