summaryrefslogtreecommitdiffstats
path: root/src/common/PriorityCache.cc
blob: 0fe781b3e1e509d5a32b1c5bdc2f914756f61fac (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
/*
 * Ceph - scalable distributed file system
 *
 * Copyright (C) 2018 Red Hat
 *
 * This is free software; you can redistribute it and/or
 * modify it under the terms of the GNU Lesser General Public
 * License version 2.1, as published by the Free Software
 * Foundation.  See file COPYING.
 *
 */

#include "PriorityCache.h"
#include "common/dout.h"
#include "perfglue/heap_profiler.h"
#define dout_context cct
#define dout_subsys ceph_subsys_prioritycache
#undef dout_prefix
#define dout_prefix *_dout << "prioritycache "

namespace PriorityCache
{
  int64_t get_chunk(uint64_t usage, uint64_t total_bytes)
  {
    uint64_t chunk = total_bytes;

    // Find the nearest power of 2
    chunk -= 1;
    chunk |= chunk >> 1;
    chunk |= chunk >> 2;
    chunk |= chunk >> 4;
    chunk |= chunk >> 8;
    chunk |= chunk >> 16;
    chunk |= chunk >> 32;
    chunk += 1;
    // shrink it to 1/256 of the rounded up cache size
    chunk /= 256;

    // bound the chunk size to be between 4MB and 64MB
    chunk = (chunk > 4ul*1024*1024) ? chunk : 4ul*1024*1024;
    chunk = (chunk < 64ul*1024*1024) ? chunk : 64ul*1024*1024;

    /* FIXME: Hardcoded to force get_chunk to never drop below 64MB. 
     * if RocksDB is used, it's a good idea to have N MB of headroom where
     * N is the target_file_size_base value.  RocksDB will read SST files
     * into the block cache during compaction which potentially can force out
     * all existing cached data.  Once compaction is finished, the SST data is
     * released leaving an empty cache.  Having enough headroom to absorb
     * compaction reads allows the kv cache grow even during extremely heavy
     * compaction workloads.
     */
    uint64_t val = usage + 64*1024*1024;
    uint64_t r = (val) % chunk;
    if (r > 0)
      val = val + chunk - r;
    return val;
  }

  Manager::Manager(CephContext *c,
                   uint64_t min,
                   uint64_t max,
                   uint64_t target,
                   bool reserve_extra,
		   const std::string& name) :
      cct(c),
      caches{},
      min_mem(min),
      max_mem(max),
      target_mem(target),
      tuned_mem(min),
      reserve_extra(reserve_extra),
      name(name.empty() ? "prioritycache" : name)
  {
    PerfCountersBuilder b(cct, this->name, MallocStats::M_FIRST, MallocStats::M_LAST);

    b.add_u64(MallocStats::M_TARGET_BYTES, "target_bytes",
              "target process memory usage in bytes", "t",
              PerfCountersBuilder::PRIO_INTERESTING, unit_t(UNIT_BYTES));

    b.add_u64(MallocStats::M_MAPPED_BYTES, "mapped_bytes",
              "total bytes mapped by the process", "m",
              PerfCountersBuilder::PRIO_INTERESTING, unit_t(UNIT_BYTES));

    b.add_u64(MallocStats::M_UNMAPPED_BYTES, "unmapped_bytes",
              "unmapped bytes that the kernel has yet to reclaim", "u",
              PerfCountersBuilder::PRIO_INTERESTING, unit_t(UNIT_BYTES));

    b.add_u64(MallocStats::M_HEAP_BYTES, "heap_bytes",
              "aggregate bytes in use by the heap", "h",
              PerfCountersBuilder::PRIO_INTERESTING, unit_t(UNIT_BYTES));

    b.add_u64(MallocStats::M_CACHE_BYTES, "cache_bytes",
              "current memory available for caches.", "c",
              PerfCountersBuilder::PRIO_INTERESTING, unit_t(UNIT_BYTES));

    logger = b.create_perf_counters();
    cct->get_perfcounters_collection()->add(logger);

    tune_memory();
  }

  Manager::~Manager()
  {
    clear();
    cct->get_perfcounters_collection()->remove(logger);
    delete logger;
  }

  void Manager::tune_memory()
  {
    size_t heap_size = 0;
    size_t unmapped = 0;
    uint64_t mapped = 0;

    ceph_heap_release_free_memory();
    ceph_heap_get_numeric_property("generic.heap_size", &heap_size);
    ceph_heap_get_numeric_property("tcmalloc.pageheap_unmapped_bytes", &unmapped);
    mapped = heap_size - unmapped;

    uint64_t new_size = tuned_mem;
    new_size = (new_size < max_mem) ? new_size : max_mem;
    new_size = (new_size > min_mem) ? new_size : min_mem;

    // Approach the min/max slowly, but bounce away quickly.
    if ((uint64_t) mapped < target_mem) {
      double ratio = 1 - ((double) mapped / target_mem);
      new_size += ratio * (max_mem - new_size);
    } else { 
      double ratio = 1 - ((double) target_mem / mapped);
      new_size -= ratio * (new_size - min_mem);
    }

    ldout(cct, 5) << __func__
                  << " target: " << target_mem
                  << " mapped: " << mapped  
                  << " unmapped: " << unmapped
                  << " heap: " << heap_size
                  << " old mem: " << tuned_mem
                  << " new mem: " << new_size << dendl;

    tuned_mem = new_size;

    logger->set(MallocStats::M_TARGET_BYTES, target_mem);
    logger->set(MallocStats::M_MAPPED_BYTES, mapped);
    logger->set(MallocStats::M_UNMAPPED_BYTES, unmapped);
    logger->set(MallocStats::M_HEAP_BYTES, heap_size);
    logger->set(MallocStats::M_CACHE_BYTES, new_size);
  }

  void Manager::insert(const std::string& name, std::shared_ptr<PriCache> c,
                       bool enable_perf_counters)
  {
    ceph_assert(!caches.count(name));
    ceph_assert(!indexes.count(name));

    caches.emplace(name, c);

    if (!enable_perf_counters) {
      return;
    }

    // TODO: If we ever assign more than
    // PERF_COUNTER_MAX_BOUND - PERF_COUNTER_LOWER_BOUND perf counters for
    // priority caching we could run out of slots.  Recycle them some day?
    // Also note that start and end are *exclusive*.
    int start = cur_index++;
    int end = cur_index + Extra::E_LAST + 1;

    ceph_assert(end < PERF_COUNTER_MAX_BOUND);
    indexes.emplace(name, std::vector<int>(Extra::E_LAST + 1));

    PerfCountersBuilder b(cct, this->name + ":" + name, start, end);

    b.add_u64(cur_index + Priority::PRI0, "pri0_bytes",
              "bytes allocated to pri0", "p0",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI1, "pri1_bytes",
              "bytes allocated to pri1", "p1",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI2, "pri2_bytes",
              "bytes allocated to pri2", "p2",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI3, "pri3_bytes",
              "bytes allocated to pri3", "p3",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI4, "pri4_bytes",
              "bytes allocated to pri4", "p4",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI5, "pri5_bytes",
              "bytes allocated to pri5", "p5",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI6, "pri6_bytes",
              "bytes allocated to pri6", "p6",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI7, "pri7_bytes",
              "bytes allocated to pri7", "p7",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI8, "pri8_bytes",
              "bytes allocated to pri8", "p8",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI9, "pri9_bytes",
              "bytes allocated to pri9", "p9",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI10, "pri10_bytes",
              "bytes allocated to pri10", "p10",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Priority::PRI11, "pri11_bytes",
              "bytes allocated to pri11", "p11",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Extra::E_RESERVED, "reserved_bytes",
              "bytes reserved for future growth.", "r",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    b.add_u64(cur_index + Extra::E_COMMITTED, "committed_bytes",
              "total bytes committed,", "c",
              PerfCountersBuilder::PRIO_USEFUL, unit_t(UNIT_BYTES));

    for (int i = 0; i < Extra::E_LAST+1; i++) {
      indexes[name][i] = cur_index + i;
    }

    auto l = b.create_perf_counters();
    loggers.emplace(name, l);
    cct->get_perfcounters_collection()->add(l);

    cur_index = end;
  }

  void Manager::erase(const std::string& name)
  {
    auto li = loggers.find(name);
    if (li != loggers.end()) {
      cct->get_perfcounters_collection()->remove(li->second);
      delete li->second;
      loggers.erase(li);
    }
    indexes.erase(name);
    caches.erase(name);
  }

  void Manager::clear()
  {
    auto li = loggers.begin();
    while (li != loggers.end()) {
      cct->get_perfcounters_collection()->remove(li->second);
      delete li->second;
      li = loggers.erase(li);
    }
    indexes.clear();
    caches.clear();
  }

  void Manager::balance()
  {
    int64_t mem_avail = tuned_mem;
    // Each cache is going to get a little extra from get_chunk, so shrink the
    // available memory here to compensate.
    if (reserve_extra) {
      mem_avail -= get_chunk(1, tuned_mem) * caches.size();
    }

    if (mem_avail < 0) {
      // There's so little memory available that just assigning a chunk per
      // cache pushes us over the limit. Set mem_avail to 0 and continue to
      // ensure each priority's byte counts are zeroed in balance_priority.
      mem_avail = 0;
    }

    // Assign memory for each priority level
    for (int i = 0; i < Priority::LAST+1; i++) {
      ldout(cct, 10) << __func__ << " assigning cache bytes for PRI: " << i << dendl;

      auto pri = static_cast<Priority>(i);
      balance_priority(&mem_avail, pri);

      // Update the per-priority perf counters
      for (auto &l : loggers) {
        auto it = caches.find(l.first);
        ceph_assert(it != caches.end());

        auto bytes = it->second->get_cache_bytes(pri);
        l.second->set(indexes[it->first][pri], bytes);
      }
    }
    // assert if we assigned more memory than is available.
    ceph_assert(mem_avail >= 0);

    for (auto &l : loggers) {
      auto it = caches.find(l.first);
      ceph_assert(it != caches.end());

      // Commit the new cache size
      int64_t committed = it->second->commit_cache_size(tuned_mem);
      // Update the perf counters
      int64_t alloc = it->second->get_cache_bytes();

      l.second->set(indexes[it->first][Extra::E_RESERVED], committed - alloc);
      l.second->set(indexes[it->first][Extra::E_COMMITTED], committed);
    }
  }

  void Manager::shift_bins()
  {
    for (auto &l : loggers) {
      auto it = caches.find(l.first);
      it->second->shift_bins();
    }
  }

  void Manager::balance_priority(int64_t *mem_avail, Priority pri)
  {
    std::unordered_map<std::string, std::shared_ptr<PriCache>> tmp_caches = caches;
    double cur_ratios = 0;
    double new_ratios = 0;
    uint64_t round = 0;

    // First, zero this priority's bytes, sum the initial ratios.
    for (auto it = caches.begin(); it != caches.end(); it++) {
      it->second->set_cache_bytes(pri, 0);
      cur_ratios += it->second->get_cache_ratio();
    }

    // For other priorities, loop until caches are satisified or we run out of
    // memory (stop if we can't guarantee a full byte allocation).
    while (!tmp_caches.empty() && *mem_avail > static_cast<int64_t>(tmp_caches.size())) {
      uint64_t total_assigned = 0;
      for (auto it = tmp_caches.begin(); it != tmp_caches.end();) {
        int64_t cache_wants = it->second->request_cache_bytes(pri, tuned_mem);
        // Usually the ratio should be set to the fraction of the current caches'
        // assigned ratio compared to the total ratio of all caches that still
        // want memory.  There is a special case where the only caches left are
        // all assigned 0% ratios but still want memory.  In that case, give 
        // them an equal shot at the remaining memory for this priority.
        double ratio = 1.0 / tmp_caches.size();
        if (cur_ratios > 0) {
          ratio = it->second->get_cache_ratio() / cur_ratios;
        }
        int64_t fair_share = static_cast<int64_t>(*mem_avail * ratio);

        ldout(cct, 10) << __func__ << " " << it->first
                       << " pri: " << (int) pri
                       << " round: " << round
                       << " wanted: " << cache_wants
                       << " ratio: " << it->second->get_cache_ratio()
                       << " cur_ratios: " << cur_ratios
                       << " fair_share: " << fair_share
                       << " mem_avail: " << *mem_avail
                       << dendl;

        if (cache_wants > fair_share) {
          // If we want too much, take what we can get but stick around for more
          it->second->add_cache_bytes(pri, fair_share);
          total_assigned += fair_share;
          new_ratios += it->second->get_cache_ratio();
          ++it;
        } else {
          // Otherwise assign only what we want
          if (cache_wants > 0) {
            it->second->add_cache_bytes(pri, cache_wants);
            total_assigned += cache_wants;
          }
          // Either the cache didn't want anything or got what it wanted, so
          // remove it from the tmp list.
          it = tmp_caches.erase(it);
        }
      }
      // Reset the ratios 
      *mem_avail -= total_assigned;
      cur_ratios = new_ratios;
      new_ratios = 0;
      ++round;
    }

    // If this is the last priority, divide up any remaining memory based
    // solely on the ratios.
    if (pri == Priority::LAST) {
      uint64_t total_assigned = 0;
      for (auto it = caches.begin(); it != caches.end(); it++) {
        double ratio = it->second->get_cache_ratio();
        int64_t fair_share = static_cast<int64_t>(*mem_avail * ratio);
        it->second->set_cache_bytes(Priority::LAST, fair_share);
        total_assigned += fair_share;
      }
      *mem_avail -= total_assigned;
      return;
    }
  }

  PriCache::~PriCache()
  {
  }
}