1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
|
// -*- mode:C++; tab-width:8; c-basic-offset:2; indent-tabs-mode:nil -*-
// vim: ts=8 sw=2 smarttab
#pragma once
#include <mutex>
#include "include/cpp-btree/btree_map.h"
#include "include/cpp-btree/btree_set.h"
#include "Allocator.h"
#include "os/bluestore/bluestore_types.h"
#include "include/mempool.h"
class BtreeAllocator : public Allocator {
struct range_seg_t {
uint64_t start; ///< starting offset of this segment
uint64_t end; ///< ending offset (non-inclusive)
range_seg_t(uint64_t start, uint64_t end)
: start{start},
end{end}
{}
inline uint64_t length() const {
return end - start;
}
};
struct range_value_t {
uint64_t size;
uint64_t start;
range_value_t(uint64_t start, uint64_t end)
: size{end - start},
start{start}
{}
range_value_t(const range_seg_t& rs)
: size{rs.length()},
start{rs.start}
{}
};
// do the radix sort
struct compare_range_value_t {
int operator()(const range_value_t& lhs,
const range_value_t& rhs) const noexcept {
if (lhs.size < rhs.size) {
return -1;
} else if (lhs.size > rhs.size) {
return 1;
}
if (lhs.start < rhs.start) {
return -1;
} else if (lhs.start > rhs.start) {
return 1;
} else {
return 0;
}
}
};
protected:
/*
* ctor intended for the usage from descendant class(es) which
* provides handling for spilled over entries
* (when entry count >= max_entries)
*/
BtreeAllocator(CephContext* cct, int64_t device_size, int64_t block_size,
uint64_t max_mem,
std::string_view name);
public:
BtreeAllocator(CephContext* cct, int64_t device_size, int64_t block_size,
std::string_view name);
~BtreeAllocator();
const char* get_type() const override
{
return "btree";
}
int64_t allocate(
uint64_t want,
uint64_t unit,
uint64_t max_alloc_size,
int64_t hint,
PExtentVector *extents) override;
void release(const interval_set<uint64_t>& release_set) override;
uint64_t get_free() override;
double get_fragmentation() override;
void dump() override;
void foreach(
std::function<void(uint64_t offset, uint64_t length)> notify) override;
void init_add_free(uint64_t offset, uint64_t length) override;
void init_rm_free(uint64_t offset, uint64_t length) override;
void shutdown() override;
private:
// pick a range by search from cursor forward
uint64_t _pick_block_after(
uint64_t *cursor,
uint64_t size,
uint64_t align);
// pick a range with exactly the same size or larger
uint64_t _pick_block_fits(
uint64_t size,
uint64_t align);
int _allocate(
uint64_t size,
uint64_t unit,
uint64_t *offset,
uint64_t *length);
template<class T>
using pool_allocator = mempool::bluestore_alloc::pool_allocator<T>;
using range_tree_t =
btree::btree_map<
uint64_t /* start */,
uint64_t /* end */,
std::less<uint64_t>,
pool_allocator<std::pair<uint64_t, uint64_t>>>;
range_tree_t range_tree; ///< main range tree
/*
* The range_size_tree should always contain the
* same number of segments as the range_tree.
* The only difference is that the range_size_tree
* is ordered by segment sizes.
*/
using range_size_tree_t =
btree::btree_set<
range_value_t /* size, start */,
compare_range_value_t,
pool_allocator<range_value_t>>;
range_size_tree_t range_size_tree;
uint64_t num_free = 0; ///< total bytes in freelist
/*
* This value defines the number of elements in the ms_lbas array.
* The value of 64 was chosen as it covers all power of 2 buckets
* up to UINT64_MAX.
* This is the equivalent of highest-bit of UINT64_MAX.
*/
static constexpr unsigned MAX_LBAS = 64;
uint64_t lbas[MAX_LBAS] = {0};
/*
* Minimum size which forces the dynamic allocator to change
* it's allocation strategy. Once the allocator cannot satisfy
* an allocation of this size then it switches to using more
* aggressive strategy (i.e search by size rather than offset).
*/
uint64_t range_size_alloc_threshold = 0;
/*
* The minimum free space, in percent, which must be available
* in allocator to continue allocations in a first-fit fashion.
* Once the allocator's free space drops below this level we dynamically
* switch to using best-fit allocations.
*/
int range_size_alloc_free_pct = 0;
/*
* Max amount of range entries allowed. 0 - unlimited
*/
int64_t range_count_cap = 0;
private:
CephContext* cct;
std::mutex lock;
double _get_fragmentation() const {
auto free_blocks = p2align(num_free, (uint64_t)block_size) / block_size;
if (free_blocks <= 1) {
return .0;
}
return (static_cast<double>(range_tree.size() - 1) / (free_blocks - 1));
}
void _dump() const;
uint64_t _lowest_size_available() const {
auto rs = range_size_tree.begin();
return rs != range_size_tree.end() ? rs->size : 0;
}
int64_t _allocate(
uint64_t want,
uint64_t unit,
uint64_t max_alloc_size,
int64_t hint,
PExtentVector *extents);
void _release(const interval_set<uint64_t>& release_set);
void _release(const PExtentVector& release_set);
void _shutdown();
// called when extent to be released/marked free
void _add_to_tree(uint64_t start, uint64_t size);
void _process_range_removal(uint64_t start, uint64_t end, range_tree_t::iterator& rs);
void _remove_from_tree(uint64_t start, uint64_t size);
void _try_remove_from_tree(uint64_t start, uint64_t size,
std::function<void(uint64_t offset, uint64_t length, bool found)> cb);
uint64_t _get_free() const {
return num_free;
}
};
|