summaryrefslogtreecommitdiffstats
path: root/src/crimson/common/operation.h
blob: 6df2c99fd2a0695dac0044f2369f9151eaede41f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:nil -*-
// vim: ts=8 sw=2 smarttab expandtab

#pragma once

#include <algorithm>
#include <array>
#include <set>
#include <vector>
#include <boost/core/demangle.hpp>
#include <boost/intrusive/list.hpp>
#include <boost/intrusive_ptr.hpp>
#include <boost/smart_ptr/intrusive_ref_counter.hpp>
#include <seastar/core/shared_mutex.hh>
#include <seastar/core/future.hh>
#include <seastar/core/timer.hh>
#include <seastar/core/lowres_clock.hh>
#include <seastar/core/future-util.hh>

#include "include/ceph_assert.h"
#include "include/utime.h"
#include "common/Clock.h"
#include "common/Formatter.h"
#include "crimson/common/interruptible_future.h"
#include "crimson/common/smp_helpers.h"
#include "crimson/common/log.h"

namespace ceph {
  class Formatter;
}

namespace crimson {

using registry_hook_t = boost::intrusive::list_member_hook<
  boost::intrusive::link_mode<boost::intrusive::auto_unlink>>;

class Operation;
class Blocker;


namespace detail {
void dump_time_event(const char* name,
		     const utime_t& timestamp,
		     ceph::Formatter* f);
void dump_blocking_event(const char* name,
			 const utime_t& timestamp,
			 const Blocker* blocker,
			 ceph::Formatter* f);
} // namespace detail

/**
 * Provides an interface for dumping diagnostic information about
 * why a particular op is not making progress.
 */
class Blocker {
public:
  void dump(ceph::Formatter *f) const;
  virtual ~Blocker() = default;

private:
  virtual void dump_detail(ceph::Formatter *f) const = 0;
  virtual const char *get_type_name() const = 0;
};

// the main template. by default an operation has no extenral
// event handler (the empty tuple). specializing the template
// allows to define backends on per-operation-type manner.
// NOTE: basically this could be a function but C++ disallows
// differentiating return type among specializations.
template <class T>
struct EventBackendRegistry {
  template <typename...> static constexpr bool always_false = false;

  static std::tuple<> get_backends() {
    static_assert(always_false<T>, "Registry specialization not found");
    return {};
  }
};

template <class T>
struct Event {
  T* that() {
    return static_cast<T*>(this);
  }
  const T* that() const {
    return static_cast<const T*>(this);
  }

  template <class OpT, class... Args>
  void trigger(OpT&& op, Args&&... args) {
    that()->internal_backend.handle(*that(),
                                    std::forward<OpT>(op),
                                    std::forward<Args>(args)...);
    // let's call `handle()` for concrete event type from each single
    // of our backends. the order in the registry matters.
    std::apply([&, //args=std::forward_as_tuple(std::forward<Args>(args)...),
		this] (auto... backend) {
      (..., backend.handle(*that(),
                           std::forward<OpT>(op),
                           std::forward<Args>(args)...));
    }, EventBackendRegistry<std::decay_t<OpT>>::get_backends());
  }
};


// simplest event type for recording things like beginning or end
// of TrackableOperation's life.
template <class T>
struct TimeEvent : Event<T> {
  struct Backend {
    // `T` is passed solely to let implementations to discriminate
    // basing on the type-of-event.
    virtual void handle(T&, const Operation&) = 0;
  };

  // for the sake of dumping ops-in-flight.
  struct InternalBackend final : Backend {
    void handle(T&, const Operation&) override {
      timestamp = ceph_clock_now();
    }
    utime_t timestamp;
  } internal_backend;

  void dump(ceph::Formatter *f) const {
    auto demangled_name = boost::core::demangle(typeid(T).name());
    detail::dump_time_event(
      demangled_name.c_str(),
      internal_backend.timestamp, f);
  }

  auto get_timestamp() const {
    return internal_backend.timestamp;
  }
};


template <typename T>
class BlockerT : public Blocker {
public:
  struct BlockingEvent : Event<typename T::BlockingEvent> {
    using Blocker = std::decay_t<T>;

    struct Backend {
      // `T` is based solely to let implementations to discriminate
      // basing on the type-of-event.
      virtual void handle(typename T::BlockingEvent&, const Operation&, const T&) = 0;
    };

    struct InternalBackend : Backend {
      void handle(typename T::BlockingEvent&,
                  const Operation&,
                  const T& blocker) override {
        this->timestamp = ceph_clock_now();
        this->blocker = &blocker;
      }

      utime_t timestamp;
      const T* blocker;
    } internal_backend;

    // we don't want to make any BlockerT to be aware and coupled with
    // an operation. to not templatize an entire path from an op to
    // a blocker, type erasuring is used.
    struct TriggerI {
      TriggerI(BlockingEvent& event) : event(event) {}

      template <class FutureT>
      auto maybe_record_blocking(FutureT&& fut, const T& blocker) {
        if (!fut.available()) {
	  // a full blown call via vtable. that's the cost for templatization
	  // avoidance. anyway, most of the things actually have the type
	  // knowledge.
	  record_blocking(blocker);
	  return std::forward<FutureT>(fut).finally(
	    [&event=this->event, &blocker] () mutable {
	    // beware trigger instance may be already dead when this
	    // is executed!
	    record_unblocking(event, blocker);
	  });
	}
	return std::forward<FutureT>(fut);
      }
      virtual ~TriggerI() = default;
    protected:
      // it's for the sake of erasing the OpT type
      virtual void record_blocking(const T& blocker) = 0;

      static void record_unblocking(BlockingEvent& event, const T& blocker) {
	assert(event.internal_backend.blocker == &blocker);
	event.internal_backend.blocker = nullptr;
      }

      BlockingEvent& event;
    };

    template <class OpT>
    struct Trigger : TriggerI {
      Trigger(BlockingEvent& event, const OpT& op) : TriggerI(event), op(op) {}

      template <class FutureT>
      auto maybe_record_blocking(FutureT&& fut, const T& blocker) {
        if (!fut.available()) {
	  // no need for the dynamic dispatch! if we're lucky, a compiler
	  // should collapse all these abstractions into a bunch of movs.
	  this->Trigger::record_blocking(blocker);
	  return std::forward<FutureT>(fut).finally(
	    [&event=this->event, &blocker] () mutable {
	    Trigger::record_unblocking(event, blocker);
	  });
	}
	return std::forward<FutureT>(fut);
      }

      const OpT &get_op() { return op; }

    protected:
      void record_blocking(const T& blocker) override {
	this->event.trigger(op, blocker);
      }

      const OpT& op;
    };

    void dump(ceph::Formatter *f) const {
      auto demangled_name = boost::core::demangle(typeid(T).name());
      detail::dump_blocking_event(
	demangled_name.c_str(),
	internal_backend.timestamp,
	internal_backend.blocker,
	f);
    }
  };

  virtual ~BlockerT() = default;
  template <class TriggerT, class... Args>
  decltype(auto) track_blocking(TriggerT&& trigger, Args&&... args) {
    return std::forward<TriggerT>(trigger).maybe_record_blocking(
      std::forward<Args>(args)..., static_cast<const T&>(*this));
  }

private:
  const char *get_type_name() const final {
    return static_cast<const T*>(this)->type_name;
  }
};

template <class T>
struct AggregateBlockingEvent {
  struct TriggerI {
  protected:
    struct TriggerContainerI {
      virtual typename T::TriggerI& get_trigger() = 0;
      virtual ~TriggerContainerI() = default;
    };
    using TriggerContainerIRef = std::unique_ptr<TriggerContainerI>;
    virtual TriggerContainerIRef create_part_trigger() = 0;

  public:
    template <class FutureT>
    auto maybe_record_blocking(FutureT&& fut,
			       const typename T::Blocker& blocker) {
      // AggregateBlockingEvent is supposed to be used on relatively cold
      // paths (recovery), so we don't need to worry about the dynamic
      // polymothps / dynamic memory's overhead.
      auto tcont = create_part_trigger();
      return tcont->get_trigger().maybe_record_blocking(
	std::move(fut), blocker
      ).finally([tcont=std::move(tcont)] {});
    }

    virtual ~TriggerI() = default;
  };

  template <class OpT>
  struct Trigger final : TriggerI {
    Trigger(AggregateBlockingEvent& event, const OpT& op)
      : event(event), op(op) {}

    class TriggerContainer final : public TriggerI::TriggerContainerI {
      AggregateBlockingEvent& event;
      typename decltype(event.events)::iterator iter;
      typename T::template Trigger<OpT> trigger;

      typename T::TriggerI &get_trigger() final {
	return trigger;
      }

    public:
      TriggerContainer(AggregateBlockingEvent& _event, const OpT& op) :
	event(_event),
	iter(event.events.emplace(event.events.end())),
	trigger(*iter, op) {}

      ~TriggerContainer() final {
	event.events.erase(iter);
      }
    };

  protected:
    typename TriggerI::TriggerContainerIRef create_part_trigger() final {
      return std::make_unique<TriggerContainer>(event, op);
    }

  private:
    AggregateBlockingEvent& event;
    const OpT& op;
  };

private:
  std::list<T> events;
  template <class OpT>
  friend class Trigger;
};

/**
 * Common base for all crimson-osd operations.  Mainly provides
 * an interface for registering ops in flight and dumping
 * diagnostic information.
 */
class Operation : public boost::intrusive_ref_counter<
  Operation, boost::thread_unsafe_counter> {
 public:
  using id_t = uint64_t;
  static constexpr id_t NULL_ID = std::numeric_limits<uint64_t>::max();
  id_t get_id() const {
    return id;
  }

  static constexpr bool is_trackable = false;

  virtual unsigned get_type() const = 0;
  virtual const char *get_type_name() const = 0;
  virtual void print(std::ostream &) const = 0;

  void dump(ceph::Formatter *f) const;
  void dump_brief(ceph::Formatter *f) const;
  virtual ~Operation() = default;

 private:
  virtual void dump_detail(ceph::Formatter *f) const = 0;

  registry_hook_t registry_hook;

  id_t id = 0;
  void set_id(id_t in_id) {
    id = in_id;
  }

  friend class OperationRegistryI;
  template <size_t>
  friend class OperationRegistryT;
};
using OperationRef = boost::intrusive_ptr<Operation>;

std::ostream &operator<<(std::ostream &, const Operation &op);

/**
 * Maintains a set of lists of all active ops.
 */
class OperationRegistryI {
  using op_list_member_option = boost::intrusive::member_hook<
    Operation,
    registry_hook_t,
    &Operation::registry_hook
    >;

  friend class Operation;
  seastar::timer<seastar::lowres_clock> shutdown_timer;
  seastar::promise<> shutdown;

protected:
  virtual void do_register(Operation *op) = 0;
  virtual bool registries_empty() const = 0;
  virtual void do_stop() = 0;

public:
  using op_list = boost::intrusive::list<
    Operation,
    op_list_member_option,
    boost::intrusive::constant_time_size<false>>;

  template <typename T, typename... Args>
  auto create_operation(Args&&... args) {
    boost::intrusive_ptr<T> op = new T(std::forward<Args>(args)...);
    do_register(&*op);
    return op;
  }

  seastar::future<> stop() {
    crimson::get_logger(ceph_subsys_osd).info("OperationRegistryI::{}", __func__);
    do_stop();
    shutdown_timer.set_callback([this] {
      if (registries_empty()) {
	shutdown.set_value();
	shutdown_timer.cancel();
      }
    });
    shutdown_timer.arm_periodic(
      std::chrono::milliseconds(100/*TODO: use option instead*/));
    return shutdown.get_future();
  }
};


template <size_t NUM_REGISTRIES>
class OperationRegistryT : public OperationRegistryI {
  Operation::id_t next_id = 0;
  std::array<
    op_list,
    NUM_REGISTRIES
  > registries;

protected:
  void do_register(Operation *op) final {
    const auto op_type = op->get_type();
    registries[op_type].push_back(*op);
    op->set_id(++next_id);
  }

  bool registries_empty() const final {
    return std::all_of(registries.begin(),
		       registries.end(),
		       [](auto& opl) {
			 return opl.empty();
		       });
  }

protected:
  OperationRegistryT(core_id_t core)
    // Use core to initialize upper 8 bits of counters to ensure that
    // ids generated by different cores are disjoint
    : next_id(static_cast<id_t>(core) <<
	      (std::numeric_limits<id_t>::digits - 8))
  {}

  template <size_t REGISTRY_INDEX>
  const op_list& get_registry() const {
    static_assert(
      REGISTRY_INDEX < std::tuple_size<decltype(registries)>::value);
    return registries[REGISTRY_INDEX];
  }

  template <size_t REGISTRY_INDEX>
  op_list& get_registry() {
    static_assert(
      REGISTRY_INDEX < std::tuple_size<decltype(registries)>::value);
    return registries[REGISTRY_INDEX];
  }

public:
  /// Iterate over live ops
  template <typename F>
  void for_each_op(F &&f) const {
    for (const auto &registry: registries) {
      for (const auto &op: registry) {
	std::invoke(f, op);
      }
    }
  }

  /// Removes op from registry
  void remove_from_registry(Operation &op) {
    const auto op_type = op.get_type();
    registries[op_type].erase(op_list::s_iterator_to(op));
  }

  /// Adds op to registry
  void add_to_registry(Operation &op) {
    const auto op_type = op.get_type();
    registries[op_type].push_back(op);
  }
};

class PipelineExitBarrierI {
public:
  using Ref = std::unique_ptr<PipelineExitBarrierI>;

  /// Waits for exit barrier
  virtual std::optional<seastar::future<>> wait() = 0;

  /// Releases pipeline stage, can only be called after wait
  virtual void exit() = 0;

  /// Releases pipeline resources without waiting on barrier
  virtual void cancel() = 0;

  /// Must ensure that resources are released, likely by calling cancel()
  virtual ~PipelineExitBarrierI() {}
};

template <class T>
class PipelineStageIT : public BlockerT<T> {
  const core_id_t core = seastar::this_shard_id();
public:
  core_id_t get_core() const { return core; }

  template <class... Args>
  decltype(auto) enter(Args&&... args) {
    return static_cast<T*>(this)->enter(std::forward<Args>(args)...);
  }
};

class PipelineHandle {
  PipelineExitBarrierI::Ref barrier;

  std::optional<seastar::future<>> wait_barrier() {
    return barrier ? barrier->wait() : std::nullopt;
  }

public:
  PipelineHandle() = default;

  PipelineHandle(const PipelineHandle&) = delete;
  PipelineHandle(PipelineHandle&&) = default;
  PipelineHandle &operator=(const PipelineHandle&) = delete;
  PipelineHandle &operator=(PipelineHandle&&) = default;

  /**
   * Returns a future which unblocks when the handle has entered the passed
   * OrderedPipelinePhase.  If already in a phase, enter will also release
   * that phase after placing itself in the queue for the next one to preserve
   * ordering.
   */
  template <typename OpT, typename T>
  seastar::future<>
  enter(T &stage, typename T::BlockingEvent::template Trigger<OpT>&& t) {
    ceph_assert(stage.get_core() == seastar::this_shard_id());
    auto wait_fut = wait_barrier();
    if (wait_fut.has_value()) {
      return wait_fut.value().then([this, &stage, t=std::move(t)] () mutable {
        auto fut = t.maybe_record_blocking(stage.enter(t), stage);
        exit();
        return std::move(fut).then(
          [this, t=std::move(t)](auto &&barrier_ref) mutable {
          barrier = std::move(barrier_ref);
          return seastar::now();
        });
      });
    } else {
        auto fut = t.maybe_record_blocking(stage.enter(t), stage);
        exit();
        return std::move(fut).then(
          [this, t=std::move(t)](auto &&barrier_ref) mutable {
          barrier = std::move(barrier_ref);
          return seastar::now();
        });
    }
  }

  /**
   * Completes pending exit barrier without entering a new one.
   */
  seastar::future<> complete() {
    auto ret = wait_barrier();
    barrier.reset();
    return ret ? std::move(ret.value()) : seastar::now();
  }

  /**
   * Exits current phase, skips exit barrier, should only be used for op
   * failure.  Permitting the handle to be destructed as the same effect.
   */
  void exit() {
    barrier.reset();
  }

};

/**
 * Ensures that at most one op may consider itself in the phase at a time.
 * Ops will see enter() unblock in the order in which they tried to enter
 * the phase.  entering (though not necessarily waiting for the future to
 * resolve) a new phase prior to exiting the previous one will ensure that
 * the op ordering is preserved.
 */
template <class T>
class OrderedExclusivePhaseT : public PipelineStageIT<T> {
  void dump_detail(ceph::Formatter *f) const final {
    f->dump_unsigned("waiting", waiting);
    if (held_by != Operation::NULL_ID) {
      f->dump_unsigned("held_by_operation_id", held_by);
    }
  }

  class ExitBarrier final : public PipelineExitBarrierI {
    OrderedExclusivePhaseT *phase;
    Operation::id_t op_id;
  public:
    ExitBarrier(OrderedExclusivePhaseT *phase, Operation::id_t id)
      : phase(phase), op_id(id) {}

    std::optional<seastar::future<>> wait() final {
      return std::nullopt;
    }

    void exit() final {
      if (phase) {
	auto *p = phase;
	auto id = op_id;
	phase = nullptr;
	std::ignore = seastar::smp::submit_to(
	  p->get_core(),
	  [p, id] {
	    p->exit(id);
	  });
      }
    }

    void cancel() final {
      exit();
    }

    ~ExitBarrier() final {
      cancel();
    }
  };

  void exit(Operation::id_t op_id) {
    clear_held_by(op_id);
    mutex.unlock();
  }

public:
  template <class TriggerT>
  seastar::future<PipelineExitBarrierI::Ref> enter(TriggerT& t) {
    waiting++;
    return mutex.lock().then([this, op_id=t.get_op().get_id()] {
      ceph_assert_always(waiting > 0);
      --waiting;
      set_held_by(op_id);
      return PipelineExitBarrierI::Ref(new ExitBarrier{this, op_id});
    });
  }

private:
  void set_held_by(Operation::id_t id) {
    ceph_assert_always(held_by == Operation::NULL_ID);
    held_by = id;
  }

  void clear_held_by(Operation::id_t id) {
    ceph_assert_always(held_by == id);
    held_by = Operation::NULL_ID;
  }

  unsigned waiting = 0;
  seastar::shared_mutex mutex;
  Operation::id_t held_by = Operation::NULL_ID;
};

/**
 * Permits multiple ops to inhabit the stage concurrently, but ensures that
 * they will proceed to the next stage in the order in which they called
 * enter.
 */
template <class T>
class OrderedConcurrentPhaseT : public PipelineStageIT<T> {
  using base_t = PipelineStageIT<T>;
public:
  struct BlockingEvent : base_t::BlockingEvent {
    using base_t::BlockingEvent::BlockingEvent;

    struct ExitBarrierEvent : TimeEvent<ExitBarrierEvent> {};

    template <class OpT>
    struct Trigger : base_t::BlockingEvent::template Trigger<OpT> {
      using base_t::BlockingEvent::template Trigger<OpT>::Trigger;

      template <class FutureT>
      decltype(auto) maybe_record_exit_barrier(FutureT&& fut) {
        if (!fut.available()) {
	  exit_barrier_event.trigger(this->op);
	}
	return std::forward<FutureT>(fut);
      }

      ExitBarrierEvent exit_barrier_event;
    };
  };

private:
  void dump_detail(ceph::Formatter *f) const final {}

  template <class TriggerT>
  class ExitBarrier final : public PipelineExitBarrierI {
    OrderedConcurrentPhaseT *phase;
    std::optional<seastar::future<>> barrier;
    TriggerT trigger;
  public:
    ExitBarrier(
      OrderedConcurrentPhaseT *phase,
      seastar::future<> &&barrier,
      TriggerT& trigger) : phase(phase), barrier(std::move(barrier)), trigger(trigger) {}

    std::optional<seastar::future<>> wait() final {
      assert(phase);
      assert(barrier);
      auto ret = std::move(*barrier);
      barrier = std::nullopt;
      return trigger.maybe_record_exit_barrier(std::move(ret));
    }

    void exit() final {
      if (barrier) {
	static_cast<void>(
	  std::move(*barrier).then([phase=this->phase] { phase->mutex.unlock(); }));
	barrier = std::nullopt;
	phase = nullptr;
      }
      if (phase) {
	std::ignore = seastar::smp::submit_to(
	  phase->get_core(),
	  [this] {
	    phase->mutex.unlock();
	    phase = nullptr;
	  });
      }
    }

    void cancel() final {
      exit();
    }

    ~ExitBarrier() final {
      cancel();
    }
  };

public:
  template <class TriggerT>
  seastar::future<PipelineExitBarrierI::Ref> enter(TriggerT& t) {
    return seastar::make_ready_future<PipelineExitBarrierI::Ref>(
      new ExitBarrier<TriggerT>{this, mutex.lock(), t});
  }

private:
  seastar::shared_mutex mutex;
};

/**
 * Imposes no ordering or exclusivity at all.  Ops enter without constraint and
 * may exit in any order.  Useful mainly for informational purposes between
 * stages with constraints.
 */
template <class T>
class UnorderedStageT : public PipelineStageIT<T> {
  void dump_detail(ceph::Formatter *f) const final {}

  class ExitBarrier final : public PipelineExitBarrierI {
  public:
    ExitBarrier() = default;

    std::optional<seastar::future<>> wait() final {
      return std::nullopt;
    }

    void exit() final {}

    void cancel() final {}

    ~ExitBarrier() final {}
  };

public:
  template <class... IgnoreArgs>
  seastar::future<PipelineExitBarrierI::Ref> enter(IgnoreArgs&&...) {
    return seastar::make_ready_future<PipelineExitBarrierI::Ref>(
      new ExitBarrier);
  }
};

}

#if FMT_VERSION >= 90000
template <> struct fmt::formatter<crimson::Operation> : fmt::ostream_formatter {};
#endif