1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include "common/Readahead.h"
#include "common/Cond.h"
using std::vector;
Readahead::Readahead()
: m_trigger_requests(10),
m_readahead_min_bytes(0),
m_readahead_max_bytes(NO_LIMIT),
m_alignments(),
m_nr_consec_read(0),
m_consec_read_bytes(0),
m_last_pos(0),
m_readahead_pos(0),
m_readahead_trigger_pos(0),
m_readahead_size(0),
m_pending(0) {
}
Readahead::~Readahead() {
}
Readahead::extent_t Readahead::update(const vector<extent_t>& extents, uint64_t limit) {
m_lock.lock();
for (vector<extent_t>::const_iterator p = extents.begin(); p != extents.end(); ++p) {
_observe_read(p->first, p->second);
}
if (m_readahead_pos >= limit|| m_last_pos >= limit) {
m_lock.unlock();
return extent_t(0, 0);
}
std::pair<uint64_t, uint64_t> extent = _compute_readahead(limit);
m_lock.unlock();
return extent;
}
Readahead::extent_t Readahead::update(uint64_t offset, uint64_t length, uint64_t limit) {
m_lock.lock();
_observe_read(offset, length);
if (m_readahead_pos >= limit || m_last_pos >= limit) {
m_lock.unlock();
return extent_t(0, 0);
}
extent_t extent = _compute_readahead(limit);
m_lock.unlock();
return extent;
}
void Readahead::_observe_read(uint64_t offset, uint64_t length) {
if (offset == m_last_pos) {
m_nr_consec_read++;
m_consec_read_bytes += length;
} else {
m_nr_consec_read = 0;
m_consec_read_bytes = 0;
m_readahead_trigger_pos = 0;
m_readahead_size = 0;
m_readahead_pos = 0;
}
m_last_pos = offset + length;
}
Readahead::extent_t Readahead::_compute_readahead(uint64_t limit) {
uint64_t readahead_offset = 0;
uint64_t readahead_length = 0;
if (m_nr_consec_read >= m_trigger_requests) {
// currently reading sequentially
if (m_last_pos >= m_readahead_trigger_pos) {
// need to read ahead
if (m_readahead_size == 0) {
// initial readahead trigger
m_readahead_size = m_consec_read_bytes;
m_readahead_pos = m_last_pos;
} else {
// continuing readahead trigger
m_readahead_size *= 2;
if (m_last_pos > m_readahead_pos) {
m_readahead_pos = m_last_pos;
}
}
m_readahead_size = std::max(m_readahead_size, m_readahead_min_bytes);
m_readahead_size = std::min(m_readahead_size, m_readahead_max_bytes);
readahead_offset = m_readahead_pos;
readahead_length = m_readahead_size;
// Snap to the first alignment possible
uint64_t readahead_end = readahead_offset + readahead_length;
for (vector<uint64_t>::iterator p = m_alignments.begin(); p != m_alignments.end(); ++p) {
// Align the readahead, if possible.
uint64_t alignment = *p;
uint64_t align_prev = readahead_end / alignment * alignment;
uint64_t align_next = align_prev + alignment;
uint64_t dist_prev = readahead_end - align_prev;
uint64_t dist_next = align_next - readahead_end;
if (dist_prev < readahead_length / 2 && dist_prev < dist_next) {
// we can snap to the previous alignment point by a less than 50% reduction in size
ceph_assert(align_prev > readahead_offset);
readahead_length = align_prev - readahead_offset;
break;
} else if(dist_next < readahead_length / 2) {
// we can snap to the next alignment point by a less than 50% increase in size
ceph_assert(align_next > readahead_offset);
readahead_length = align_next - readahead_offset;
break;
}
// Note that m_readahead_size should remain unadjusted.
}
if (m_readahead_pos + readahead_length > limit) {
readahead_length = limit - m_readahead_pos;
}
m_readahead_trigger_pos = m_readahead_pos + readahead_length / 2;
m_readahead_pos += readahead_length;
}
}
return extent_t(readahead_offset, readahead_length);
}
void Readahead::inc_pending(int count) {
ceph_assert(count > 0);
m_pending_lock.lock();
m_pending += count;
m_pending_lock.unlock();
}
void Readahead::dec_pending(int count) {
ceph_assert(count > 0);
m_pending_lock.lock();
ceph_assert(m_pending >= count);
m_pending -= count;
if (m_pending == 0) {
std::list<Context *> pending_waiting(std::move(m_pending_waiting));
m_pending_lock.unlock();
for (auto ctx : pending_waiting) {
ctx->complete(0);
}
} else {
m_pending_lock.unlock();
}
}
void Readahead::wait_for_pending() {
C_SaferCond ctx;
wait_for_pending(&ctx);
ctx.wait();
}
void Readahead::wait_for_pending(Context *ctx) {
m_pending_lock.lock();
if (m_pending > 0) {
m_pending_lock.unlock();
m_pending_waiting.push_back(ctx);
return;
}
m_pending_lock.unlock();
ctx->complete(0);
}
void Readahead::set_trigger_requests(int trigger_requests) {
m_lock.lock();
m_trigger_requests = trigger_requests;
m_lock.unlock();
}
uint64_t Readahead::get_min_readahead_size(void) {
std::lock_guard lock(m_lock);
return m_readahead_min_bytes;
}
uint64_t Readahead::get_max_readahead_size(void) {
std::lock_guard lock(m_lock);
return m_readahead_max_bytes;
}
void Readahead::set_min_readahead_size(uint64_t min_readahead_size) {
m_lock.lock();
m_readahead_min_bytes = min_readahead_size;
m_lock.unlock();
}
void Readahead::set_max_readahead_size(uint64_t max_readahead_size) {
m_lock.lock();
m_readahead_max_bytes = max_readahead_size;
m_lock.unlock();
}
void Readahead::set_alignments(const vector<uint64_t> &alignments) {
m_lock.lock();
m_alignments = alignments;
m_lock.unlock();
}
|