summaryrefslogtreecommitdiffstats
path: root/src/pybind/mgr/balancer/module.py
blob: 1c40425115cfaaa5ad6ae9040f7daf139dbb84b8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
"""
Balance PG distribution across OSDs.
"""

import copy
import enum
import errno
import json
import math
import random
import time
from mgr_module import CLIReadCommand, CLICommand, CommandResult, MgrModule, Option, OSDMap
from threading import Event
from typing import cast, Any, Dict, List, Optional, Sequence, Tuple, Union
from mgr_module import CRUSHMap
import datetime

TIME_FORMAT = '%Y-%m-%d_%H:%M:%S'


class MappingState:
    def __init__(self, osdmap, raw_pg_stats, raw_pool_stats, desc=''):
        self.desc = desc
        self.osdmap = osdmap
        self.osdmap_dump = self.osdmap.dump()
        self.crush = osdmap.get_crush()
        self.crush_dump = self.crush.dump()
        self.raw_pg_stats = raw_pg_stats
        self.raw_pool_stats = raw_pool_stats
        self.pg_stat = {
            i['pgid']: i['stat_sum'] for i in raw_pg_stats.get('pg_stats', [])
        }
        osd_poolids = [p['pool'] for p in self.osdmap_dump.get('pools', [])]
        pg_poolids = [p['poolid'] for p in raw_pool_stats.get('pool_stats', [])]
        self.poolids = set(osd_poolids) & set(pg_poolids)
        self.pg_up = {}
        self.pg_up_by_poolid = {}
        for poolid in self.poolids:
            self.pg_up_by_poolid[poolid] = osdmap.map_pool_pgs_up(poolid)
            for a, b in self.pg_up_by_poolid[poolid].items():
                self.pg_up[a] = b

    def calc_misplaced_from(self, other_ms):
        num = len(other_ms.pg_up)
        misplaced = 0
        for pgid, before in other_ms.pg_up.items():
            if before != self.pg_up.get(pgid, []):
                misplaced += 1
        if num > 0:
            return float(misplaced) / float(num)
        return 0.0


class Mode(enum.Enum):
    none = 'none'
    crush_compat = 'crush-compat'
    upmap = 'upmap'


class Plan(object):
    def __init__(self, name, mode, osdmap, pools):
        self.name = name
        self.mode = mode
        self.osdmap = osdmap
        self.osdmap_dump = osdmap.dump()
        self.pools = pools
        self.osd_weights = {}
        self.compat_ws = {}
        self.inc = osdmap.new_incremental()
        self.pg_status = {}

    def dump(self) -> str:
        return json.dumps(self.inc.dump(), indent=4, sort_keys=True)

    def show(self) -> str:
        return 'upmap plan'


class MsPlan(Plan):
    """
    Plan with a preloaded MappingState member.
    """

    def __init__(self, name: str, mode: str, ms: MappingState, pools: List[str]) -> None:
        super(MsPlan, self).__init__(name, mode, ms.osdmap, pools)
        self.initial = ms

    def final_state(self) -> MappingState:
        self.inc.set_osd_reweights(self.osd_weights)
        self.inc.set_crush_compat_weight_set_weights(self.compat_ws)
        return MappingState(self.initial.osdmap.apply_incremental(self.inc),
                            self.initial.raw_pg_stats,
                            self.initial.raw_pool_stats,
                            'plan %s final' % self.name)

    def show(self) -> str:
        ls = []
        ls.append('# starting osdmap epoch %d' % self.initial.osdmap.get_epoch())
        ls.append('# starting crush version %d' %
                  self.initial.osdmap.get_crush_version())
        ls.append('# mode %s' % self.mode)
        if len(self.compat_ws) and \
           not CRUSHMap.have_default_choose_args(self.initial.crush_dump):
            ls.append('ceph osd crush weight-set create-compat')
        for osd, weight in self.compat_ws.items():
            ls.append('ceph osd crush weight-set reweight-compat %s %f' %
                      (osd, weight))
        for osd, weight in self.osd_weights.items():
            ls.append('ceph osd reweight osd.%d %f' % (osd, weight))
        incdump = self.inc.dump()
        for pgid in incdump.get('old_pg_upmap_items', []):
            ls.append('ceph osd rm-pg-upmap-items %s' % pgid)
        for item in incdump.get('new_pg_upmap_items', []):
            osdlist = []
            for m in item['mappings']:
                osdlist += [m['from'], m['to']]
            ls.append('ceph osd pg-upmap-items %s %s' %
                      (item['pgid'], ' '.join([str(a) for a in osdlist])))
        return '\n'.join(ls)


class Eval:
    def __init__(self, ms: MappingState):
        self.ms = ms
        self.root_ids: Dict[str, int] = {}        # root name -> id
        self.pool_name: Dict[str, str] = {}       # pool id -> pool name
        self.pool_id: Dict[str, int] = {}         # pool name -> id
        self.pool_roots: Dict[str, List[str]] = {}      # pool name -> root name
        self.root_pools: Dict[str, List[str]] = {}      # root name -> pools
        self.target_by_root: Dict[str, Dict[int, float]] = {}  # root name -> target weight map
        self.count_by_pool: Dict[str, dict] = {}
        self.count_by_root: Dict[str, dict] = {}
        self.actual_by_pool: Dict[str, dict] = {}  # pool -> by_* -> actual weight map
        self.actual_by_root: Dict[str, dict] = {}  # pool -> by_* -> actual weight map
        self.total_by_pool: Dict[str, dict] = {}   # pool -> by_* -> total
        self.total_by_root: Dict[str, dict] = {}   # root -> by_* -> total
        self.stats_by_pool: Dict[str, dict] = {}   # pool -> by_* -> stddev or avg -> value
        self.stats_by_root: Dict[str, dict] = {}   # root -> by_* -> stddev or avg -> value

        self.score_by_pool: Dict[str, float] = {}
        self.score_by_root: Dict[str, Dict[str, float]] = {}

        self.score = 0.0

    def show(self, verbose: bool = False) -> str:
        if verbose:
            r = self.ms.desc + '\n'
            r += 'target_by_root %s\n' % self.target_by_root
            r += 'actual_by_pool %s\n' % self.actual_by_pool
            r += 'actual_by_root %s\n' % self.actual_by_root
            r += 'count_by_pool %s\n' % self.count_by_pool
            r += 'count_by_root %s\n' % self.count_by_root
            r += 'total_by_pool %s\n' % self.total_by_pool
            r += 'total_by_root %s\n' % self.total_by_root
            r += 'stats_by_root %s\n' % self.stats_by_root
            r += 'score_by_pool %s\n' % self.score_by_pool
            r += 'score_by_root %s\n' % self.score_by_root
        else:
            r = self.ms.desc + ' '
        r += 'score %f (lower is better)\n' % self.score
        return r

    def calc_stats(self, count, target, total):
        num = max(len(target), 1)
        r: Dict[str, Dict[str, Union[int, float]]] = {}
        for t in ('pgs', 'objects', 'bytes'):
            if total[t] == 0:
                r[t] = {
                    'max': 0,
                    'min': 0,
                    'avg': 0,
                    'stddev': 0,
                    'sum_weight': 0,
                    'score': 0,
                }
                continue

            avg = float(total[t]) / float(num)
            dev = 0.0

            # score is a measure of how uneven the data distribution is.
            # score lies between [0, 1), 0 means perfect distribution.
            score = 0.0
            sum_weight = 0.0

            for k, v in count[t].items():
                # adjust/normalize by weight
                if target[k]:
                    adjusted = float(v) / target[k] / float(num)
                else:
                    adjusted = 0.0

                # Overweighted devices and their weights are factors to calculate reweight_urgency.
                # One 10% underfilled device with 5 2% overfilled devices, is arguably a better
                # situation than one 10% overfilled with 5 2% underfilled devices
                if adjusted > avg:
                    '''
                    F(x) = 2*phi(x) - 1, where phi(x) = cdf of standard normal distribution
                    x = (adjusted - avg)/avg.
                    Since, we're considering only over-weighted devices, x >= 0, and so phi(x) lies in [0.5, 1).
                    To bring range of F(x) in range [0, 1), we need to make the above modification.

                    In general, we need to use a function F(x), where x = (adjusted - avg)/avg
                    1. which is bounded between 0 and 1, so that ultimately reweight_urgency will also be bounded.
                    2. A larger value of x, should imply more urgency to reweight.
                    3. Also, the difference between F(x) when x is large, should be minimal.
                    4. The value of F(x) should get close to 1 (highest urgency to reweight) with steeply.

                    Could have used F(x) = (1 - e^(-x)). But that had slower convergence to 1, compared to the one currently in use.

                    cdf of standard normal distribution: https://stackoverflow.com/a/29273201
                    '''
                    score += target[k] * (math.erf(((adjusted - avg) / avg) / math.sqrt(2.0)))
                    sum_weight += target[k]
                dev += (avg - adjusted) * (avg - adjusted)
            stddev = math.sqrt(dev / float(max(num - 1, 1)))
            score = score / max(sum_weight, 1)
            r[t] = {
                'max': max(count[t].values()),
                'min': min(count[t].values()),
                'avg': avg,
                'stddev': stddev,
                'sum_weight': sum_weight,
                'score': score,
            }
        return r


class Module(MgrModule):
    MODULE_OPTIONS = [
        Option(name='active',
               type='bool',
               default=True,
               desc='automatically balance PGs across cluster',
               runtime=True),
        Option(name='begin_time',
               type='str',
               default='0000',
               desc='beginning time of day to automatically balance',
               long_desc='This is a time of day in the format HHMM.',
               runtime=True),
        Option(name='end_time',
               type='str',
               default='2359',
               desc='ending time of day to automatically balance',
               long_desc='This is a time of day in the format HHMM.',
               runtime=True),
        Option(name='begin_weekday',
               type='uint',
               default=0,
               min=0,
               max=6,
               desc='Restrict automatic balancing to this day of the week or later',
               long_desc='0 = Sunday, 1 = Monday, etc.',
               runtime=True),
        Option(name='end_weekday',
               type='uint',
               default=0,
               min=0,
               max=6,
               desc='Restrict automatic balancing to days of the week earlier than this',
               long_desc='0 = Sunday, 1 = Monday, etc.',
               runtime=True),
        Option(name='crush_compat_max_iterations',
               type='uint',
               default=25,
               min=1,
               max=250,
               desc='maximum number of iterations to attempt optimization',
               runtime=True),
        Option(name='crush_compat_metrics',
               type='str',
               default='pgs,objects,bytes',
               desc='metrics with which to calculate OSD utilization',
               long_desc='Value is a list of one or more of "pgs", "objects", or "bytes", and indicates which metrics to use to balance utilization.',
               runtime=True),
        Option(name='crush_compat_step',
               type='float',
               default=.5,
               min=.001,
               max=.999,
               desc='aggressiveness of optimization',
               long_desc='.99 is very aggressive, .01 is less aggressive',
               runtime=True),
        Option(name='min_score',
               type='float',
               default=0,
               desc='minimum score, below which no optimization is attempted',
               runtime=True),
        Option(name='mode',
               desc='Balancer mode',
               default='upmap',
               enum_allowed=['none', 'crush-compat', 'upmap'],
               runtime=True),
        Option(name='sleep_interval',
               type='secs',
               default=60,
               desc='how frequently to wake up and attempt optimization',
               runtime=True),
        Option(name='upmap_max_optimizations',
               type='uint',
               default=10,
               desc='maximum upmap optimizations to make per attempt',
               runtime=True),
        Option(name='upmap_max_deviation',
               type='int',
               default=5,
               min=1,
               desc='deviation below which no optimization is attempted',
               long_desc='If the number of PGs are within this count then no optimization is attempted',
               runtime=True),
        Option(name='pool_ids',
               type='str',
               default='',
               desc='pools which the automatic balancing will be limited to',
               runtime=True)
    ]

    active = False
    run = True
    plans: Dict[str, Plan] = {}
    mode = ''
    optimizing = False
    last_optimize_started = ''
    last_optimize_duration = ''
    optimize_result = ''
    no_optimization_needed = False
    success_string = 'Optimization plan created successfully'
    in_progress_string = 'in progress'

    def __init__(self, *args: Any, **kwargs: Any) -> None:
        super(Module, self).__init__(*args, **kwargs)
        self.event = Event()

    @CLIReadCommand('balancer status')
    def show_status(self) -> Tuple[int, str, str]:
        """
        Show balancer status
        """
        s = {
            'plans': list(self.plans.keys()),
            'active': self.active,
            'last_optimize_started': self.last_optimize_started,
            'last_optimize_duration': self.last_optimize_duration,
            'optimize_result': self.optimize_result,
            'no_optimization_needed': self.no_optimization_needed,
            'mode': self.get_module_option('mode'),
        }
        return (0, json.dumps(s, indent=4, sort_keys=True), '')

    @CLICommand('balancer mode')
    def set_mode(self, mode: Mode) -> Tuple[int, str, str]:
        """
        Set balancer mode
        """
        if mode == Mode.upmap:
            min_compat_client = self.get_osdmap().dump().get('require_min_compat_client', '')
            if min_compat_client < 'luminous':  # works well because version is alphabetized..
                warn = ('min_compat_client "%s" '
                        '< "luminous", which is required for pg-upmap. '
                        'Try "ceph osd set-require-min-compat-client luminous" '
                        'before enabling this mode' % min_compat_client)
                return (-errno.EPERM, '', warn)
        elif mode == Mode.crush_compat:
            ms = MappingState(self.get_osdmap(),
                              self.get("pg_stats"),
                              self.get("pool_stats"),
                              'initialize compat weight-set')
            self.get_compat_weight_set_weights(ms)  # ignore error
        self.set_module_option('mode', mode.value)
        return (0, '', '')

    @CLICommand('balancer on')
    def on(self) -> Tuple[int, str, str]:
        """
        Enable automatic balancing
        """
        if not self.active:
            self.set_module_option('active', 'true')
            self.active = True
        self.event.set()
        return (0, '', '')

    @CLICommand('balancer off')
    def off(self) -> Tuple[int, str, str]:
        """
        Disable automatic balancing
        """
        if self.active:
            self.set_module_option('active', 'false')
            self.active = False
        self.event.set()
        return (0, '', '')

    @CLIReadCommand('balancer pool ls')
    def pool_ls(self) -> Tuple[int, str, str]:
        """
        List automatic balancing pools

        Note that empty list means all existing pools will be automatic balancing targets,
        which is the default behaviour of balancer.
        """
        pool_ids = cast(str, self.get_module_option('pool_ids'))
        if pool_ids == '':
            return (0, '', '')
        pool_ids = [int(p) for p in pool_ids.split(',')]
        pool_name_by_id = dict((p['pool'], p['pool_name'])
                               for p in self.get_osdmap().dump().get('pools', []))
        should_prune = False
        final_ids: List[int] = []
        final_names = []
        for p in pool_ids:
            if p in pool_name_by_id:
                final_ids.append(p)
                final_names.append(pool_name_by_id[p])
            else:
                should_prune = True
        if should_prune:  # some pools were gone, prune
            self.set_module_option('pool_ids', ','.join(str(p) for p in final_ids))
        return (0, json.dumps(sorted(final_names), indent=4, sort_keys=True), '')

    @CLICommand('balancer pool add')
    def pool_add(self, pools: Sequence[str]) -> Tuple[int, str, str]:
        """
        Enable automatic balancing for specific pools
        """
        raw_names = pools
        pool_id_by_name = dict((p['pool_name'], p['pool'])
                               for p in self.get_osdmap().dump().get('pools', []))
        invalid_names = [p for p in raw_names if p not in pool_id_by_name]
        if invalid_names:
            return (-errno.EINVAL, '', 'pool(s) %s not found' % invalid_names)
        to_add = set(str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name)
        pool_ids = cast(str, self.get_module_option('pool_ids'))
        existing = set(pool_ids.split(',') if pool_ids else [])
        final = to_add | existing
        self.set_module_option('pool_ids', ','.join(final))
        return (0, '', '')

    @CLICommand('balancer pool rm')
    def pool_rm(self, pools: Sequence[str]) -> Tuple[int, str, str]:
        """
        Disable automatic balancing for specific pools
        """
        raw_names = pools
        existing = cast(str, self.get_module_option('pool_ids'))
        if existing == '':  # for idempotence
            return (0, '', '')
        existing = existing.split(',')
        osdmap = self.get_osdmap()
        pool_ids = [str(p['pool']) for p in osdmap.dump().get('pools', [])]
        pool_id_by_name = dict((p['pool_name'], p['pool']) for p in osdmap.dump().get('pools', []))
        final = [p for p in existing if p in pool_ids]
        to_delete = [str(pool_id_by_name[p]) for p in raw_names if p in pool_id_by_name]
        final = set(final) - set(to_delete)
        self.set_module_option('pool_ids', ','.join(final))
        return (0, '', '')

    def _state_from_option(self, option: Optional[str] = None) -> Tuple[MappingState, List[str]]:
        pools = []
        if option is None:
            ms = MappingState(self.get_osdmap(),
                              self.get("pg_stats"),
                              self.get("pool_stats"),
                              'current cluster')
        elif option in self.plans:
            plan = self.plans.get(option)
            assert plan
            pools = plan.pools
            if plan.mode == 'upmap':
                # Note that for upmap, to improve the efficiency,
                # we use a basic version of Plan without keeping the obvious
                # *redundant* MS member.
                # Hence ms might not be accurate here since we are basically
                # using an old snapshotted osdmap vs a fresh copy of pg_stats.
                # It should not be a big deal though..
                ms = MappingState(plan.osdmap,
                                  self.get("pg_stats"),
                                  self.get("pool_stats"),
                                  f'plan "{plan.name}"')
            else:
                ms = cast(MsPlan, plan).final_state()
        else:
            # not a plan, does it look like a pool?
            osdmap = self.get_osdmap()
            valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
            if option not in valid_pool_names:
                raise ValueError(f'option "{option}" not a plan or a pool')
            pools.append(option)
            ms = MappingState(osdmap,
                              self.get("pg_stats"),
                              self.get("pool_stats"),
                              f'pool "{option}"')
        return ms, pools

    @CLIReadCommand('balancer eval-verbose')
    def plan_eval_verbose(self, option: Optional[str] = None):
        """
        Evaluate data distribution for the current cluster or specific pool or specific
        plan (verbosely)
        """
        try:
            ms, pools = self._state_from_option(option)
            return (0, self.evaluate(ms, pools, verbose=True), '')
        except ValueError as e:
            return (-errno.EINVAL, '', str(e))

    @CLIReadCommand('balancer eval')
    def plan_eval_brief(self, option: Optional[str] = None):
        """
        Evaluate data distribution for the current cluster or specific pool or specific plan
        """
        try:
            ms, pools = self._state_from_option(option)
            return (0, self.evaluate(ms, pools, verbose=False), '')
        except ValueError as e:
            return (-errno.EINVAL, '', str(e))

    @CLIReadCommand('balancer optimize')
    def plan_optimize(self, plan: str, pools: List[str] = []) -> Tuple[int, str, str]:
        """
        Run optimizer to create a new plan
        """
        # The GIL can be release by the active balancer, so disallow when active
        if self.active:
            return (-errno.EINVAL, '', 'Balancer enabled, disable to optimize manually')
        if self.optimizing:
            return (-errno.EINVAL, '', 'Balancer finishing up....try again')
        osdmap = self.get_osdmap()
        valid_pool_names = [p['pool_name'] for p in osdmap.dump().get('pools', [])]
        invalid_pool_names = []
        for p in pools:
            if p not in valid_pool_names:
                invalid_pool_names.append(p)
        if len(invalid_pool_names):
            return (-errno.EINVAL, '', 'pools %s not found' % invalid_pool_names)
        plan_ = self.plan_create(plan, osdmap, pools)
        self.last_optimize_started = time.asctime(time.localtime())
        self.optimize_result = self.in_progress_string
        start = time.time()
        r, detail = self.optimize(plan_)
        end = time.time()
        self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
        if r == 0:
            # Add plan if an optimization was created
            self.optimize_result = self.success_string
            self.plans[plan] = plan_
        else:
            self.optimize_result = detail
        return (r, '', detail)

    @CLIReadCommand('balancer show')
    def plan_show(self, plan: str) -> Tuple[int, str, str]:
        """
        Show details of an optimization plan
        """
        plan_ = self.plans.get(plan)
        if not plan_:
            return (-errno.ENOENT, '', f'plan {plan} not found')
        return (0, plan_.show(), '')

    @CLICommand('balancer rm')
    def plan_rm(self, plan: str) -> Tuple[int, str, str]:
        """
        Discard an optimization plan
        """
        if plan in self.plans:
            del self.plans[plan]
        return (0, '', '')

    @CLICommand('balancer reset')
    def plan_reset(self) -> Tuple[int, str, str]:
        """
        Discard all optimization plans
        """
        self.plans = {}
        return (0, '', '')

    @CLIReadCommand('balancer dump')
    def plan_dump(self, plan: str) -> Tuple[int, str, str]:
        """
        Show an optimization plan
        """
        plan_ = self.plans.get(plan)
        if not plan_:
            return -errno.ENOENT, '', f'plan {plan} not found'
        else:
            return (0, plan_.dump(), '')

    @CLIReadCommand('balancer ls')
    def plan_ls(self) -> Tuple[int, str, str]:
        """
        List all plans
        """
        return (0, json.dumps([p for p in self.plans], indent=4, sort_keys=True), '')

    @CLIReadCommand('balancer execute')
    def plan_execute(self, plan: str) -> Tuple[int, str, str]:
        """
        Execute an optimization plan
        """
        # The GIL can be release by the active balancer, so disallow when active
        if self.active:
            return (-errno.EINVAL, '', 'Balancer enabled, disable to execute a plan')
        if self.optimizing:
            return (-errno.EINVAL, '', 'Balancer finishing up....try again')
        plan_ = self.plans.get(plan)
        if not plan_:
            return (-errno.ENOENT, '', f'plan {plan} not found')
        r, detail = self.execute(plan_)
        self.plan_rm(plan)
        return (r, '', detail)

    def shutdown(self) -> None:
        self.log.info('Stopping')
        self.run = False
        self.event.set()

    def time_permit(self) -> bool:
        local_time = time.localtime()
        time_of_day = time.strftime('%H%M', local_time)
        weekday = (local_time.tm_wday + 1) % 7  # be compatible with C
        permit = False

        def check_time(time: str, option: str):
            if len(time) != 4:
                self.log.error('invalid time for %s - expected HHMM format', option)
            try:
                datetime.time(int(time[:2]), int(time[2:]))
            except ValueError as err:
                self.log.error('invalid time for %s - %s', option, err)

        begin_time = cast(str, self.get_module_option('begin_time'))
        check_time(begin_time, 'begin_time')
        end_time = cast(str, self.get_module_option('end_time'))
        check_time(end_time, 'end_time')
        if begin_time < end_time:
            permit = begin_time <= time_of_day < end_time
        elif begin_time == end_time:
            permit = True
        else:
            permit = time_of_day >= begin_time or time_of_day < end_time
        if not permit:
            self.log.debug("should run between %s - %s, now %s, skipping",
                           begin_time, end_time, time_of_day)
            return False

        begin_weekday = cast(int, self.get_module_option('begin_weekday'))
        end_weekday = cast(int, self.get_module_option('end_weekday'))
        if begin_weekday < end_weekday:
            permit = begin_weekday <= weekday <= end_weekday
        elif begin_weekday == end_weekday:
            permit = True
        else:
            permit = weekday >= begin_weekday or weekday < end_weekday
        if not permit:
            self.log.debug("should run between weekday %d - %d, now %d, skipping",
                           begin_weekday, end_weekday, weekday)
            return False

        return True

    def serve(self) -> None:
        self.log.info('Starting')
        while self.run:
            self.active = cast(bool, self.get_module_option('active'))
            sleep_interval = cast(float, self.get_module_option('sleep_interval'))
            self.log.debug('Waking up [%s, now %s]',
                           "active" if self.active else "inactive",
                           time.strftime(TIME_FORMAT, time.localtime()))
            if self.active and self.time_permit():
                self.log.debug('Running')
                name = 'auto_%s' % time.strftime(TIME_FORMAT, time.gmtime())
                osdmap = self.get_osdmap()
                pool_ids = cast(str, self.get_module_option('pool_ids'))
                if pool_ids:
                    allow = [int(p) for p in pool_ids.split(',')]
                else:
                    allow = []
                final: List[str] = []
                if allow:
                    pools = osdmap.dump().get('pools', [])
                    valid = [p['pool'] for p in pools]
                    ids = set(allow) & set(valid)
                    if set(allow) - set(valid):  # some pools were gone, prune
                        self.set_module_option('pool_ids', ','.join(str(p) for p in ids))
                    pool_name_by_id = dict((p['pool'], p['pool_name']) for p in pools)
                    final = [pool_name_by_id[p] for p in ids if p in pool_name_by_id]
                plan = self.plan_create(name, osdmap, final)
                self.optimizing = True
                self.last_optimize_started = time.asctime(time.localtime())
                self.optimize_result = self.in_progress_string
                start = time.time()
                r, detail = self.optimize(plan)
                end = time.time()
                self.last_optimize_duration = str(datetime.timedelta(seconds=(end - start)))
                if r == 0:
                    self.optimize_result = self.success_string
                    self.execute(plan)
                else:
                    self.optimize_result = detail
                self.optimizing = False
            self.log.debug('Sleeping for %d', sleep_interval)
            self.event.wait(sleep_interval)
            self.event.clear()

    def plan_create(self, name: str, osdmap: OSDMap, pools: List[str]) -> Plan:
        mode = cast(str, self.get_module_option('mode'))
        if mode == 'upmap':
            # drop unnecessary MS member for upmap mode.
            # this way we could effectively eliminate the usage of a
            # complete pg_stats, which can become horribly inefficient
            # as pg_num grows..
            plan = Plan(name, mode, osdmap, pools)
        else:
            plan = MsPlan(name,
                          mode,
                          MappingState(osdmap,
                                       self.get("pg_stats"),
                                       self.get("pool_stats"),
                                       'plan %s initial' % name),
                          pools)
        return plan

    def calc_eval(self, ms: MappingState, pools: List[str]) -> Eval:
        pe = Eval(ms)
        pool_rule = {}
        pool_info = {}
        for p in ms.osdmap_dump.get('pools', []):
            if len(pools) and p['pool_name'] not in pools:
                continue
            # skip dead or not-yet-ready pools too
            if p['pool'] not in ms.poolids:
                continue
            pe.pool_name[p['pool']] = p['pool_name']
            pe.pool_id[p['pool_name']] = p['pool']
            pool_rule[p['pool_name']] = p['crush_rule']
            pe.pool_roots[p['pool_name']] = []
            pool_info[p['pool_name']] = p
        if len(pool_info) == 0:
            return pe
        self.log.debug('pool_name %s' % pe.pool_name)
        self.log.debug('pool_id %s' % pe.pool_id)
        self.log.debug('pools %s' % pools)
        self.log.debug('pool_rule %s' % pool_rule)

        osd_weight = {a['osd']: a['weight']
                      for a in ms.osdmap_dump.get('osds', []) if a['weight'] > 0}

        # get expected distributions by root
        actual_by_root: Dict[str, Dict[str, dict]] = {}
        rootids = ms.crush.find_takes()
        roots = []
        for rootid in rootids:
            ls = ms.osdmap.get_pools_by_take(rootid)
            want = []
            # find out roots associating with pools we are passed in
            for candidate in ls:
                if candidate in pe.pool_name:
                    want.append(candidate)
            if len(want) == 0:
                continue
            root = ms.crush.get_item_name(rootid)
            pe.root_pools[root] = []
            for poolid in want:
                pe.pool_roots[pe.pool_name[poolid]].append(root)
                pe.root_pools[root].append(pe.pool_name[poolid])
            pe.root_ids[root] = rootid
            roots.append(root)
            weight_map = ms.crush.get_take_weight_osd_map(rootid)
            adjusted_map = {
                osd: cw * osd_weight[osd]
                for osd, cw in weight_map.items() if osd in osd_weight and cw > 0
            }
            sum_w = sum(adjusted_map.values())
            assert len(adjusted_map) == 0 or sum_w > 0
            pe.target_by_root[root] = {osd: w / sum_w
                                       for osd, w in adjusted_map.items()}
            actual_by_root[root] = {
                'pgs': {},
                'objects': {},
                'bytes': {},
            }
            for osd in pe.target_by_root[root]:
                actual_by_root[root]['pgs'][osd] = 0
                actual_by_root[root]['objects'][osd] = 0
                actual_by_root[root]['bytes'][osd] = 0
            pe.total_by_root[root] = {
                'pgs': 0,
                'objects': 0,
                'bytes': 0,
            }
        self.log.debug('pool_roots %s' % pe.pool_roots)
        self.log.debug('root_pools %s' % pe.root_pools)
        self.log.debug('target_by_root %s' % pe.target_by_root)

        # pool and root actual
        for pool, pi in pool_info.items():
            poolid = pi['pool']
            pm = ms.pg_up_by_poolid[poolid]
            pgs = 0
            objects = 0
            bytes = 0
            pgs_by_osd = {}
            objects_by_osd = {}
            bytes_by_osd = {}
            for pgid, up in pm.items():
                for osd in [int(osd) for osd in up]:
                    if osd == CRUSHMap.ITEM_NONE:
                        continue
                    if osd not in pgs_by_osd:
                        pgs_by_osd[osd] = 0
                        objects_by_osd[osd] = 0
                        bytes_by_osd[osd] = 0
                    pgs_by_osd[osd] += 1
                    objects_by_osd[osd] += ms.pg_stat[pgid]['num_objects']
                    bytes_by_osd[osd] += ms.pg_stat[pgid]['num_bytes']
                    # pick a root to associate this pg instance with.
                    # note that this is imprecise if the roots have
                    # overlapping children.
                    # FIXME: divide bytes by k for EC pools.
                    for root in pe.pool_roots[pool]:
                        if osd in pe.target_by_root[root]:
                            actual_by_root[root]['pgs'][osd] += 1
                            actual_by_root[root]['objects'][osd] += ms.pg_stat[pgid]['num_objects']
                            actual_by_root[root]['bytes'][osd] += ms.pg_stat[pgid]['num_bytes']
                            pgs += 1
                            objects += ms.pg_stat[pgid]['num_objects']
                            bytes += ms.pg_stat[pgid]['num_bytes']
                            pe.total_by_root[root]['pgs'] += 1
                            pe.total_by_root[root]['objects'] += ms.pg_stat[pgid]['num_objects']
                            pe.total_by_root[root]['bytes'] += ms.pg_stat[pgid]['num_bytes']
                            break
            pe.count_by_pool[pool] = {
                'pgs': {
                    k: v
                    for k, v in pgs_by_osd.items()
                },
                'objects': {
                    k: v
                    for k, v in objects_by_osd.items()
                },
                'bytes': {
                    k: v
                    for k, v in bytes_by_osd.items()
                },
            }
            pe.actual_by_pool[pool] = {
                'pgs': {
                    k: float(v) / float(max(pgs, 1))
                    for k, v in pgs_by_osd.items()
                },
                'objects': {
                    k: float(v) / float(max(objects, 1))
                    for k, v in objects_by_osd.items()
                },
                'bytes': {
                    k: float(v) / float(max(bytes, 1))
                    for k, v in bytes_by_osd.items()
                },
            }
            pe.total_by_pool[pool] = {
                'pgs': pgs,
                'objects': objects,
                'bytes': bytes,
            }
        for root in pe.total_by_root:
            pe.count_by_root[root] = {
                'pgs': {
                    k: float(v)
                    for k, v in actual_by_root[root]['pgs'].items()
                },
                'objects': {
                    k: float(v)
                    for k, v in actual_by_root[root]['objects'].items()
                },
                'bytes': {
                    k: float(v)
                    for k, v in actual_by_root[root]['bytes'].items()
                },
            }
            pe.actual_by_root[root] = {
                'pgs': {
                    k: float(v) / float(max(pe.total_by_root[root]['pgs'], 1))
                    for k, v in actual_by_root[root]['pgs'].items()
                },
                'objects': {
                    k: float(v) / float(max(pe.total_by_root[root]['objects'], 1))
                    for k, v in actual_by_root[root]['objects'].items()
                },
                'bytes': {
                    k: float(v) / float(max(pe.total_by_root[root]['bytes'], 1))
                    for k, v in actual_by_root[root]['bytes'].items()
                },
            }
        self.log.debug('actual_by_pool %s' % pe.actual_by_pool)
        self.log.debug('actual_by_root %s' % pe.actual_by_root)

        # average and stddev and score
        pe.stats_by_root = {
            a: pe.calc_stats(
                b,
                pe.target_by_root[a],
                pe.total_by_root[a]
            ) for a, b in pe.count_by_root.items()
        }
        self.log.debug('stats_by_root %s' % pe.stats_by_root)

        # the scores are already normalized
        pe.score_by_root = {
            r: {
                'pgs': pe.stats_by_root[r]['pgs']['score'],
                'objects': pe.stats_by_root[r]['objects']['score'],
                'bytes': pe.stats_by_root[r]['bytes']['score'],
            } for r in pe.total_by_root.keys()
        }
        self.log.debug('score_by_root %s' % pe.score_by_root)

        # get the list of score metrics, comma separated
        metrics = cast(str, self.get_module_option('crush_compat_metrics')).split(',')

        # total score is just average of normalized stddevs
        pe.score = 0.0
        for r, vs in pe.score_by_root.items():
            for k, v in vs.items():
                if k in metrics:
                    pe.score += v
        pe.score /= len(metrics) * len(roots)
        return pe

    def evaluate(self, ms: MappingState, pools: List[str], verbose: bool = False) -> str:
        pe = self.calc_eval(ms, pools)
        return pe.show(verbose=verbose)

    def optimize(self, plan: Plan) -> Tuple[int, str]:
        self.log.info('Optimize plan %s' % plan.name)
        max_misplaced = cast(float, self.get_ceph_option('target_max_misplaced_ratio'))
        self.log.info('Mode %s, max misplaced %f' %
                      (plan.mode, max_misplaced))

        info = self.get('pg_status')
        unknown = info.get('unknown_pgs_ratio', 0.0)
        degraded = info.get('degraded_ratio', 0.0)
        inactive = info.get('inactive_pgs_ratio', 0.0)
        misplaced = info.get('misplaced_ratio', 0.0)
        plan.pg_status = info
        self.log.debug('unknown %f degraded %f inactive %f misplaced %g',
                       unknown, degraded, inactive, misplaced)
        if unknown > 0.0:
            detail = 'Some PGs (%f) are unknown; try again later' % unknown
            self.log.info(detail)
            return -errno.EAGAIN, detail
        elif degraded > 0.0:
            detail = 'Some objects (%f) are degraded; try again later' % degraded
            self.log.info(detail)
            return -errno.EAGAIN, detail
        elif inactive > 0.0:
            detail = 'Some PGs (%f) are inactive; try again later' % inactive
            self.log.info(detail)
            return -errno.EAGAIN, detail
        elif misplaced >= max_misplaced:
            detail = 'Too many objects (%f > %f) are misplaced; ' \
                     'try again later' % (misplaced, max_misplaced)
            self.log.info(detail)
            return -errno.EAGAIN, detail
        else:
            if plan.mode == 'upmap':
                return self.do_upmap(plan)
            elif plan.mode == 'crush-compat':
                return self.do_crush_compat(cast(MsPlan, plan))
            elif plan.mode == 'none':
                detail = 'Please do "ceph balancer mode" to choose a valid mode first'
                self.log.info('Idle')
                return -errno.ENOEXEC, detail
            else:
                detail = 'Unrecognized mode %s' % plan.mode
                self.log.info(detail)
                return -errno.EINVAL, detail

    def do_upmap(self, plan: Plan) -> Tuple[int, str]:
        self.log.info('do_upmap')
        max_optimizations = cast(float, self.get_module_option('upmap_max_optimizations'))
        max_deviation = cast(int, self.get_module_option('upmap_max_deviation'))
        osdmap_dump = plan.osdmap_dump

        if len(plan.pools):
            pools = plan.pools
        else:  # all
            pools = [str(i['pool_name']) for i in osdmap_dump.get('pools', [])]
        if len(pools) == 0:
            detail = 'No pools available'
            self.log.info(detail)
            return -errno.ENOENT, detail
        # shuffle pool list so they all get equal (in)attention
        random.shuffle(pools)
        self.log.info('pools %s' % pools)

        adjusted_pools = []
        inc = plan.inc
        total_did = 0
        left = max_optimizations
        pools_with_pg_merge = [p['pool_name'] for p in osdmap_dump.get('pools', [])
                               if p['pg_num'] > p['pg_num_target']]
        crush_rule_by_pool_name = dict((p['pool_name'], p['crush_rule'])
                                       for p in osdmap_dump.get('pools', []))
        for pool in pools:
            if pool not in crush_rule_by_pool_name:
                self.log.info('pool %s does not exist' % pool)
                continue
            if pool in pools_with_pg_merge:
                self.log.info('pool %s has pending PG(s) for merging, skipping for now' % pool)
                continue
            adjusted_pools.append(pool)
        # shuffle so all pools get equal (in)attention
        random.shuffle(adjusted_pools)
        pool_dump = osdmap_dump.get('pools', [])
        for pool in adjusted_pools:
            for p in pool_dump:
                if p['pool_name'] == pool:
                    pool_id = p['pool']
                    break

            # note that here we deliberately exclude any scrubbing pgs too
            # since scrubbing activities have significant impacts on performance
            num_pg_active_clean = 0
            for p in plan.pg_status.get('pgs_by_pool_state', []):
                pgs_pool_id = p['pool_id']
                if pgs_pool_id != pool_id:
                    continue
                for s in p['pg_state_counts']:
                    if s['state_name'] == 'active+clean':
                        num_pg_active_clean += s['count']
                        break
            available = min(left, num_pg_active_clean)
            did = plan.osdmap.calc_pg_upmaps(inc, max_deviation, available, [pool])
            total_did += did
            left -= did
            if left <= 0:
                break
        self.log.info('prepared %d/%d changes' % (total_did, max_optimizations))
        if total_did == 0:
            self.no_optimization_needed = True
            return -errno.EALREADY, 'Unable to find further optimization, ' \
                                    'or pool(s) pg_num is decreasing, ' \
                                    'or distribution is already perfect'
        return 0, ''

    def do_crush_compat(self, plan: MsPlan) -> Tuple[int, str]:
        self.log.info('do_crush_compat')
        max_iterations = cast(int, self.get_module_option('crush_compat_max_iterations'))
        if max_iterations < 1:
            return -errno.EINVAL, '"crush_compat_max_iterations" must be >= 1'
        step = cast(float, self.get_module_option('crush_compat_step'))
        if step <= 0 or step >= 1.0:
            return -errno.EINVAL, '"crush_compat_step" must be in (0, 1)'
        max_misplaced = cast(float, self.get_ceph_option('target_max_misplaced_ratio'))
        min_pg_per_osd = 2

        ms = plan.initial
        osdmap = ms.osdmap
        crush = osdmap.get_crush()
        pe = self.calc_eval(ms, plan.pools)
        min_score_to_optimize = cast(float, self.get_module_option('min_score'))
        if pe.score <= min_score_to_optimize:
            if pe.score == 0:
                detail = 'Distribution is already perfect'
            else:
                detail = 'score %f <= min_score %f, will not optimize' \
                         % (pe.score, min_score_to_optimize)
            self.log.info(detail)
            return -errno.EALREADY, detail

        # get current osd reweights
        orig_osd_weight = {a['osd']: a['weight']
                           for a in ms.osdmap_dump.get('osds', [])}

        # get current compat weight-set weights
        orig_ws = self.get_compat_weight_set_weights(ms)
        if not orig_ws:
            return -errno.EAGAIN, 'compat weight-set not available'
        orig_ws = {a: b for a, b in orig_ws.items() if a >= 0}

        # Make sure roots don't overlap their devices.  If so, we
        # can't proceed.
        roots = list(pe.target_by_root.keys())
        self.log.debug('roots %s', roots)
        visited: Dict[int, str] = {}
        overlap: Dict[int, List[str]] = {}
        for root, wm in pe.target_by_root.items():
            for osd in wm:
                if osd in visited:
                    if osd not in overlap:
                        overlap[osd] = [visited[osd]]
                    overlap[osd].append(root)
                visited[osd] = root
        if len(overlap) > 0:
            detail = 'Some osds belong to multiple subtrees: %s' % \
                     overlap
            self.log.error(detail)
            return -errno.EOPNOTSUPP, detail

        # rebalance by pgs, objects, or bytes
        metrics = cast(str, self.get_module_option('crush_compat_metrics')).split(',')
        key = metrics[0]  # balancing using the first score metric
        if key not in ['pgs', 'bytes', 'objects']:
            self.log.warning("Invalid crush_compat balancing key %s. Using 'pgs'." % key)
            key = 'pgs'

        # go
        best_ws = copy.deepcopy(orig_ws)
        best_ow = copy.deepcopy(orig_osd_weight)
        best_pe = pe
        left = max_iterations
        bad_steps = 0
        next_ws = copy.deepcopy(best_ws)
        next_ow = copy.deepcopy(best_ow)
        while left > 0:
            # adjust
            self.log.debug('best_ws %s' % best_ws)
            random.shuffle(roots)
            for root in roots:
                pools = best_pe.root_pools[root]
                osds = len(best_pe.target_by_root[root])
                min_pgs = osds * min_pg_per_osd
                if best_pe.total_by_root[root][key] < min_pgs:
                    self.log.info('Skipping root %s (pools %s), total pgs %d '
                                  '< minimum %d (%d per osd)',
                                  root, pools,
                                  best_pe.total_by_root[root][key],
                                  min_pgs, min_pg_per_osd)
                    continue
                self.log.info('Balancing root %s (pools %s) by %s' %
                              (root, pools, key))
                target = best_pe.target_by_root[root]
                actual = best_pe.actual_by_root[root][key]
                queue = sorted(actual.keys(),
                               key=lambda osd: -abs(target[osd] - actual[osd]))
                for osd in queue:
                    if orig_osd_weight[osd] == 0:
                        self.log.debug('skipping out osd.%d', osd)
                    else:
                        deviation = target[osd] - actual[osd]
                        if deviation == 0:
                            break
                        self.log.debug('osd.%d deviation %f', osd, deviation)
                        weight = best_ws[osd]
                        ow = orig_osd_weight[osd]
                        if actual[osd] > 0:
                            calc_weight = target[osd] / actual[osd] * weight * ow
                        else:
                            # for newly created osds, reset calc_weight at target value
                            # this way weight-set will end up absorbing *step* of its
                            # target (final) value at the very beginning and slowly catch up later.
                            # note that if this turns out causing too many misplaced
                            # pgs, then we'll reduce step and retry
                            calc_weight = target[osd]
                        new_weight = weight * (1.0 - step) + calc_weight * step
                        self.log.debug('Reweight osd.%d %f -> %f', osd, weight,
                                       new_weight)
                        next_ws[osd] = new_weight
                        if ow < 1.0:
                            new_ow = min(1.0, max(step + (1.0 - step) * ow,
                                                  ow + .005))
                            self.log.debug('Reweight osd.%d reweight %f -> %f',
                                           osd, ow, new_ow)
                            next_ow[osd] = new_ow

                # normalize weights under this root
                root_weight = crush.get_item_weight(pe.root_ids[root])
                root_sum = sum(b for a, b in next_ws.items()
                               if a in target.keys())
                if root_sum > 0 and root_weight > 0:
                    factor = root_sum / root_weight
                    self.log.debug('normalizing root %s %d, weight %f, '
                                   'ws sum %f, factor %f',
                                   root, pe.root_ids[root], root_weight,
                                   root_sum, factor)
                    for osd in actual.keys():
                        next_ws[osd] = next_ws[osd] / factor

            # recalc
            plan.compat_ws = copy.deepcopy(next_ws)
            next_ms = plan.final_state()
            next_pe = self.calc_eval(next_ms, plan.pools)
            next_misplaced = next_ms.calc_misplaced_from(ms)
            self.log.debug('Step result score %f -> %f, misplacing %f',
                           best_pe.score, next_pe.score, next_misplaced)

            if next_misplaced > max_misplaced:
                if best_pe.score < pe.score:
                    self.log.debug('Step misplaced %f > max %f, stopping',
                                   next_misplaced, max_misplaced)
                    break
                step /= 2.0
                next_ws = copy.deepcopy(best_ws)
                next_ow = copy.deepcopy(best_ow)
                self.log.debug('Step misplaced %f > max %f, reducing step to %f',
                               next_misplaced, max_misplaced, step)
            else:
                if next_pe.score > best_pe.score * 1.0001:
                    bad_steps += 1
                    if bad_steps < 5 and random.randint(0, 100) < 70:
                        self.log.debug('Score got worse, taking another step')
                    else:
                        step /= 2.0
                        next_ws = copy.deepcopy(best_ws)
                        next_ow = copy.deepcopy(best_ow)
                        self.log.debug('Score got worse, trying smaller step %f',
                                       step)
                else:
                    bad_steps = 0
                    best_pe = next_pe
                    best_ws = copy.deepcopy(next_ws)
                    best_ow = copy.deepcopy(next_ow)
                    if best_pe.score == 0:
                        break
            left -= 1

        # allow a small regression if we are phasing out osd weights
        fudge = 0.0
        if best_ow != orig_osd_weight:
            fudge = .001

        if best_pe.score < pe.score + fudge:
            self.log.info('Success, score %f -> %f', pe.score, best_pe.score)
            plan.compat_ws = best_ws
            for osd, w in best_ow.items():
                if w != orig_osd_weight[osd]:
                    self.log.debug('osd.%d reweight %f', osd, w)
                    plan.osd_weights[osd] = w
            return 0, ''
        else:
            self.log.info('Failed to find further optimization, score %f',
                          pe.score)
            plan.compat_ws = {}
            return -errno.EDOM, 'Unable to find further optimization, ' \
                                'change balancer mode and retry might help'

    def get_compat_weight_set_weights(self, ms: MappingState):
        have_choose_args = CRUSHMap.have_default_choose_args(ms.crush_dump)
        if have_choose_args:
            # get number of buckets in choose_args
            choose_args_len = len(CRUSHMap.get_default_choose_args(ms.crush_dump))
        if not have_choose_args or choose_args_len != len(ms.crush_dump['buckets']):
            # enable compat weight-set first
            self.log.debug('no choose_args or all buckets do not have weight-sets')
            self.log.debug('ceph osd crush weight-set create-compat')
            result = CommandResult('')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd crush weight-set create-compat',
                'format': 'json',
            }), '')
            r, outb, outs = result.wait()
            if r != 0:
                self.log.error('Error creating compat weight-set')
                return

            result = CommandResult('')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd crush dump',
                'format': 'json',
            }), '')
            r, outb, outs = result.wait()
            if r != 0:
                self.log.error('Error dumping crush map')
                return
            try:
                crushmap = json.loads(outb)
            except json.JSONDecodeError:
                raise RuntimeError('unable to parse crush map')
        else:
            crushmap = ms.crush_dump

        raw = CRUSHMap.get_default_choose_args(crushmap)
        weight_set = {}
        for b in raw:
            bucket = None
            for t in crushmap['buckets']:
                if t['id'] == b['bucket_id']:
                    bucket = t
                    break
            if not bucket:
                raise RuntimeError('could not find bucket %s' % b['bucket_id'])
            self.log.debug('bucket items %s' % bucket['items'])
            self.log.debug('weight set %s' % b['weight_set'][0])
            if len(bucket['items']) != len(b['weight_set'][0]):
                raise RuntimeError('weight-set size does not match bucket items')
            for pos in range(len(bucket['items'])):
                weight_set[bucket['items'][pos]['id']] = b['weight_set'][0][pos]

        self.log.debug('weight_set weights %s' % weight_set)
        return weight_set

    def do_crush(self) -> None:
        self.log.info('do_crush (not yet implemented)')

    def do_osd_weight(self) -> None:
        self.log.info('do_osd_weight (not yet implemented)')

    def execute(self, plan: Plan) -> Tuple[int, str]:
        self.log.info('Executing plan %s' % plan.name)

        commands = []

        # compat weight-set
        if len(plan.compat_ws):
            ms_plan = cast(MsPlan, plan)
            if not CRUSHMap.have_default_choose_args(ms_plan.initial.crush_dump):
                self.log.debug('ceph osd crush weight-set create-compat')
                result = CommandResult('')
                self.send_command(result, 'mon', '', json.dumps({
                    'prefix': 'osd crush weight-set create-compat',
                    'format': 'json',
                }), '')
                r, outb, outs = result.wait()
                if r != 0:
                    self.log.error('Error creating compat weight-set')
                    return r, outs

        for osd, weight in plan.compat_ws.items():
            self.log.info('ceph osd crush weight-set reweight-compat osd.%d %f',
                          osd, weight)
            result = CommandResult('')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd crush weight-set reweight-compat',
                'format': 'json',
                'item': 'osd.%d' % osd,
                'weight': [weight],
            }), '')
            commands.append(result)

        # new_weight
        reweightn = {}
        for osd, weight in plan.osd_weights.items():
            reweightn[str(osd)] = str(int(weight * float(0x10000)))
        if len(reweightn):
            self.log.info('ceph osd reweightn %s', reweightn)
            result = CommandResult('')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd reweightn',
                'format': 'json',
                'weights': json.dumps(reweightn),
            }), '')
            commands.append(result)

        # upmap
        incdump = plan.inc.dump()
        for item in incdump.get('new_pg_upmap', []):
            self.log.info('ceph osd pg-upmap %s mappings %s', item['pgid'],
                          item['osds'])
            result = CommandResult('foo')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd pg-upmap',
                'format': 'json',
                'pgid': item['pgid'],
                'id': item['osds'],
            }), 'foo')
            commands.append(result)

        for pgid in incdump.get('old_pg_upmap', []):
            self.log.info('ceph osd rm-pg-upmap %s', pgid)
            result = CommandResult('foo')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd rm-pg-upmap',
                'format': 'json',
                'pgid': pgid,
            }), 'foo')
            commands.append(result)

        for item in incdump.get('new_pg_upmap_items', []):
            self.log.info('ceph osd pg-upmap-items %s mappings %s', item['pgid'],
                          item['mappings'])
            osdlist = []
            for m in item['mappings']:
                osdlist += [m['from'], m['to']]
            result = CommandResult('foo')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd pg-upmap-items',
                'format': 'json',
                'pgid': item['pgid'],
                'id': osdlist,
            }), 'foo')
            commands.append(result)

        for pgid in incdump.get('old_pg_upmap_items', []):
            self.log.info('ceph osd rm-pg-upmap-items %s', pgid)
            result = CommandResult('foo')
            self.send_command(result, 'mon', '', json.dumps({
                'prefix': 'osd rm-pg-upmap-items',
                'format': 'json',
                'pgid': pgid,
            }), 'foo')
            commands.append(result)

        # wait for commands
        self.log.debug('commands %s' % commands)
        for result in commands:
            r, outb, outs = result.wait()
            if r != 0:
                self.log.error('execute error: r = %d, detail = %s' % (r, outs))
                return r, outs
        self.log.debug('done')
        return 0, ''

    def gather_telemetry(self) -> Dict[str, Any]:
        return {
            'active': self.active,
            'mode': self.mode,
        }