1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:t -*-
// vim: ts=8 sw=2 smarttab
#include "WriteLog.h"
#include "include/buffer.h"
#include "include/Context.h"
#include "include/ceph_assert.h"
#include "common/deleter.h"
#include "common/dout.h"
#include "common/environment.h"
#include "common/errno.h"
#include "common/WorkQueue.h"
#include "common/Timer.h"
#include "common/perf_counters.h"
#include "librbd/ImageCtx.h"
#include "librbd/asio/ContextWQ.h"
#include "librbd/cache/pwl/ImageCacheState.h"
#include "librbd/cache/pwl/LogEntry.h"
#include "librbd/plugin/Api.h"
#include <map>
#include <vector>
#undef dout_subsys
#define dout_subsys ceph_subsys_rbd_pwl
#undef dout_prefix
#define dout_prefix *_dout << "librbd::cache::pwl::rwl::WriteLog: " << this \
<< " " << __func__ << ": "
namespace librbd {
namespace cache {
namespace pwl {
using namespace std;
using namespace librbd::cache::pwl;
namespace rwl {
const unsigned long int OPS_APPENDED_TOGETHER = MAX_ALLOC_PER_TRANSACTION;
template <typename I>
Builder<AbstractWriteLog<I>>* WriteLog<I>::create_builder() {
m_builderobj = new Builder<This>();
return m_builderobj;
}
template <typename I>
WriteLog<I>::WriteLog(
I &image_ctx, librbd::cache::pwl::ImageCacheState<I>* cache_state,
ImageWritebackInterface& image_writeback,
plugin::Api<I>& plugin_api)
: AbstractWriteLog<I>(image_ctx, cache_state, create_builder(), image_writeback,
plugin_api),
m_pwl_pool_layout_name(POBJ_LAYOUT_NAME(rbd_pwl))
{
}
template <typename I>
WriteLog<I>::~WriteLog() {
m_log_pool = nullptr;
delete m_builderobj;
}
template <typename I>
void WriteLog<I>::collect_read_extents(
uint64_t read_buffer_offset, LogMapEntry<GenericWriteLogEntry> map_entry,
std::vector<std::shared_ptr<GenericWriteLogEntry>> &log_entries_to_read,
std::vector<bufferlist*> &bls_to_read, uint64_t entry_hit_length,
Extent hit_extent, pwl::C_ReadRequest *read_ctx) {
/* Make a bl for this hit extent. This will add references to the
* write_entry->pmem_bp */
buffer::list hit_bl;
/* Create buffer object referring to pmem pool for this read hit */
auto write_entry = map_entry.log_entry;
buffer::list entry_bl_copy;
write_entry->copy_cache_bl(&entry_bl_copy);
entry_bl_copy.begin(read_buffer_offset).copy(entry_hit_length, hit_bl);
ceph_assert(hit_bl.length() == entry_hit_length);
/* Add hit extent to read extents */
auto hit_extent_buf = std::make_shared<ImageExtentBuf>(hit_extent, hit_bl);
read_ctx->read_extents.push_back(hit_extent_buf);
}
template <typename I>
void WriteLog<I>::complete_read(
std::vector<std::shared_ptr<GenericWriteLogEntry>> &log_entries_to_read,
std::vector<bufferlist*> &bls_to_read, Context *ctx) {
ctx->complete(0);
}
/*
* Allocate the (already reserved) write log entries for a set of operations.
*
* Locking:
* Acquires lock
*/
template <typename I>
void WriteLog<I>::alloc_op_log_entries(GenericLogOperations &ops)
{
TOID(struct WriteLogPoolRoot) pool_root;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
struct WriteLogCacheEntry *pmem_log_entries = D_RW(D_RW(pool_root)->log_entries);
ceph_assert(ceph_mutex_is_locked_by_me(this->m_log_append_lock));
/* Allocate the (already reserved) log entries */
std::unique_lock locker(m_lock);
for (auto &operation : ops) {
uint32_t entry_index = this->m_first_free_entry;
this->m_first_free_entry = (this->m_first_free_entry + 1) % this->m_total_log_entries;
auto &log_entry = operation->get_log_entry();
log_entry->log_entry_index = entry_index;
log_entry->ram_entry.entry_index = entry_index;
log_entry->cache_entry = &pmem_log_entries[entry_index];
log_entry->ram_entry.set_entry_valid(true);
m_log_entries.push_back(log_entry);
ldout(m_image_ctx.cct, 20) << "operation=[" << *operation << "]" << dendl;
}
if (m_cache_state->empty && !m_log_entries.empty()) {
m_cache_state->empty = false;
this->update_image_cache_state();
this->write_image_cache_state(locker);
}
}
/*
* Write and persist the (already allocated) write log entries and
* data buffer allocations for a set of ops. The data buffer for each
* of these must already have been persisted to its reserved area.
*/
template <typename I>
int WriteLog<I>::append_op_log_entries(GenericLogOperations &ops)
{
CephContext *cct = m_image_ctx.cct;
GenericLogOperationsVector entries_to_flush;
TOID(struct WriteLogPoolRoot) pool_root;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
int ret = 0;
ceph_assert(ceph_mutex_is_locked_by_me(this->m_log_append_lock));
if (ops.empty()) {
return 0;
}
entries_to_flush.reserve(OPS_APPENDED_TOGETHER);
/* Write log entries to ring and persist */
utime_t now = ceph_clock_now();
for (auto &operation : ops) {
if (!entries_to_flush.empty()) {
/* Flush these and reset the list if the current entry wraps to the
* tail of the ring */
if (entries_to_flush.back()->get_log_entry()->log_entry_index >
operation->get_log_entry()->log_entry_index) {
ldout(m_image_ctx.cct, 20) << "entries to flush wrap around the end of the ring at "
<< "operation=[" << *operation << "]" << dendl;
flush_op_log_entries(entries_to_flush);
entries_to_flush.clear();
now = ceph_clock_now();
}
}
ldout(m_image_ctx.cct, 20) << "Copying entry for operation at index="
<< operation->get_log_entry()->log_entry_index
<< " from " << &operation->get_log_entry()->ram_entry
<< " to " << operation->get_log_entry()->cache_entry
<< " operation=[" << *operation << "]" << dendl;
operation->log_append_start_time = now;
*operation->get_log_entry()->cache_entry = operation->get_log_entry()->ram_entry;
ldout(m_image_ctx.cct, 20) << "APPENDING: index="
<< operation->get_log_entry()->log_entry_index
<< " pmem_entry=[" << *operation->get_log_entry()->cache_entry
<< "]" << dendl;
entries_to_flush.push_back(operation);
}
flush_op_log_entries(entries_to_flush);
/* Drain once for all */
pmemobj_drain(m_log_pool);
/*
* Atomically advance the log head pointer and publish the
* allocations for all the data buffers they refer to.
*/
utime_t tx_start = ceph_clock_now();
TX_BEGIN(m_log_pool) {
D_RW(pool_root)->first_free_entry = this->m_first_free_entry;
for (auto &operation : ops) {
if (operation->reserved_allocated()) {
auto write_op = (std::shared_ptr<WriteLogOperation>&) operation;
pmemobj_tx_publish(&write_op->buffer_alloc->buffer_alloc_action, 1);
} else {
ldout(m_image_ctx.cct, 20) << "skipping non-write op: " << *operation << dendl;
}
}
} TX_ONCOMMIT {
} TX_ONABORT {
lderr(cct) << "failed to commit " << ops.size()
<< " log entries (" << this->m_log_pool_name << ")" << dendl;
ceph_assert(false);
ret = -EIO;
} TX_FINALLY {
} TX_END;
utime_t tx_end = ceph_clock_now();
m_perfcounter->tinc(l_librbd_pwl_append_tx_t, tx_end - tx_start);
m_perfcounter->hinc(
l_librbd_pwl_append_tx_t_hist, utime_t(tx_end - tx_start).to_nsec(), ops.size());
for (auto &operation : ops) {
operation->log_append_comp_time = tx_end;
}
return ret;
}
/*
* Flush the persistent write log entries set of ops. The entries must
* be contiguous in persistent memory.
*/
template <typename I>
void WriteLog<I>::flush_op_log_entries(GenericLogOperationsVector &ops)
{
if (ops.empty()) {
return;
}
if (ops.size() > 1) {
ceph_assert(ops.front()->get_log_entry()->cache_entry < ops.back()->get_log_entry()->cache_entry);
}
ldout(m_image_ctx.cct, 20) << "entry count=" << ops.size()
<< " start address="
<< ops.front()->get_log_entry()->cache_entry
<< " bytes="
<< ops.size() * sizeof(*(ops.front()->get_log_entry()->cache_entry))
<< dendl;
pmemobj_flush(m_log_pool,
ops.front()->get_log_entry()->cache_entry,
ops.size() * sizeof(*(ops.front()->get_log_entry()->cache_entry)));
}
template <typename I>
void WriteLog<I>::remove_pool_file() {
if (m_log_pool) {
ldout(m_image_ctx.cct, 6) << "closing pmem pool" << dendl;
pmemobj_close(m_log_pool);
}
if (m_cache_state->clean) {
ldout(m_image_ctx.cct, 5) << "Removing empty pool file: " << this->m_log_pool_name << dendl;
if (remove(this->m_log_pool_name.c_str()) != 0) {
lderr(m_image_ctx.cct) << "failed to remove empty pool \"" << this->m_log_pool_name << "\": "
<< pmemobj_errormsg() << dendl;
} else {
m_cache_state->present = false;
}
} else {
ldout(m_image_ctx.cct, 5) << "Not removing pool file: " << this->m_log_pool_name << dendl;
}
}
template <typename I>
bool WriteLog<I>::initialize_pool(Context *on_finish, pwl::DeferredContexts &later) {
CephContext *cct = m_image_ctx.cct;
int r = -EINVAL;
TOID(struct WriteLogPoolRoot) pool_root;
ceph_assert(ceph_mutex_is_locked_by_me(m_lock));
if (access(this->m_log_pool_name.c_str(), F_OK) != 0) {
if ((m_log_pool =
pmemobj_create(this->m_log_pool_name.c_str(),
this->m_pwl_pool_layout_name,
this->m_log_pool_size,
(S_IWUSR | S_IRUSR))) == NULL) {
lderr(cct) << "failed to create pool: " << this->m_log_pool_name
<< ". error: " << pmemobj_errormsg() << dendl;
m_cache_state->present = false;
m_cache_state->clean = true;
m_cache_state->empty = true;
/* TODO: filter/replace errnos that are meaningless to the caller */
on_finish->complete(-errno);
return false;
}
m_cache_state->present = true;
m_cache_state->clean = true;
m_cache_state->empty = true;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
/* new pool, calculate and store metadata */
size_t effective_pool_size = (size_t)(this->m_log_pool_size * USABLE_SIZE);
size_t small_write_size = MIN_WRITE_ALLOC_SIZE + BLOCK_ALLOC_OVERHEAD_BYTES + sizeof(struct WriteLogCacheEntry);
uint64_t num_small_writes = (uint64_t)(effective_pool_size / small_write_size);
if (num_small_writes > MAX_LOG_ENTRIES) {
num_small_writes = MAX_LOG_ENTRIES;
}
if (num_small_writes <= 2) {
lderr(cct) << "num_small_writes needs to > 2" << dendl;
goto err_close_pool;
}
this->m_bytes_allocated_cap = effective_pool_size;
/* Log ring empty */
m_first_free_entry = 0;
m_first_valid_entry = 0;
TX_BEGIN(m_log_pool) {
TX_ADD(pool_root);
D_RW(pool_root)->header.layout_version = RWL_LAYOUT_VERSION;
D_RW(pool_root)->log_entries =
TX_ZALLOC(struct WriteLogCacheEntry,
sizeof(struct WriteLogCacheEntry) * num_small_writes);
D_RW(pool_root)->pool_size = this->m_log_pool_size;
D_RW(pool_root)->flushed_sync_gen = this->m_flushed_sync_gen;
D_RW(pool_root)->block_size = MIN_WRITE_ALLOC_SIZE;
D_RW(pool_root)->num_log_entries = num_small_writes;
D_RW(pool_root)->first_free_entry = m_first_free_entry;
D_RW(pool_root)->first_valid_entry = m_first_valid_entry;
} TX_ONCOMMIT {
this->m_total_log_entries = D_RO(pool_root)->num_log_entries;
this->m_free_log_entries = D_RO(pool_root)->num_log_entries - 1; // leave one free
} TX_ONABORT {
this->m_total_log_entries = 0;
this->m_free_log_entries = 0;
lderr(cct) << "failed to initialize pool: " << this->m_log_pool_name
<< ". pmemobj TX errno: " << pmemobj_tx_errno() << dendl;
r = -pmemobj_tx_errno();
goto err_close_pool;
} TX_FINALLY {
} TX_END;
} else {
ceph_assert(m_cache_state->present);
/* Open existing pool */
if ((m_log_pool =
pmemobj_open(this->m_log_pool_name.c_str(),
this->m_pwl_pool_layout_name)) == NULL) {
lderr(cct) << "failed to open pool (" << this->m_log_pool_name << "): "
<< pmemobj_errormsg() << dendl;
on_finish->complete(-errno);
return false;
}
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
if (D_RO(pool_root)->header.layout_version != RWL_LAYOUT_VERSION) {
// TODO: will handle upgrading version in the future
lderr(cct) << "pool layout version is "
<< D_RO(pool_root)->header.layout_version
<< " expected " << RWL_LAYOUT_VERSION << dendl;
goto err_close_pool;
}
if (D_RO(pool_root)->block_size != MIN_WRITE_ALLOC_SIZE) {
lderr(cct) << "pool block size is " << D_RO(pool_root)->block_size
<< " expected " << MIN_WRITE_ALLOC_SIZE << dendl;
goto err_close_pool;
}
this->m_log_pool_size = D_RO(pool_root)->pool_size;
this->m_flushed_sync_gen = D_RO(pool_root)->flushed_sync_gen;
this->m_total_log_entries = D_RO(pool_root)->num_log_entries;
m_first_free_entry = D_RO(pool_root)->first_free_entry;
m_first_valid_entry = D_RO(pool_root)->first_valid_entry;
if (m_first_free_entry < m_first_valid_entry) {
/* Valid entries wrap around the end of the ring, so first_free is lower
* than first_valid. If first_valid was == first_free+1, the entry at
* first_free would be empty. The last entry is never used, so in
* that case there would be zero free log entries. */
this->m_free_log_entries = this->m_total_log_entries - (m_first_valid_entry - m_first_free_entry) -1;
} else {
/* first_valid is <= first_free. If they are == we have zero valid log
* entries, and n-1 free log entries */
this->m_free_log_entries = this->m_total_log_entries - (m_first_free_entry - m_first_valid_entry) -1;
}
size_t effective_pool_size = (size_t)(this->m_log_pool_size * USABLE_SIZE);
this->m_bytes_allocated_cap = effective_pool_size;
load_existing_entries(later);
m_cache_state->clean = this->m_dirty_log_entries.empty();
m_cache_state->empty = m_log_entries.empty();
}
return true;
err_close_pool:
pmemobj_close(m_log_pool);
on_finish->complete(r);
return false;
}
/*
* Loads the log entries from an existing log.
*
* Creates the in-memory structures to represent the state of the
* re-opened log.
*
* Finds the last appended sync point, and any sync points referred to
* in log entries, but missing from the log. These missing sync points
* are created and scheduled for append. Some rudimentary consistency
* checking is done.
*
* Rebuilds the m_blocks_to_log_entries map, to make log entries
* readable.
*
* Places all writes on the dirty entries list, which causes them all
* to be flushed.
*
*/
template <typename I>
void WriteLog<I>::load_existing_entries(DeferredContexts &later) {
TOID(struct WriteLogPoolRoot) pool_root;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
struct WriteLogCacheEntry *pmem_log_entries = D_RW(D_RW(pool_root)->log_entries);
uint64_t entry_index = m_first_valid_entry;
/* The map below allows us to find sync point log entries by sync
* gen number, which is necessary so write entries can be linked to
* their sync points. */
std::map<uint64_t, std::shared_ptr<SyncPointLogEntry>> sync_point_entries;
/* The map below tracks sync points referred to in writes but not
* appearing in the sync_point_entries map. We'll use this to
* determine which sync points are missing and need to be
* created. */
std::map<uint64_t, bool> missing_sync_points;
/*
* Read the existing log entries. Construct an in-memory log entry
* object of the appropriate type for each. Add these to the global
* log entries list.
*
* Write entries will not link to their sync points yet. We'll do
* that in the next pass. Here we'll accumulate a map of sync point
* gen numbers that are referred to in writes but do not appearing in
* the log.
*/
while (entry_index != m_first_free_entry) {
WriteLogCacheEntry *pmem_entry = &pmem_log_entries[entry_index];
std::shared_ptr<GenericLogEntry> log_entry = nullptr;
ceph_assert(pmem_entry->entry_index == entry_index);
this->update_entries(&log_entry, pmem_entry, missing_sync_points,
sync_point_entries, entry_index);
log_entry->ram_entry = *pmem_entry;
log_entry->cache_entry = pmem_entry;
log_entry->log_entry_index = entry_index;
log_entry->completed = true;
m_log_entries.push_back(log_entry);
entry_index = (entry_index + 1) % this->m_total_log_entries;
}
this->update_sync_points(missing_sync_points, sync_point_entries, later);
}
template <typename I>
void WriteLog<I>::inc_allocated_cached_bytes(
std::shared_ptr<pwl::GenericLogEntry> log_entry) {
if (log_entry->is_write_entry()) {
this->m_bytes_allocated += std::max(log_entry->write_bytes(), MIN_WRITE_ALLOC_SIZE);
this->m_bytes_cached += log_entry->write_bytes();
}
}
template <typename I>
void WriteLog<I>::write_data_to_buffer(
std::shared_ptr<pwl::WriteLogEntry> ws_entry,
WriteLogCacheEntry *pmem_entry) {
ws_entry->cache_buffer = D_RW(pmem_entry->write_data);
}
/**
* Retire up to MAX_ALLOC_PER_TRANSACTION of the oldest log entries
* that are eligible to be retired. Returns true if anything was
* retired.
*/
template <typename I>
bool WriteLog<I>::retire_entries(const unsigned long int frees_per_tx) {
CephContext *cct = m_image_ctx.cct;
GenericLogEntriesVector retiring_entries;
uint32_t initial_first_valid_entry;
uint32_t first_valid_entry;
std::lock_guard retire_locker(this->m_log_retire_lock);
ldout(cct, 20) << "Look for entries to retire" << dendl;
{
/* Entry readers can't be added while we hold m_entry_reader_lock */
RWLock::WLocker entry_reader_locker(this->m_entry_reader_lock);
std::lock_guard locker(m_lock);
initial_first_valid_entry = this->m_first_valid_entry;
first_valid_entry = this->m_first_valid_entry;
while (!m_log_entries.empty() && retiring_entries.size() < frees_per_tx &&
this->can_retire_entry(m_log_entries.front())) {
auto entry = m_log_entries.front();
if (entry->log_entry_index != first_valid_entry) {
lderr(cct) << "retiring entry index (" << entry->log_entry_index
<< ") and first valid log entry index (" << first_valid_entry
<< ") must be ==." << dendl;
}
ceph_assert(entry->log_entry_index == first_valid_entry);
first_valid_entry = (first_valid_entry + 1) % this->m_total_log_entries;
m_log_entries.pop_front();
retiring_entries.push_back(entry);
/* Remove entry from map so there will be no more readers */
if ((entry->write_bytes() > 0) || (entry->bytes_dirty() > 0)) {
auto gen_write_entry = static_pointer_cast<GenericWriteLogEntry>(entry);
if (gen_write_entry) {
this->m_blocks_to_log_entries.remove_log_entry(gen_write_entry);
}
}
}
}
if (retiring_entries.size()) {
ldout(cct, 20) << "Retiring " << retiring_entries.size() << " entries" << dendl;
TOID(struct WriteLogPoolRoot) pool_root;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
utime_t tx_start;
utime_t tx_end;
/* Advance first valid entry and release buffers */
{
uint64_t flushed_sync_gen;
std::lock_guard append_locker(this->m_log_append_lock);
{
std::lock_guard locker(m_lock);
flushed_sync_gen = this->m_flushed_sync_gen;
}
tx_start = ceph_clock_now();
TX_BEGIN(m_log_pool) {
if (D_RO(pool_root)->flushed_sync_gen < flushed_sync_gen) {
ldout(m_image_ctx.cct, 20) << "flushed_sync_gen in log updated from "
<< D_RO(pool_root)->flushed_sync_gen << " to "
<< flushed_sync_gen << dendl;
D_RW(pool_root)->flushed_sync_gen = flushed_sync_gen;
}
D_RW(pool_root)->first_valid_entry = first_valid_entry;
for (auto &entry: retiring_entries) {
if (entry->write_bytes()) {
ldout(cct, 20) << "Freeing " << entry->ram_entry.write_data.oid.pool_uuid_lo
<< "." << entry->ram_entry.write_data.oid.off << dendl;
TX_FREE(entry->ram_entry.write_data);
} else {
ldout(cct, 20) << "Retiring non-write: " << *entry << dendl;
}
}
} TX_ONCOMMIT {
} TX_ONABORT {
lderr(cct) << "failed to commit free of" << retiring_entries.size()
<< " log entries (" << this->m_log_pool_name << ")" << dendl;
ceph_assert(false);
} TX_FINALLY {
} TX_END;
tx_end = ceph_clock_now();
}
m_perfcounter->tinc(l_librbd_pwl_retire_tx_t, tx_end - tx_start);
m_perfcounter->hinc(l_librbd_pwl_retire_tx_t_hist, utime_t(tx_end - tx_start).to_nsec(),
retiring_entries.size());
bool need_update_state = false;
/* Update runtime copy of first_valid, and free entries counts */
{
std::lock_guard locker(m_lock);
ceph_assert(this->m_first_valid_entry == initial_first_valid_entry);
this->m_first_valid_entry = first_valid_entry;
this->m_free_log_entries += retiring_entries.size();
if (!m_cache_state->empty && m_log_entries.empty()) {
m_cache_state->empty = true;
this->update_image_cache_state();
need_update_state = true;
}
for (auto &entry: retiring_entries) {
if (entry->write_bytes()) {
ceph_assert(this->m_bytes_cached >= entry->write_bytes());
this->m_bytes_cached -= entry->write_bytes();
uint64_t entry_allocation_size = entry->write_bytes();
if (entry_allocation_size < MIN_WRITE_ALLOC_SIZE) {
entry_allocation_size = MIN_WRITE_ALLOC_SIZE;
}
ceph_assert(this->m_bytes_allocated >= entry_allocation_size);
this->m_bytes_allocated -= entry_allocation_size;
}
}
this->m_alloc_failed_since_retire = false;
this->wake_up();
}
if (need_update_state) {
std::unique_lock locker(m_lock);
this->write_image_cache_state(locker);
}
} else {
ldout(cct, 20) << "Nothing to retire" << dendl;
return false;
}
return true;
}
template <typename I>
void WriteLog<I>::construct_flush_entries(pwl::GenericLogEntries entries_to_flush,
DeferredContexts &post_unlock,
bool has_write_entry) {
bool invalidating = this->m_invalidating; // snapshot so we behave consistently
for (auto &log_entry : entries_to_flush) {
GuardedRequestFunctionContext *guarded_ctx =
new GuardedRequestFunctionContext([this, log_entry, invalidating]
(GuardedRequestFunctionContext &guard_ctx) {
log_entry->m_cell = guard_ctx.cell;
Context *ctx = this->construct_flush_entry(log_entry, invalidating);
if (!invalidating) {
ctx = new LambdaContext(
[this, log_entry, ctx](int r) {
m_image_ctx.op_work_queue->queue(new LambdaContext(
[this, log_entry, ctx](int r) {
ldout(m_image_ctx.cct, 15) << "flushing:" << log_entry
<< " " << *log_entry << dendl;
log_entry->writeback(this->m_image_writeback, ctx);
}), 0);
});
}
ctx->complete(0);
});
this->detain_flush_guard_request(log_entry, guarded_ctx);
}
}
const unsigned long int ops_flushed_together = 4;
/*
* Performs the pmem buffer flush on all scheduled ops, then schedules
* the log event append operation for all of them.
*/
template <typename I>
void WriteLog<I>::flush_then_append_scheduled_ops(void)
{
GenericLogOperations ops;
bool ops_remain = false;
ldout(m_image_ctx.cct, 20) << dendl;
do {
{
ops.clear();
std::lock_guard locker(m_lock);
if (m_ops_to_flush.size()) {
auto last_in_batch = m_ops_to_flush.begin();
unsigned int ops_to_flush = m_ops_to_flush.size();
if (ops_to_flush > ops_flushed_together) {
ops_to_flush = ops_flushed_together;
}
ldout(m_image_ctx.cct, 20) << "should flush " << ops_to_flush << dendl;
std::advance(last_in_batch, ops_to_flush);
ops.splice(ops.end(), m_ops_to_flush, m_ops_to_flush.begin(), last_in_batch);
ops_remain = !m_ops_to_flush.empty();
ldout(m_image_ctx.cct, 20) << "flushing " << ops.size() << ", remain "
<< m_ops_to_flush.size() << dendl;
} else {
ops_remain = false;
}
}
if (ops_remain) {
enlist_op_flusher();
}
/* Ops subsequently scheduled for flush may finish before these,
* which is fine. We're unconcerned with completion order until we
* get to the log message append step. */
if (ops.size()) {
flush_pmem_buffer(ops);
schedule_append_ops(ops, nullptr);
}
} while (ops_remain);
append_scheduled_ops();
}
/*
* Performs the log event append operation for all of the scheduled
* events.
*/
template <typename I>
void WriteLog<I>::append_scheduled_ops(void) {
GenericLogOperations ops;
int append_result = 0;
bool ops_remain = false;
bool appending = false; /* true if we set m_appending */
ldout(m_image_ctx.cct, 20) << dendl;
do {
ops.clear();
this->append_scheduled(ops, ops_remain, appending, true);
if (ops.size()) {
std::lock_guard locker(this->m_log_append_lock);
alloc_op_log_entries(ops);
append_result = append_op_log_entries(ops);
}
int num_ops = ops.size();
if (num_ops) {
/* New entries may be flushable. Completion will wake up flusher. */
this->complete_op_log_entries(std::move(ops), append_result);
}
} while (ops_remain);
}
template <typename I>
void WriteLog<I>::enlist_op_flusher()
{
this->m_async_flush_ops++;
this->m_async_op_tracker.start_op();
Context *flush_ctx = new LambdaContext([this](int r) {
flush_then_append_scheduled_ops();
this->m_async_flush_ops--;
this->m_async_op_tracker.finish_op();
});
this->m_work_queue.queue(flush_ctx);
}
template <typename I>
void WriteLog<I>::setup_schedule_append(
pwl::GenericLogOperationsVector &ops, bool do_early_flush,
C_BlockIORequestT *req) {
if (do_early_flush) {
/* This caller is waiting for persist, so we'll use their thread to
* expedite it */
flush_pmem_buffer(ops);
this->schedule_append(ops);
} else {
/* This is probably not still the caller's thread, so do the payload
* flushing/replicating later. */
schedule_flush_and_append(ops);
}
}
/*
* Takes custody of ops. They'll all get their log entries appended,
* and have their on_write_persist contexts completed once they and
* all prior log entries are persisted everywhere.
*/
template <typename I>
void WriteLog<I>::schedule_append_ops(GenericLogOperations &ops, C_BlockIORequestT *req)
{
bool need_finisher;
GenericLogOperationsVector appending;
std::copy(std::begin(ops), std::end(ops), std::back_inserter(appending));
{
std::lock_guard locker(m_lock);
need_finisher = this->m_ops_to_append.empty() && !this->m_appending;
this->m_ops_to_append.splice(this->m_ops_to_append.end(), ops);
}
if (need_finisher) {
//enlist op appender
this->m_async_append_ops++;
this->m_async_op_tracker.start_op();
Context *append_ctx = new LambdaContext([this](int r) {
append_scheduled_ops();
this->m_async_append_ops--;
this->m_async_op_tracker.finish_op();
});
this->m_work_queue.queue(append_ctx);
}
for (auto &op : appending) {
op->appending();
}
}
/*
* Takes custody of ops. They'll all get their pmem blocks flushed,
* then get their log entries appended.
*/
template <typename I>
void WriteLog<I>::schedule_flush_and_append(GenericLogOperationsVector &ops)
{
GenericLogOperations to_flush(ops.begin(), ops.end());
bool need_finisher;
ldout(m_image_ctx.cct, 20) << dendl;
{
std::lock_guard locker(m_lock);
need_finisher = m_ops_to_flush.empty();
m_ops_to_flush.splice(m_ops_to_flush.end(), to_flush);
}
if (need_finisher) {
enlist_op_flusher();
}
}
template <typename I>
void WriteLog<I>::process_work() {
CephContext *cct = m_image_ctx.cct;
int max_iterations = 4;
bool wake_up_requested = false;
uint64_t aggressive_high_water_bytes = this->m_bytes_allocated_cap * AGGRESSIVE_RETIRE_HIGH_WATER;
uint64_t high_water_bytes = this->m_bytes_allocated_cap * RETIRE_HIGH_WATER;
uint64_t low_water_bytes = this->m_bytes_allocated_cap * RETIRE_LOW_WATER;
uint64_t aggressive_high_water_entries = this->m_total_log_entries * AGGRESSIVE_RETIRE_HIGH_WATER;
uint64_t high_water_entries = this->m_total_log_entries * RETIRE_HIGH_WATER;
uint64_t low_water_entries = this->m_total_log_entries * RETIRE_LOW_WATER;
ldout(cct, 20) << dendl;
do {
{
std::lock_guard locker(m_lock);
this->m_wake_up_requested = false;
}
if (this->m_alloc_failed_since_retire || this->m_invalidating ||
this->m_bytes_allocated > high_water_bytes ||
(m_log_entries.size() > high_water_entries)) {
int retired = 0;
utime_t started = ceph_clock_now();
ldout(m_image_ctx.cct, 10) << "alloc_fail=" << this->m_alloc_failed_since_retire
<< ", allocated > high_water="
<< (this->m_bytes_allocated > high_water_bytes)
<< ", allocated_entries > high_water="
<< (m_log_entries.size() > high_water_entries)
<< dendl;
while (this->m_alloc_failed_since_retire || this->m_invalidating ||
(this->m_bytes_allocated > high_water_bytes) ||
(m_log_entries.size() > high_water_entries) ||
(((this->m_bytes_allocated > low_water_bytes) ||
(m_log_entries.size() > low_water_entries)) &&
(utime_t(ceph_clock_now() - started).to_msec() < RETIRE_BATCH_TIME_LIMIT_MS))) {
if (!retire_entries((this->m_shutting_down || this->m_invalidating ||
(this->m_bytes_allocated > aggressive_high_water_bytes) ||
(m_log_entries.size() > aggressive_high_water_entries) ||
this->m_alloc_failed_since_retire)
? MAX_ALLOC_PER_TRANSACTION
: MAX_FREE_PER_TRANSACTION)) {
break;
}
retired++;
this->dispatch_deferred_writes();
this->process_writeback_dirty_entries();
}
ldout(m_image_ctx.cct, 10) << "Retired " << retired << " times" << dendl;
}
this->dispatch_deferred_writes();
this->process_writeback_dirty_entries();
{
std::lock_guard locker(m_lock);
wake_up_requested = this->m_wake_up_requested;
}
} while (wake_up_requested && --max_iterations > 0);
{
std::lock_guard locker(m_lock);
this->m_wake_up_scheduled = false;
/* Reschedule if it's still requested */
if (this->m_wake_up_requested) {
this->wake_up();
}
}
}
/*
* Flush the pmem regions for the data blocks of a set of operations
*
* V is expected to be GenericLogOperations<I>, or GenericLogOperationsVector<I>
*/
template <typename I>
template <typename V>
void WriteLog<I>::flush_pmem_buffer(V& ops)
{
utime_t now = ceph_clock_now();
for (auto &operation : ops) {
if (operation->reserved_allocated()) {
operation->buf_persist_start_time = now;
} else {
ldout(m_image_ctx.cct, 20) << "skipping non-write op: "
<< *operation << dendl;
}
}
for (auto &operation : ops) {
if(operation->is_writing_op()) {
auto log_entry = static_pointer_cast<WriteLogEntry>(operation->get_log_entry());
pmemobj_flush(m_log_pool, log_entry->cache_buffer, log_entry->write_bytes());
}
}
/* Drain once for all */
pmemobj_drain(m_log_pool);
now = ceph_clock_now();
for (auto &operation : ops) {
if (operation->reserved_allocated()) {
operation->buf_persist_comp_time = now;
} else {
ldout(m_image_ctx.cct, 20) << "skipping non-write op: "
<< *operation << dendl;
}
}
}
/**
* Update/persist the last flushed sync point in the log
*/
template <typename I>
void WriteLog<I>::persist_last_flushed_sync_gen()
{
TOID(struct WriteLogPoolRoot) pool_root;
pool_root = POBJ_ROOT(m_log_pool, struct WriteLogPoolRoot);
uint64_t flushed_sync_gen;
std::lock_guard append_locker(this->m_log_append_lock);
{
std::lock_guard locker(m_lock);
flushed_sync_gen = this->m_flushed_sync_gen;
}
if (D_RO(pool_root)->flushed_sync_gen < flushed_sync_gen) {
ldout(m_image_ctx.cct, 15) << "flushed_sync_gen in log updated from "
<< D_RO(pool_root)->flushed_sync_gen << " to "
<< flushed_sync_gen << dendl;
TX_BEGIN(m_log_pool) {
D_RW(pool_root)->flushed_sync_gen = flushed_sync_gen;
} TX_ONCOMMIT {
} TX_ONABORT {
lderr(m_image_ctx.cct) << "failed to commit update of flushed sync point" << dendl;
ceph_assert(false);
} TX_FINALLY {
} TX_END;
}
}
template <typename I>
void WriteLog<I>::reserve_cache(C_BlockIORequestT *req,
bool &alloc_succeeds, bool &no_space) {
std::vector<WriteBufferAllocation>& buffers = req->get_resources_buffers();
for (auto &buffer : buffers) {
utime_t before_reserve = ceph_clock_now();
buffer.buffer_oid = pmemobj_reserve(m_log_pool,
&buffer.buffer_alloc_action,
buffer.allocation_size,
0 /* Object type */);
buffer.allocation_lat = ceph_clock_now() - before_reserve;
if (TOID_IS_NULL(buffer.buffer_oid)) {
ldout(m_image_ctx.cct, 5) << "can't allocate all data buffers: "
<< pmemobj_errormsg() << ". "
<< *req << dendl;
alloc_succeeds = false;
no_space = true; /* Entries need to be retired */
if (this->m_free_log_entries == this->m_total_log_entries - 1) {
/* When the cache is empty, there is still no space to allocate.
* Defragment. */
pmemobj_defrag(m_log_pool, NULL, 0, NULL);
}
break;
} else {
buffer.allocated = true;
}
ldout(m_image_ctx.cct, 20) << "Allocated " << buffer.buffer_oid.oid.pool_uuid_lo
<< "." << buffer.buffer_oid.oid.off
<< ", size=" << buffer.allocation_size << dendl;
}
}
template<typename I>
void WriteLog<I>::copy_bl_to_buffer(
WriteRequestResources *resources, std::unique_ptr<WriteLogOperationSet> &op_set) {
auto allocation = resources->buffers.begin();
for (auto &operation : op_set->operations) {
operation->copy_bl_to_cache_buffer(allocation);
allocation++;
}
}
template <typename I>
bool WriteLog<I>::alloc_resources(C_BlockIORequestT *req) {
bool alloc_succeeds = true;
uint64_t bytes_allocated = 0;
uint64_t bytes_cached = 0;
uint64_t bytes_dirtied = 0;
uint64_t num_lanes = 0;
uint64_t num_unpublished_reserves = 0;
uint64_t num_log_entries = 0;
ldout(m_image_ctx.cct, 20) << dendl;
// Setup buffer, and get all the number of required resources
req->setup_buffer_resources(&bytes_cached, &bytes_dirtied, &bytes_allocated,
&num_lanes, &num_log_entries, &num_unpublished_reserves);
alloc_succeeds = this->check_allocation(req, bytes_cached, bytes_dirtied,
bytes_allocated, num_lanes, num_log_entries,
num_unpublished_reserves);
std::vector<WriteBufferAllocation>& buffers = req->get_resources_buffers();
if (!alloc_succeeds) {
/* On alloc failure, free any buffers we did allocate */
for (auto &buffer : buffers) {
if (buffer.allocated) {
pmemobj_cancel(m_log_pool, &buffer.buffer_alloc_action, 1);
}
}
}
req->set_allocated(alloc_succeeds);
return alloc_succeeds;
}
template <typename I>
void WriteLog<I>::complete_user_request(Context *&user_req, int r) {
user_req->complete(r);
// Set user_req as null as it is deleted
user_req = nullptr;
}
} // namespace rwl
} // namespace pwl
} // namespace cache
} // namespace librbd
template class librbd::cache::pwl::rwl::WriteLog<librbd::ImageCtx>;
|