1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
|
/*
* Ceph - scalable distributed file system
*
* Copyright (C) 2017 Intel Corporation
*
* Author: Qiaowei Ren <qiaowei.ren@intel.com>
*
* This library is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License as published by the Free Software Foundation; either
* version 2.1 of the License, or (at your option) any later version.
*
*/
#include "crypto/openssl/openssl_crypto_accel.h"
#include <openssl/evp.h>
#include <openssl/engine.h>
#include "common/debug.h"
// -----------------------------------------------------------------------------
#define dout_context g_ceph_context
#define dout_subsys ceph_subsys_crypto
#undef dout_prefix
#define dout_prefix _prefix(_dout)
static std::ostream&
_prefix(std::ostream* _dout)
{
return *_dout << "OpensslCryptoAccel: ";
}
// -----------------------------------------------------------------------------
#define EVP_SUCCESS 1
#define AES_ENCRYPT 1
#define AES_DECRYPT 0
bool evp_transform(unsigned char* out, const unsigned char* in, size_t size,
const unsigned char* iv,
const unsigned char* key,
ENGINE* engine,
const EVP_CIPHER* const type,
const int encrypt)
{
using pctx_t = std::unique_ptr<EVP_CIPHER_CTX, decltype(&::EVP_CIPHER_CTX_free)>;
pctx_t pctx{ EVP_CIPHER_CTX_new(), EVP_CIPHER_CTX_free };
if (!pctx) {
derr << "failed to create evp cipher context" << dendl;
return false;
}
if (EVP_CipherInit_ex(pctx.get(), type, engine, key, iv, encrypt) != EVP_SUCCESS) {
derr << "EVP_CipherInit_ex failed" << dendl;
return false;
}
if (EVP_CIPHER_CTX_set_padding(pctx.get(), 0) != EVP_SUCCESS) {
derr << "failed to disable PKCS padding" << dendl;
return false;
}
int len_update = 0;
if (EVP_CipherUpdate(pctx.get(), out, &len_update, in, size) != EVP_SUCCESS) {
derr << "EVP_CipherUpdate failed" << dendl;
return false;
}
int len_final = 0;
if (EVP_CipherFinal_ex(pctx.get(), out + len_update, &len_final) != EVP_SUCCESS) {
derr << "EVP_CipherFinal_ex failed" << dendl;
return false;
}
ceph_assert(len_final == 0);
return (len_update + len_final) == static_cast<int>(size);
}
bool OpenSSLCryptoAccel::cbc_encrypt(unsigned char* out, const unsigned char* in, size_t size,
const unsigned char (&iv)[AES_256_IVSIZE],
const unsigned char (&key)[AES_256_KEYSIZE])
{
if ((size % AES_256_IVSIZE) != 0) {
return false;
}
return evp_transform(out, in, size, const_cast<unsigned char*>(&iv[0]),
const_cast<unsigned char*>(&key[0]),
nullptr, // Hardware acceleration engine can be used in the future
EVP_aes_256_cbc(), AES_ENCRYPT);
}
bool OpenSSLCryptoAccel::cbc_decrypt(unsigned char* out, const unsigned char* in, size_t size,
const unsigned char (&iv)[AES_256_IVSIZE],
const unsigned char (&key)[AES_256_KEYSIZE])
{
if ((size % AES_256_IVSIZE) != 0) {
return false;
}
return evp_transform(out, in, size, const_cast<unsigned char*>(&iv[0]),
const_cast<unsigned char*>(&key[0]),
nullptr, // Hardware acceleration engine can be used in the future
EVP_aes_256_cbc(), AES_DECRYPT);
}
|